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Abstract

Creating artificial intelligent agents that are high-fidelity sim-
ulations of natural agents will require that behavioral scientists
be able to write code themselves, not merely act as consul-
tants with the ensuing knowledge acquisition bottleneck. We
are designing a system that will make it possible to create rich
agents using concepts familiar to behavioral scientists, such
as personality models from psychology. However, translating
personality models into the concrete behavior of an agent us-
ing currently available programming constructs would require
a level of code complexity that would make the system inac-
cessible to behavioral scientists. What we need is a way to
derive the concrete actions of an agent directly from psycho-
logical personality models. This paper describes a reinforce-
ment learning approach to solving this problem in which we
represent trait-theoretic personality models as reinforcement
learning agents. We validate our approach by creating a vir-
tual reconstruction of a psychology experiment using human
subjects and showing that our virtual agents exhibit similar be-
havior patterns.
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Introduction

There is tremendous interest in creating synthetic agents that
behave as closely as possible to natural (human) agents. Rich,
interactive intelligent agents will advance the state of the art
in training simulations, interactive games and narratives, and
social science simulations. However, the programming sys-
tems for creating such rich synthetic agents are too complex,
or rather too steeped in computational concepts, to be used
directly by the behavioral scientists who are most knowledge-
able in modeling natural agents. Engaging behavioral scien-
tists more directly in the authoring of synthetic agents would
go a long way towards improving the fidelity of synthetic
agents.

Our goal is to create a programming language that a behav-
ioral scientist can use to write agent programs using concepts
familiar to behavioral scientists. This task is complicated by
the fact that the most popular and best understood personal-
ity models from behavioral science do not lend themselves to
direct translation into computer programs. Requiring a be-
havioral scientist to specify behaviors in the detail required in
even the most cutting edge purpose-built programming lan-
guage would plunge the would-be behavioral scientist agent
programmer right into a morass of complex computational
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concepts that lie outside the expertise of most dedicated be-
havioral experts. To solve this problem we need a way to get
from personality models to behaviors, to derive specific agent
actions in an environment from a personality model without
having to program the derivation in great detail.

In this paper, we describe a way to model motivational fac-
tors from trait-oriented personality theory by reinforcement
learning components. We describe a virtual agent simulation
that reconstructs a human subject experiment from psychol-
ogy, namely some of Atkinson’s original work in achieve-
ment motivation and test anxiety, and show that our simula-
tion exhibits the same general behavior patterns as the human
subjects in Atkinson’s experiments. First, we briefly discuss
relevant personality research and provide some background.

Personality

Personality is a branch of psychology that studies and char-
acterizes the underlying commonalities and differences in hu-
man behavior. Within psychology, there are two broad cate-
gories of personality theories: processing theories, and dispo-
sitional, or trait theories. Social-cognitive and information-
processing theories identify processes of encodings, ex-
pectancies, and goals in an attempt to characterize the mech-
anisms by which people process their perceptions, store con-
ceptualizations, and how those processes drive their interac-
tions with others (Dweck & Leggett, 1988; Cervone & Per-
vin, 2009; Cervone & Shoda, 1999). A strength of processing
theories, especially from a computational perspective, is that
they provide a detailed account of the cognitive processes that
give rise to personality and drive behavior. This strength is
also a drawback — processing theories tend to be detailed and
often low-level (though not as low-level as cognitive architec-
tures, which we will discuss below), and this makes them less
intuitive and less suited to describing personality in broad,
easily understood terms.

Trait theories (Cervone & Pervin, 2009), the most well-
known example of which is the Five-Factor model (McCrae
& Paul T. Costa, 2008), attempt to identify stable traits (some-
times called “trait adjectives”) that can be measured on nu-
merical scales and remain invariant across situations in de-
termining behavior. A strength of the trait approach is that



they are well-suited to describing individuals in broad, intu-
itive terms. Two drawbacks of the approach are that there is
not yet widespread agreement on a set of truly universal traits
(or how many there are), and it is not clear how trait models
drive behavior. A promising line of research by Elliot and
Thrash (Elliot & Thrash, 2002) is working towards solving
these problems by integrating motivation into personality in
a general way. The work of Elliot and Thrash particularly
supports the approach we present here, as they show that ap-
proach and avoidance motivation underpins all currently pop-
ular trait theories.

While debate continues about the merits and drawbacks of
the different approaches to personality, the psychology com-
munity is also attempting to unify personality and motiva-
tion theory (Mischel & Shoda, 2008). While the work we
present here is focused on bridging the gap between the de-
scriptive power of trait-oriented models and the behavior that
arise from them, we consider this work to be complementary
to work in encoding information processing theories. In the
future, rich computational agents may be built by combining
approaches.

