Accountable Modeling in ACT-UP,
a Scalable, Rapid-Prototyping ACT-R Implementation.

David Reitter (reitter @ cmu.edu) and Christian Lebiere (c1@cmu.edu)
Department of Psychology, Carnegie Mellon University,
5000 Forbes Ave, Pittsburgh, PA 15213 USA

Abstract

ACT-UP is a toolbox implementation of the ACT-R cognitive
architecture, aimed at allowing rapid prototyping of complex
models. With ACT-UP, we propose Accountable Modeling,
where the only model components that are specified are those
supported by empirical evidence and part of the model’s theo-
retical claims. ACT-UP is a library providing a programmatic
interface to the classical ACT-R functionality. Implemented
in a functional programming paradigm, models are reusable in
other contexts. The toolbox is demonstrated using five imple-
mented and evaluated cognitive models.

Keywords: Complex Models, Cognitive Architectures, ACT-R

Introduction

Cognitive models have explained a great deal of behavioral
and neurophysiological data. On the road to understanding
the mind, cognitive architectures have specified a core set
of representations and mechanisms common to a variety of
models in order to separate general functional components
and their abilities from domain-specific instantiations, such
as knowledge and strategies. However, the tasks that classi-
cal cognitive models have taken on are mainly those that can
be defined in a controlled environment. Process models of
laboratory behavior are often overly specific and needlessly
complex, while alternative models would yield similar fits.
The model eco-system has diversified rather than converged,
with specific rule sets developed for each given task and very
seldom reused or generalized for other tasks. This leads to
overfitting and lack of robustness. To robustly explain and
predict behavior in complex real-life situations, model com-
plexity has to increase further. Inevitably, humans execute
much more complex tasks as well, drawing from a variety of
knowledge and skills and contextualizing their observations
and thoughts in light of both long-term experience and re-
cently acquired knowledge.

The greater complexity of tasks may have a welcome effect
on cognitive architectures. Current general architectures such
as ACT-R (Anderson, 2007) or SOAR (Laird & Rosenbloom,
1987) are not as restrictive as human memory is. ACT-R, has,
during versions 2 through 4, become more and more restric-
tive: large, very complex rules made way for smaller, gran-
ular ones that could describe less functionality each. Still,
even its latest incarnation can implement a model that pre-
dicts excellent human performance at the most intricate N-
back task, failing to explain the dismal human performance
scalability at this task. This difficult task (Kirchner, 1958)
requires subjects to keep a first-in-first-out queue of N items
in memory. Sufficient architectural contraints may mean that
modelers can no longer design functional models of existing
tasks, let alone the more complex ones we have argued for.
One solution to the dilemma is to constrain models by re-use

199

of micro-strategies. It is hoped that the resulting convergence
will eventually let us better reflect the architecture of the mind
(Newell, 1973).

As task complexity increases, a careful analysis of the
components of the model is necessary. Every rule, every data
structure, and every knowledge access process can be seen
as a claim that needs to be proved empirically. For anything
but the simplest cognitive models, many of the procedures
and data structures they define are often not evaluated: the
specifics of many of the components of the model may be ir-
relevant to the story a model has to tell. The solution to this
problem is under-specification. In what we call the Account-
able Modeling paradigm, we suggest to apply Occam’s razor
and specify only what is meant to be directly or indirectly
evaluated.

As a consequence, we arrive at models that can be more
complex yet faster and easier to prototype, while still using
the same core representations and mechanisms of the archi-
tecture. Until all portions of the model are fully specified,
such models may fall short of Newellian complete process
models. Yet, they honestly separate claim from conjecture
and provide the same level of comparison to human data.