Reinforcement Learning

One can think of reinforcement learning (RL) as a machine
learning approach to planning, that is, a way of finding a se-
quence of actions that achieves a goal. In RL, problems of
decision-making by agents interacting with uncertain envi-
ronments are usually modeled as Markov decision processes
(MDPs). In the MDP framework, at each time step the agent
senses the state of the environment and executes an action
from the set of actions available to it in that state. The agent’s
action (and perhaps other uncontrolled external events) cause
a stochastic change in the state of the environment. The agent
receives a (possibly zero) scalar reward from the environ-
ment. The agent’s goal is to find a policy; that is, to choose
actions so as to maximize the expected sum of rewards over
some time horizon. An optimal policy is a mapping from
states to actions that maximizes the long-term expected re-
ward. In short, a policy defines which action an agent should
take in a given state to maximize its chances of reaching a
goal.

Reinforcement learning is a large and active area of re-
search, but the preceding is all the reader needs to understand
the work presented here. More detail can be found in (Sutton
& Barto, 1998; Kaelbling, Littman, & Moore, 1996).

Modeling Personality with Reinforcement Learning

The essential idea behind modeling personality traits with re-
inforcement learning is that each motivational factor can be
represented by a reinforcement learning component. In psy-
chology, the inherent desirability or attractiveness of a behav-
ior or situation is referred to as valence. For a person high in
success approach motivation, behaviors or situations that pro-
vide an “opportunity to excel” will have high valence, while
other behaviors will have lower valence. The notion of va-
lence translates fairly directly into the concept of reward in
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reinforcement learning. Just as people with certain motiva-
tional factors will be attracted to high-valence behaviors, a
reinforcement learner is attracted to high-reward behaviors.
This is the basis for modeling motivational factors with rein-
forcement learning components. By encoding the valence of
certain behaviors as a reward structure, reinforcement learn-
ers can learn the behavioral patterns that are associated with
particular motivational factors. This is a powerful idea, be-
cause it allows an agent author to write agent code using mo-
tivational factors while minimizing the need to encode the
complex mechanisms by which such factors lead to concrete
behavior.

A critical aspect of trait theory is that traits can have inter-
active effects. It is clear that a person who is high in achieve-
ment motivation will “go for it” when given the opportunity
and that a person who is high in avoidance motivation will
be more reserved. But what happens when a person is high
in both motivations? Such interactive effects cannot be ig-
nored in a credible treatment of personality, but it is hard
to predict the behavioral patterns that will arise from given
combinations of motivational factors. One can imagine the
code complexity that might result from trying to model such
interactive effects with production rules or other traditional
programming constructs. As we demonstrate later, our rein-
forcement learning approach handles such interactive effects
automatically.

It is important to note that we are not creating a new the-
ory of personality. We are creating a computational means
of translating existing theories of personality from psychol-
ogy (not computer science) into actions executed by synthetic
agents. We are also not committing to a particular theory
from psychology, but rather supporting the general category
of trait theories of personality which, until now, have not been
directly realizable in computer agents.

In the remainder of this paper we discuss some related
work in agent modeling, present our virtual reconstruction of
a human subject experiment using our reinforcement learning
approach, and discuss the promising results and their impli-
cations for future work.

Related Work

There is a great deal of work in modeling all sorts of phe-
nomena in synthetic agents. Cognitive architectures provide
computational models of many low-level cognitive processes,
such as memory, perception, and conceptualization (Jones,
2005; Langley, Laird, & Rogers, 2008). Cognitive architec-
tures support scientific research in cognitive psychology by
providing runnable models of cognitive processes, support
research in human-computer interaction with detailed user
models (John, 1998), and can serve as the “brains” of agents
in a variety of contexts. The most notable and actively de-
veloped cognitive architectures are Soar (Laird, 2008) and
ACT-R (Anderson, Bothell, & Byrne, 2004). Recently, some
effort has gone into integrating reinforcement learning into
Soar (Nason & Laird, 2008). While RL is used to improve



the reasoning system in Soar, we are using RL to support new
paradigms of computer programming for agent systems. In
general, our work differs from and complements work in cog-
nitive architectures in that we are drawing on psychological
theory that is expressed at a much higher level of abstrac-
tion. Cognitive psychology and Al have often built on each
other. Indeed, cognitive psychology is the basis of cognitive
architectures in Al. Our work is an attempt to bring in main-
stream personality psychology as a basis for building intel-
ligent agents, which we hope will complement the detailed
models of cognitive architectures in creating rich synthetic
agents.