Accountable Modeling

Recent work has been undertaken to investigate the use of
ACT-R to study the interaction of two, eight, or even thou-
sands of cognitive agents. Scalability in this domain would
make cognitive models applicable to new domains such as
network science, for which a precise computational represen-
tation of human cognitive processes has been desirable but as
to now unavailable. The modeling methodology in this paper
follows accountable modeling within the ACT-R theory.The
“Adaptive Control of Thought—Rational” framework (ACT-
R, Anderson, 2007) defines a component-based architecture,
in which specialized modules work largely in parallel to con-
tribute to thought processes. In recent computational imple-
mentations, it requires end-to-end models, describing thought
processes through a set of production rules controlling the in-
teraction of cognitive (e.g., long-term memory) and percep-
tual components. We distinguish the ACT-R theory from its
canonical implementation (ACT-R 6, Bothell, 2005). In the
following, we assume familiarity with the basics of ACT-R.
Working within the ACT-R theory, we designed a new tool-
box instantiation of the theory called ACT-UP. ACT-UP re-
flects ACT-R, but lets the modeler specify algorithms much
like a programmer would. Functionality is compartmental-
ized in reusable functions (taking arguments and returning a
value) and data is stored and retrieved as in ACT-R in chunks
in declarative memory. ACT-UP is intended as a library for



modelers comfortable with basic programming paradigms.

Most of the cognitive functions that ACT-R makes avail-
able correspond to the buffer-based interface of the architec-
tural modules in ACT-R: a learn-chunk function to commit a
chunk to memory or boost its activation; a retrieve function
to request a chunk from declarative memory, taking hard con-
straints, cues (to spread activation), and soft constraints (for
partial matching). (In ACT-R, buffers represent interfaces
between cognitive modules. Chunks are bundles of feature-
value pairs, which can be stored temporarily in buffers, or,
more long-term, in declarative memory.) But ACT-UP also
makes more fine-grained cognitive functions available. Such
micro-functions allow models to go beyond what is available
to ACT-R models.

We intend to address several goals with ACT-UP. Account-
ability suggests to underspecify model components that are
neither motivated by data or theory nor subject to empiri-
cal evaluation. Rapid prototyping allows modelers to quickly
build and modify most parts of the model, even computation-
ally complex ones, while focusing on learning and other cog-
nitive effects predicted by ACT-R’s theoretical assumptions.
Crucially, it produces models that are reconfigurable so that
systematic parameter search can be used to explore the space
of possible models. Reusability results from clear input and
output data structures, turning models into functions that can
be re-used in other contexts: the convergence of models and
cognitive frameworks is a long-term goal. Scalability allows
models to run longer, apply to more complex tasks, and sim-
ulate agents in the context of larger multi-agent systems.

To describe the notion of accountability, let us consider
some design decisions that a modeler has to make: where
to abstract away from subtasks and surrounding tasks, and
where to concentrate on the cognitive properties that ulti-
mately explain variance in the data. Both ACT-R 6 as well as
the ACT-UP toolbox allow for free computation outside the
theory!. Even the more theoretically motivated buffers and
chunks are storage means that are not limited in size. ACT-
UP retains information in local variables, thereby acknowl-
edging the lack of constraints.

Procedures are at the core of ACT-R. They initiate per-
ceptual acquisition, declarative memory retrievals and motor
actions and act as an information broker between all com-
ponents of the architecture. They are implemented as pro-
duction rules, defining a precondition that refers to the state
of buffer contents, and a consequential action affecting the
buffers and their associated modules. While all rules are el-
igible to match at all times in a model, only one of them is
selected to fire.

Such a production rule system is capable of implement-
ing complex algorithms, especially with the addition of state
information in buffers. Thus, the question of whether a so-
lution to the experimental task can be formulated as a set of
production rules is less relevant than the question of whether
the model’s crucial decision-making can be cast as a pattern-
matching task, or whether reinforcement learning of recogni-

l«eval” statements in ACT-R 6, for instance, allow the modeler
to design model components in Lisp.

200

tion patterns and associated actions (as in ACT-R’s learning
of production rule utility) can explain the observed data. In-
deed, in typical models does the deciding learning effect oc-
cur only in very specific decision-making moments. The large
majority of the model’s production rules are in place to deter-
ministically execute the task. These collections of produc-
tion rules are difficult to develop, inspect, change, maintain
and re-use. Therefore, ACT-UP’s rules may be underspeci-
fied and implemented as a program. This will also often be
the case whenever productions implement deterministic and
static processes. Other productions may still be faithfully de-
scribed: those that reflect the crucial pattern-matching tasks
and reactions to recognized patterns, or the routinization of
initially declaratively memorized processes. This is where the
toolbox approach allows modelers to underspecify the model
by reformulating productions in a more direct, computation-
ally treatable manner. Underspecification may also occur for
many methodological reasons. Data may be lacking to sup-
port an evaluation of the claims, if they were specified, or the
lack of suitable data, or the task complexity, e.g., understand-
ing of complex natural language instructions where it does
not reflect the goals of the modeling work.

ACT-UP provides high-level interfaces to core simulation
components of human cognition (e.g., retrieval of a declara-
tive chunk from a pattern specification). It also gives mod-
elers fine-grained control over such processes, by filtering
chunks from declarative memory or choosing the most ac-
tive chunks from a set. Thus, the functional toolbox approach
integrates well with cognitive mechanisms that do not yet
have a well-specified interface to the remaining buffer- and
productions-based ACT-R architecture.

Wherever constraints are relaxed, cognitive plausibility
comes into question. Traditionally, models have relied on
their within-theory specification to provide constraints pro-
moting cognitive plausibility (usually using ACT-R 6). As
argued in the introduction, such constraints are not exhaus-
tive. In order to constrain the computational resources avail-
able to the model, ACT-UP asks the modeler to focus on
the crucial portion of their model, while using the compu-
tational power of a programming language for other parts.
For those parts, parameters may be fitted that describe their
(human) execution time and reliability. Since production sys-
tems are Turing-equivalent, we know that a production sys-
tem can be defined to accomplish what an ACT-UP model
does. Thus, ACT-UP models do not represent an implausible
gain in power.

ACT-UP architecture

ACT-UP aims to implement a substantial subset of the ACT-
R theory. The striking differences between ACT-UP and im-
plementations such as ACT-R 6 or Stewart & West’s (2007)
Python variant do not lie in the theory: they pertain to the in-
terface that is offered to the modeler. ACT-UP’s interface is
synchronous and does not yet implement parallelism (which
is often not needed). ACT-UP is a toolbox providing ACT-R
functionality in a piecemeal fashion as well as commands at
a higher abstraction level, which would integrate well with
Salvucci & Lee’s (2003) motor, speech and perceptual mod-



ule commands. The ACT-UP library is a stand-alone system,
and independent of ACT-R 6. It provides a set of Lisp func-
tions and macros; modelers interact with it on the basis of
source code that follows Common Lisp syntax (see below for
examples). ACT-UP models predict the two major behavioral
outcome types: choice and timing.

Declarative memory system

ACT-UP’s declarative memory (DM) embodies all the core
elements of DM in ACT-R. Memory is accessed in the form
of chunks, which are sets of feature-value pairs. Chunks are
learned (or reinforced) with an explicit command; there is no
automatic learning (buffer clearing in ACTR 6). Retrieval
occurs with a (normally) synchronous command, in which
the model specifies hard constraints (a set of feature value
pairs), soft constraints (subject to partial matching), and a set
of chunks as cues that spread activation. Thus, modelers gain
better control over the context of the retrieval. In ACT-R,
buffer contents that can spread erroneous activation have to
be tightly controlled (or parameterized) in order to prevent
unwanted misretrievals. In ACT-UP, assumptions about con-
text elements for each retrieval are explicitly specified. Thus,
ACT-UP currently forgoes some ACT-R constraints:

e strict harvesting (automatic buffer clearing and learning as

chunks): chunks are learned explicitly

all-encompassing spreading activation (all buffers may
spread activation): cues are specified during retrieval in
ACT-UP

unselective partial matching (the full retrieval request is
matched partially): ACT-UP retrieval distinguishes hard
and soft constraints

To see a typical chunk creation, retrieval and learning cycle,

suppose the model knows initially, via declarative memory, a
fact such as the lawyer is in the dungeon:

(add to DM)
(new chunk)

(learn—-chunk
(make—fact :name ’'l-d-fact

:person ’lawyer

:location ’dungeon))

We can, at model run-time, retrieve and reinforce this chunk:

(let ((fact (retrieve-chunk (retrieve)
" (:location dungeon)))) (constraints)
(if fact (learn—-chunk fact))) (reinforce)

Key memory processes such as base-level learning and de-
cay, cue-based memory retrieval, partial matching and their
parametrization are equivalent to ACT-R 6. Also available
are associative learning as in ACT-R 5 (Anderson, 1993) and
Blending (Wallach & Lebiere, 2003). ACT-UP models may
define a chunk type hierarchy, and they may derive data struc-
tures from chunk types in an object-oriented fashion.