There is a large and rich body of work in believable
agents. Mateas and Stern built on the work of the Oz project
(Loyall & Bates, 1991) in creating a programming language
and reactive—planning architecture for rich believable agents.
They implemented their theory in the computer game Facade,
a one-act interactive drama in which the player interacts with
computer simulated characters that provide rich social inter-
activity (Mateas & Stern, 2004). Gratch, Marsella and col-
leagues have a large body of work in creating rich simulations
of humans for training simulations that incorporate models
of appraisal theory and emotion (Gratch & Marsella, 2005;
Swartout et al., 2006). A distinctive feature of the work of
both Mateas, et. al., and Gratch, et. al., is that they are deal-
ing with the entire range of Al problems in creating believ-
able agents that sense, act, understand and communicate in
natural language, think, and exhibit human-like personalities.
Our work differs from other work in personality modeling in
that we are not attempting to simulate personality, but using
definitions of personality to drive the behavior of synthetic
agents. We want to derive behavior that is consistent with a
given personality model, but not necessarily to ensure that the
agent gives the appearance of having that personality.

Experiments

To test our claim that personality can be modeled by rein-
forcement learning components, we created a population of
simple two-component multiple-goal reinforcement learning
agents and ran them in a world that replicated experiments
carried out with humans by psychologist John Atkinson. First
we describe Atkinson’s original research, and then discuss
our virtual reconstruction of his experiments.

Atkinson’s Ring Toss Experiment

John Atkinson was among the first researchers to study the
existence and role of approach and avoidance motivation in
human behavior. Prior to Atkinson’s work, it was believed
that test anxiety was equivalent to low achievement motiva-
tion. However, Atkinson showed that test anxiety is actually
a separate avoidance motivation, a “fear of failure” dimen-
sion that works against and interacts with achievement mo-
tivation (Atkinson & Litwin, 1960). To test his hypothesis,
he administered standard tests of achievement motivation and
test anxiety to a group of undergraduate psychology students
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and devised a series of experiments which examined the ef-
fort put forth in achieving success in tasks such as taking a
final exam. It is important to note that he did not measure the
outcomes of the task, but rather the effort put forth in doing
well in them. Thus, his experiments examined the relation-
ship between motivation and behavior, not necessarily com-
petence. One of his experiments, a ring toss game, produced
results that clearly show the interplay of approach and avoid-
ance motivation and is particularly well-suited to computer
simulation.

In Atkinson’s ring toss experiment, subjects played a ring
toss game in which players attempted to toss a ring from a
specified distance onto a peg. Subjects made 10 tosses from
any distance they wished, from 1 through 15 feet, and the dis-
tance at which each subject made each toss was recorded. For
analysis, subjects were divided into four groups according to
their measures of achievement motivation and test anxiety so
that the relationship between these motivations and their be-
havior could be analyzed. For each of the two measures —
achievement motivation and test anxiety — subjects were clas-
sified as either high or low, with the dividing line between
high and low set at the median scores in each measure. (For
example, a H-L subject is high in achievement motivation and
low in test anxiety). Subjects were divided into four groups —
H-L, H-H, L-L, and L-H - and the percentage of shots taken
at each distance by each group was recorded. We discuss his
results and our simulation below.

Computational Models of Atkinson’s Subjects

We reconstructed Atkinson’s ring toss experiment in a com-
puter simulation. We created 49 virtual agents that corre-
sponded to each of the 49 human subjects in Atkinson’s ex-
periments, with the same distribution of high and low mea-
sures of achievement motivation and test anxiety. Simplified
code for a representative student subject is presented in Fig-
ure 1. Since we did not have access to Atkinson’s source data,
we modeled high motivation measures as having a mean of
1.5 and low motivation with a mean of 0.5, both with stan-
dard Normal distributions (mean = 0, variance = 1) scaled by
%, so virtual test subjects did not all have the same measures.

object Student ((Achievement, 1.5 + X ~
(TestAnxiety, .5 + X ~
}

Figure 1: An agent representing a success-oriented student in
Atkinson’s ring toss experiment, containing two RL components
representing high achievement motivation and low test anxiety. The
code snippets presented here are simplified versions of the Scala
code we used to run our experiments.