Procedural skills

ACT-R defines procedural rules as fine-grained instructions
of the form If the buffers contain certain values, then change
their values according to another template. ACT-UP is sit-
uated at a higher level of abstraction. Modelers may spec-
ify complex rules that define sequences of actions and pre-
conditions, similar to a Lisp function. Production rules are

201

not usually evaluated in parallel, unless the modeler relies on
utility learning to model effects through reinforcement learn-
ing. ACT-R’s utility learning boosts the likelihood of success-
ful productions being chosen in cases of ambiguity (multiple
productions match). ACT-UP allows models to define rules
and explicitly group them in competition sets. ACT-UP can
chose a rule from a competition set. Rewards are explicitly
back-propagated as in ACT-R 6 in order to let a model learn
which rules lead to desirable outcomes. Thus, the production
rule conflict sets used in ACT-R are made explicit in ACT-
UP rather than being represented implicitly through overlap
in production conditions. Routinization effects, where re-
trievals from declarative memory are side-stepped through
specialized, acquired rules, can also be modeled in ACT-
UP (the analogous ACT-R mechanism is production compi-
lation). ACT-UP’s rules consume simulation time (50ms by
default), even though the precise predictions that fall out of
an ACT-R model are lost, where the same cycle time is as-
sumed, but where production rules are tightly constrained. In
line with Accountable Modeling, we propose to fit the exe-
cution duration (within plausible bounds) to the data as free
parameters.

(1) Validity: The Siegler Model

An ACT-UP model implementing the core of an ACT-R
model should result in exactly the same performance results.
To test such consistency of ACT-UP and ACT-R 6, we trans-
lated several ACT-R 6 models to ACT-UP. Here, we show
the Siegler model from the ACT-R 6 tutorial. The model ex-
plains data by Siegler & Shrager (1984), who found patterns
in arithmetic problem-solving in 4-year-olds. In making mis-
takes when answering addition problems, the children often
closely under- or overshot the correct result (2 + 3 = 6), and
their erroneous answers were more frequent and strayed fur-
ther from the target for problems involving larger numbers.
The ACT-R 6 model (following Siegler and Shrager’s model)
explains these data using a combination of partial matching
and base-level activations in memory retrieval of arithmetic
facts. Similarity between numbers is proportional to their
absolute difference, so that close answers may be retrieved
(243 =5). Base-level activations for more frequent addition
facts with lower results are higher, leading to more erroneous

retrievals and more often for facts involving larger numbers.

The ACT-R 6 model implements a number of determinis-
tic steps: aural presentation, encoding of the numbers, and
decoding of the result. The ACT-UP model underspecifies
these, as they do not contribute to the variance in the data.
The key processing step of the model, the retrieval of arith-
metic facts from memory, is accomplished by the following
high-level function:

(defrule test-fact (argl arg2)

(let ((fact
(retrieve—chunk (retrieve)
" (:chunk-type plus-fact) (hard constraints)
nil (no retrieval cues)
(list :addendl argl (soft
:addend2 arg2)))) constraints)
(if fact (plus-fact-sum fact)))) (extract sum)

Model initialization sets base-levels and similarities (in 24
lines of Lisp code), using function calls largely compatible



© _|
=) 142 —— human
~--ACT-UP 5.4
o | N\ fy o ACT-R6.0 .
©® © t
(2]
C
8 <
EI_J o
2«
N -
o < |
e T T T T T
0 2 4 6 8
response

Figure 1: The Siegler and Shrager (1984) data, showing the
three distributions of subject’s answers to the arithmetic prob-
lems 1+1, 142 and 3+3, and the simulation results of the
model implemented in ACT-R 6 and ACT-UP.

with ACT-R 6. Four architectural parameters are set equally
in both variants (retrieval threshold, transient noise, base-
level learning (off), and mismatch penalty coefficient).

Both model variants achieved the same correlation (0.966
in ACT-R 6 vs. 0.968 in ACT-UP) and mean deviation (0.053
vs. 0.052) with the data (1000 runs). Figure 1 shows the dis-
tribution of the subjects’ answers to three of the six prob-
lems and demonstrates that the predictions of ACT-UP match
closely those of ACT-R 6.

(2) Scalability: A Model of Language Evolution

A multi-agent model was implemented to reflect the emer-
gence of a domain language common to a group of agents
after repeated, goal-oriented interactions (Reitter & Lebiere,
2009). In the Pictionary games of the empirical study pro-
viding data for this modeling exercise, each participant had to
convey given meanings via drawings (without words) to an-
other participant. In this model, a language was defined as a
set of concept-representation pairs, where a concept was one
of 20 target concepts (e.g., hospital), and the representation
consisted of three drawings of concrete objects (e.g., build-
ing, ambulance, syringe). For novel concepts, the model drew
from an ontology (graph with weighted associations) linking
concepts to related drawings; relatedness was inferred from
co-occurrence information in a large text corpus. Known
concept-representation pairs were stored in declarative mem-
ory. Prototyping the model in ACT-R 6 proved difficult for
several reasons. The model was complex, and possible exe-
cution paths through the approximately 40 production rules
were not evident. Further, the model needed many iterations
to show convergence. Parallelization between eight agents
and repeated model execution (without reset) was difficult
to achieve for technical reasons. We estimate the expended
time to be around two person-months. The prototype’s re-
sults never approached an acceptable fit with the data on a
qualitative or quantitate level.

A functional prototype of the model using an initial version
of ACT-UP was developed in less than two weeks with the

202

benefit of a task well understood. We focused on plausibil-
ity within the ACT-R theory: No data structures were held in
memory beyond what could be stored in a buffer; the domain
language used declarative memory as intended. Production
rules were abstracted using loops, conditionals and ACT-UP
commands, owing to the fact that skill acquisition was not
part of the model. The model was split up into several func-
tions which could be individually inspected and tested (e.g.,
“draw”, “recognize”). ACT-UP functions were used to in-
spect the activation of target chunks at retrieval times (base-
level, spreading activation) and export those to be visualized
along a time-line. With this model, we were able to establish
good qualitative empirical correspondence with data from ex-
periments that compared a small community of eight partic-
ipants interacting in changing pairs, to a set of participants
interacting in four one-on-one dyads.

Recently, the model scaled well to multi-agent simulations
with 1000 agents and 84 million game interactions (two state-
ful agents, one concept per game) in about 36 CPU hours.
Further work is planned to evaluate scalability to memory-
intensive long-term tasks.

(3) Efficiency: A Sentence Production Model

The third case study involves a model that was implemented
in both ACT-R 6 and in ACT-UP. It involves a model of
sentence production (Reitter, 2008), focusing on the syntac-
tic process, and explaining syntactic priming data that show
that subjects are more likely to choose one syntactic variant
over another if that variant was presented as a prime (“The
girl gave the dog a bone” vs. “The girl gave a bone to the
dog.”). The model begins with a simple semantic representa-
tion (Verb: <give>, Agent: <girl>, Theme: <bone>, Goal:
<dog>). Beginning with the verb, it chooses words and their
syntactic forms describing how those words can combine (the
verb has two forms, yielding the two variants above). Base-
level activation of the appropriate syntactic chunks held in
DM and spreading activation from the meaning as described
above determine which form of sentence is produced. Base-
level learning and associative learning (in ACT-UP only) lead
to a range of priming effects.