As discussed earlier, each of the motivational dimensions
of the virtual subjects was implemented with reinforcement
learning components that learned to satisfy the preference for
perceived valence of behaviors (modeled as reward). For ex-
ample, in the achievement motivation component (see Figure
2), the greater the distance from the peg, the greater the re-
ward because it represents greater achievement. Similarly, in



Nl No WU IR U N S

O 00~ W& W —

the test anxiety component (see Figure 3), greater reward is
given to closer distances, because they minimize, or “avoid”
the chance of failure from a long-distance toss.

object Achievement extends AbstractRlComponent ({

world = RingTossWorld
rewards = (l1_foot_line -> 1,
2_foot_line -> 2,
VI
15_foot_line -> 15)
actions = (play_1l_foot_line,
play_2_foot_line,
/).
play_15_foot_1line)
}
Figure 2: A reinforcement learning component representing

achievement motivation.

object TestAnxiety extends AbstractRlComponent {

world = RingTossWorld

rewards = (l1_foot_line -> 15,
2_foot_line -> 4,
V2
15_foot_line -> 1)

actions = (play_1l_foot_line,

play_2_foot_line,
/)
play_15_foot_line)

Figure 3: A reinforcement learning component representing Test
Anxiety (‘avoidance motive, a.k.a. “fear of failure”). Note that the
rewards are inverted from the achievement motivation component,
that is, the valence of avoiding achievement is higher.

Internally, each personality component is implemented
with the standard Q-learning algorithm (Sutton & Barto,
1998). The ring toss world consists of 16 states — a start state
and one state for each of the 15 distances, and 15 actions
available in each state that represent playing (making a toss)
from a particular distance. For readers interested in such de-
tails, each reinforcement learning component used a step-size
parameter of o = 0.1, a discount factor of Y= 0.9 (though dis-
counting wasn’t important given that the 15 states represent-
ing playing lines were terminal states, since each play was a
training episode), and employed an €-greedy action selection
strategy with € = 0.2. (Readers familiar with reinforcement
learning will also notice that this game is roughly equivalent
to a 15-armed bandit problem.) We emphasize that the details
of the reinforcement learning algorithms are not essential to
modeling motivational factors, and those details are hidden
inside the implementation of the components. Indeed a major
goal of our work is to simplify the task of writing synthetic
agents by taking care of such details automatically.

Recall that reinforcement learning algorithms learn an ac-
tion value for each action available in a given state. An action
value for a state represents the expected total reward that can
be achieved from a state by executing that action and transi-
tioning to a successor state. For each of the components —
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Achievement and TestAnxiety — the action values represent
the learned utility of the actions in serving the motivational
tendencies the components represent. The Student agents
take into account the preferences of the components — rep-
resented by action values — by summing their action values
weighted by their component weights to get a composite ac-
tion value for each action in a given state. If we denote each
component’s action value by Q(s,a) and the weights by W,
then the composite, or overall, action value is:

)
2

Ostudent (S7 a) =Wachievement QAchievement (S7 a) +

WTestAnxietyQTeslAnxiety (S , a)

For the virtual experiments, each component — Achieve-
ment and TestAnxiety — was run to convergence and then the
student agents simulated 10 plays of the ring toss game, just
as in Atkinson’s experiment. We discuss the results of the
experiment below.

Model Validation

A model is a set of explicit assumptions about how some sys-
tem of interest works (Law, 2007). In psychology the sys-
tem of interest is (usually) a human or group of humans. Our
virtual reconstruction of Atkinson’s experiments constitutes a
computational representation of Atkinson’s two-factor model
of personality. Thus, our agents are simulation models of
Atkinson’s subjects (the students in his ring toss experiment).
While the work presented here is only a proof of concept, we
do hope to achieve a high level of validity as we refine our
approach, so it will be useful to validate our models using
techniques from simulation science (Law, 2007).

As we described earlier, Atkinson divided his subjects into
four groups according to their measures (high or low) on
achievement motivation and test anxiety. For each of these
four groups — H-L, H-H, L-L, L-H — he recorded the percent-
age of shots that each group took from each of the 15 dis-
tances. We ran 10 replications of our simulation and recorded
the mean percentages for each group and distance. For each
percentage mean we calculated a 95% confidence interval.
We consider a model to be valid if the confidence intervals
calculated on the simulation percentage means contain the
percentages obtained by Atkinson in his experiments with hu-
man subjects.

The validation results are presented in Table 1. Atkinson
analyzed his experimental data by aggregating the shots taken
by subjects into three “buckets” representing low, medium,
and high difficulty. In Atkinson’s analyses the dividing lines
between the three buckets were set in four different ways with
each yielding similar results. For brevity we present the di-
vision obtained by using both geographical distance and dis-
tribution of shots about the median shot of 9.8 ft, in other
words, the dividing line one would choose by inspecting the
histogram for distinct regions. This strategy resulted in the
three buckets listed in the left column of Table 1. Each cell of
the four subject groups — H-L, H-H, L-L, L-H - contains the



Table 1: Validation Results. For each subject group the percentage of shots taken by Atkinson’s human subjects and by our
simulation from each of three ranges is presented along with a 95% confidence interval for the mean percentage of shots in 10
simulated replications of Atkinson’s experiment.