The ACT-R 6 model consists of 30 productions, 7 chunk
types, and a variable number of chunks that are created for
each word and for several syntactic forms. The ACT-R 6 pro-
duction rules resulted in 720 lines of code. Base-level activa-
tions and associations between words and syntactic forms are
initialized programmatically from a corpus of spoken, tran-
scribed and syntactically parsed English. The model was
evaluated according to its qualitative and quantitative predic-
tions of syntactic priming effects using a small number of
sample sentences. As in the empirical data, syntactic priming
depends on the frequency of syntactic constructions and the
distance between target sentence and prime.

Studies also show that syntactic priming is much increased
when lexical material in the sentence is repeated between
prime and target. The model postulated that this was due
to learning of associations between lexical or semantic and
syntactic chunks—a suggestion that was tested empirically in
terms of its theoretical predictions, but associative learning



was not available to the ACT-R 6 model. Consequently, the
sentence production model and various initialization and sim-
ulation functions were formulated in ACT-UP over the course
of about 3 eight-hour workdays. The core function encoding
procedural knowledge (sequences of retrievals, conditionals,
a loop) has 82 lines of code.? The resulting model explained
the data including the lexical repetition effect.

In head-to-head comparison, the ACT-R 6 model runs at
a speed of 14 sentences per second. The ACT-UP variant
produces 380 sentences per second, despite being more spe-
cific than necessary to explain the data.> This purely technical
speed-up translates to a substantial advantage for the modeler:
not only is the debugging and experimentation cycle consid-
erably faster, but larger models of more realistic tasks can
be run in larger multi-agent simulations, thereby significantly
extending the applicability of cognitive models.

(4): Extensibility and Rapid Prototyping: the
Dynamic Stocks&Flows Model

The fourth model is another case of rapid prototyping. It illus-
trates how we could quickly implement a well-documented
approach to graded decision-making. Instance-based learn-
ing (IBL, Gonzalez et al., 2003) stores episodes encoding
past decisions and their observed performance in declara-
tive memory. Retrieval then blends those episodes together,
weighing their recency and frequency in line with ACT-R’s
base-level learning and partial matching.

In an entry (Reitter, 2010) to the Dynamic Stocks&Flows
modeling challenge*, IBL was used in two ways. The task in
this challenge had subjects extrapolate the change in a given
quantity from previous observations. Change rates could be
steady (the quantity following a linear function) or harder to
predict, including non-linear changes or discontinuous and
noisy sequences. IBL modeled the participant’s estimates of
the change rate and the future value of the quantity. Care-
ful analysis of empirical data showed an interesting pattern:
variability often suddenly decreased after about 20 iterations
of the task; depending on subject and change function, vari-
ability could be grouped into very low and higher pools: sub-
jects were highly precise, or not precise at all. This led to
the second use of IBL: a metacognitive layer, which allowed
the model to monitor its performance at the task and choose
from one of several strategies. Some of these strategies led to
precise estimates of the quantity through mental arithmetic,
and other strategies used IBL, as described above, to make an
educated guess.

The model used declarative memory for its core trans-
action: declarative chunks store the quantity estimates and
the performance monitoring episodes. Blending of stored
episodes is implemented (and available) at the ACT-UP level.

2The relatively faithful translation means that we do not fully
follow Accountable Modeling: the model is overly specific.

3Both models keep a similar-size declarative memory, require
similar retrievals; ACT-UP adds associative learning. Both mod-
els were run in the same LISP environment, without debug output.
ACT-R 6 tracing and logging were off, decision tree building on.
Optimized learning for ACT-UP and ACT-R 6 at 3 chunks.

4 www.hss.cmu.edu/departments/sds/ddmlab/modeldsf/

203

One free parameter in the model specified the duration of cal-
culations and the wait time between iterations (an underspec-
ified model component); we fitted the parameter from avail-
able subject data. The results were plausible given the exper-
imental design. Other parameters were held at their ACT-R
defaults; blending parameters were optimized. The model
won the challenge by best predicting transfer performance
to a set of unknown conditions, indicating that accountable
modeling has the potential of increasing generalization of
models by focusing on the key processes underlying perfor-
mance. The same model was later run in an extensive param-
eter exploration exercise, in which selected architectural and
model parameters were systematically varied, with millions
of model runs on a computing cluster (Gluck et al., 2010).
The exploration included a manipulation that switched indi-
vidual strategies on and off.