Achievement: High High Low Low
Test Anxiety: Low High Low High
Atkinson Atkinson Atkinson Atkinson
Simulation | Simulation | Simulation | Simulation
Range Conf. Int. Conf. Int. Conf. Int. Conf. Int.
1-7 11 26 18 32
7.7 14.0 5.6 8.5
(4.0,11.4) | (5.6,22.4) (1.4,9.7) (4.4,12.5)
8-12 82 60 58 48
75.4 69.0 74.4 80.0
(65.1,85.7) | (61.1,76.9) | (62.0,86.9) | (74.1, 85.9)
13-15 7 14 24 20
16.9 17.0 20.0 11.5
(8.8,25.0) | (9.4,24.6) | (8.3,31.7) | (6.9,16.2)

percentage of shots taken by Atkinson’s subjects, the mean
percentage obtained by running 10 replications of our simula-
tion of Atkinson’s experiment, and a 95% confidence interval
for the mean percentage. While our model did not achieve
formal validation, the general patterns of behavior are quite
similar to Atkinson’s human subject experiment and we con-
sider these results to be a good proof of concept. We discuss
some reasons behind these results and strategies for improve-
ment below.

Discussion

We made several assumptions in our models that affected the
validation results. First, because we did not have access to
Atkinson’s original data, only summary presentations, we did
not know the exact distribution of motivational factors among
his subjects, or even the scales used in his measures. We as-
sumed normally distributed measures and tried several differ-
ent scales before settling on the values used in the simula-
tions reported here. Second, it is not clear how the valence of
behaviors should be translated into reward structures for RL
agents. We chose a simple linear reward structure in hopes
that the system would be robust to naive encodings. To make
our approach widely useful we will need to address the man-
ner in which reward structures are determined. Third, we cal-
culated aggregate action values by a simple weighted sum of
component action values. We are currently investigating opti-
mal arbitration of multiple RL components and hope to report
results within the next six months.

We chose the Atkinson ring toss experiment on the advice
of psychologists who recommended it as a well-known exam-
ple of trait-oriented behavior theory, and because of its sim-
plicity. However, our goal is to create large agent systems,
so future work will need to address scalability — to greater
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numbers of trait factors and more complex worlds — and gen-
eralizability, or transferability, to other domains.

The algorithms we used also employed no optimization.
Reinforcement learning suffers from the curse of dimension-
ality, and many techniques are being actively pursued to cope
with the size of state spaces for realistic-size domains. Prof-
itably employing reinforcement learning in agent program-
ming systems will mean integrating scaling techniques such
as function approximation (e.g., of action-value functions or
state spaces) and decomposition techniques.

Finally, notice that the example code presented in this pa-
per contains no logic for implementing behavior. The agents
and the components are defined declaratively by specifying a
state space, an action set, and a reward structure. The run-
time system derives the concrete behavior of the agents au-
tomatically from these specifications. This technique, some-
times called partial programming (Simpkins, Bhat, & Isbell,
2008), is a key concept that increases the usability of agent
programming by allowing programmers to specify what an
agent is to do without getting mired in how the agent should
do it.

Conclusions and Future Work

Reinforcement learning provides a promising approach to
modeling personality traits and motivational factors in syn-
thetic agents. In particular, it provides us with a means to
create agent programming systems that are accessible to be-
havioral scientists and harness their knowledge directly while
minimizing the need for complex programming. Much work
remains to make this vision a reality, and our work is pro-
gressing on three paths. First, the integration of reinforcement
learning into agent programming systems needs to be studied
further so that we know when it is useful and how much detail



can be hidden from the agent programmer. Second, the exam-
ples presented here were written together so that the reward
signals of each agent were directly comparable. If we want
to enable large-scale agent programming, we must be able to
arbitrate the reward signals of separately-authored reinforce-
ment learning components (Bhat, Isbell, & Mateas, 2000).
We are currently working on such an arbitration algorithm
and hope to have results in the very near future. Finally, once
the implications of integrating reinforcement learning com-
ponents into agent models are sufficiently well understood
and separately authored components can be combined in a
modular fashion using an appropriate arbitration algorithm,
we believe the best way to realize these benefits is in a lan-
guage that incorporates these features in a coherent design.
We are currently working on such a language, initially im-
plemented as an internal domain-specific language (DSL) in
Scala.
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