The DSF model exemplifies Accountable Modeling
through the decision to not describe the visual and motor in-
teraction with the experiment. While a portion of the data
might have been explained by the subject’s use of the graph-
ical user interface, neither timing, eye-tracking or mouse
movement data were available for validation. Thus, the model
underspecifies motor and sensor components.

(5) Reusability: Lemonade Game Agent

The final test case illustrates the re-use of model components.
We used a cognitive model in ACT-UP to explore the perfor-
mance of metacognition in a multi-agent game competition®.
The DSF challenge model (Reitter et al., 2010) provided the
metacognitive layer choosing one of multiple strategies. The
model plays a location game (Lemonade Stand), where the
optimal choice of strategy depends on the strategies played
by the two opponents. We designed a metacognitive model
that chooses from a wide range of elementary prediction and
action strategies based on their track record. The metacogni-
tive model always outperforms all single-strategy models we
implemented in a round-robin tournament. The metacogni-
tive layer only had to be minimally adapted: the core func-
tions for learning and blending retrieval were identical; only
the task-specific objective functions were redefined. ACT-UP
suggests useful compartmentalization: its functions take a set
of arguments and return a value; they are intended to be side-
effect free apart, of course, from changes to the state of the
model. As a consequence, they are reusable in new contexts.

The Lemonade Game agent is not a classical cogni-
tive model, explaining existing empirical data. Instead, its
metacognitive layer generates predictions. Not all individ-
ual strategies are formulated fully within the theory; thus, we
demonstrate a way to combine cognitive and purely algorith-
mic models. Difficulties arose when the model was readied
for submission to a competition, which required Java: in such
cases, we got the best use of ACT-UP as a prototyping tool,
but had to re-implement the model once validated.

5tech.groups.yahoo.com/group/lemonadegame/



Discussion

Most importantly, we want to propose a modeling paradigm
that institutionalizes what is often already the case whenever
cognitive models depend on the combination of just a few,
specific properties of the architecture. A series of case stud-
ies provided the basis for our introduction to ACT-UP. We
demonstrated the use of ACT-UP in high-fidelity models with
up to 1000 parallel agents; we showed cases of rapid proto-
typing and of the re-use of model components. Quantitative
predictions of ACT-UP parallel those of ACT-R.

The models are intended to integrate within one architec-
ture. The emergence of more complex, perhaps unexpected
behavior then follows from the reuse and combination of
models that describe behavior in much more complex, per-
haps even realistic environments. ACT-UP models are in-
tended to be underspecified where data cannot account for
the specific claims encoded by the model. Such a modeling
paradigm appears not only sensible (as it is evidence-based):
it also supports scaling up modeling efforts and extending
them to new applications. Architectural flexibility is gained
through liberal combination of components, not unlike what
was proposed by Cassimatis (2002).

Are such models still models of cognitive processes, or are
they merely computer programs? First, the execution direc-
tives (Lisp clauses) specify the model at a higher level than
do production rules: both can be seen as computer programs.
Importantly, production rules can implement any algorithm,
and could, thus, be derived from the ACT-UP model. Thus,
ACT-UP models are not theoretically more powerful. Sec-
ond, temporary storage of variables and even complex data
structures enables the modeler to write implausible ACT-UP
models, just like large buffers provide a way to exceed what
is cognitively believable. Plausibility is not guaranteed unless
modeler discretion is entirely removed, which has not been
accomplished under any implementation of the theory. Third,
ACT-UP’s and ACT-R’s longer-term storage model (chiefly
declarative memory) is an example of strong constraints on
what a modeler can do in these formalisms, as opposed to a
non-cognitively motivated program.

Conclusion

We see the current state of ACT-UP as an experimental step
to scale up cognitive modeling and extend its areas of ap-
plicability. Much work remains to be done. Perceptual and
motor components are not yet completed, and parallelism as
in ACT-R as well as in its multitasking variant Salvucci et
al. (2009) is desirable. The combination of pattern recog-
nition algorithms with ACT-UP may provide for a plausible
implementation of the IF part of production rules, possibly
to automatically bootstrap and optimize models from sample
runs. Larger-scale, long-term simulations will show the lim-
its of the architecture. Still, the wide variety of test cases
presented demonstrates scalability w.r.t. modeling effort and
computations, and has taken a step towards the integration of
high-fidelity cognitive models in complex cognitive systems.

204

Acknowledgements

The authors acknowledge funding for this work from the Air Force
Office of Scientific Research (MURI 7 - FA95500810356).

References
Anderson, J. R. (1993). Rules of the mind. Hillsdale, NJ: Erlbaum.

Anderson, J. R. (2007). How can the human mind occur in the
physical universe? Oxford, UK: Oxford University Press.

Bothell, D. (2005). ACT-R 6.0 Reference Manual. Re-
trieved 12/2009, from act-r.psy.cmu.edu/actr6/
reference-manual.pdf

Cassimatis, N. L. (2002). Polyscheme: A cognitive architecture for
integrating multiple representation and inference schemes. Un-
published doctoral dissertation, Massachusetts Institute of Tech-
nology.

Gluck, K. A., Stanley, C. T., L. Richard Moore, J., Reitter, D., &
Halbriigge, M. (2010). Exploration for understanding in model
comparisons. Journal of Artificial General Intelligence (to ap-
pear).

Gonzalez, C., Lerch, F., & Lebiere, C. (2003). Instance-based learn-
ing in dynamic decision making. Cognitive Science, 27, 591-635.

Kirchner, W. K. (1958). Age differences in short-term retention of
rapidly changing information. Journal of Experimental Psychol-
0gy, 55(4), 352-358.

Laird, J. E., & Rosenbloom, P. S. (1987). Soar: An architecture for
general intelligence. Artificial Intelligence, 33(1), 1-64.

Newell, A. (1973). You can’t play 20 questions with nature and
win. In W. Chase (Ed.), Visual information processing. New
York, N.Y.: Academic Press.

Reitter, D. (2008). Context effects in language production: Models
of syntactic priming in dialogue corpora. Unpublished doctoral
dissertation, University of Edinburgh.

Reitter, D. (2010). Metacognition and multiple strategies in a cog-
nitive model of online control. Journal of Artificial General In-
telligence (to appear).

Reitter, D., Juvina, 1., Stocco, A., & Lebiere, C. (2010). Resistance
is futile: Winning lemonade market share through metacogni-
tive reasoning in a three-agent cooperative game. In Proceedings
of the 19th Behavior Representation in Modeling & Simulation
(BRIMS). Charleston, SC.

Reitter, D., & Lebiere, C. (2009). Towards explaining the evolution
of domain languages with cognitive simulation. In Proceedings of
the 9th International Conference on Cognitive Modeling (ICCM).
Manchester, UK.

Salvucci, D. D., & Lee, F. J. (2003). Simple cognitive modeling in
a complex cognitive architecture. In Chi '03: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems
(pp- 265-272). New York, NY, USA: ACM.

Salvucci, D. D., Taatgen, N. A., & Borst, J. P. (2009). Toward a uni-
fied theory of the multitasking continuum: from concurrent per-
formance to task switching, interruption, and resumption. In Chi
'09: Proceedings of the 27th International Conference on Human
Factors in computing systems (pp. 1819-1828). New York, NY,
USA: ACM.

Siegler, R. S., & Shrager, J. (1984). Strategy choices in addition and
subtraction: How do children know what to do? In C. Sophian
(Ed.), The origins of cognitive skills (p. 229-293). Hillsdale, NJ:
Erlbaum.

Stewart, T. C., & West, R. L. (2007). Deconstructing and recon-
structing ACT-R: Exploring the architectural space. Cognitive
Systems Research, 8(3), 227-236.

Wallach, D., & Lebiere, C. (2003). Conscious and unconscious
knowledge: Mapping to the symbolic and subsymbolic levels of
a hybrid architecture. In L. Jimenez (Ed.), Attention and implicit
learning. Amsterdam, Netherlands: John Benjamins.





