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Abstract 

We explore the match of a computational information 
foraging model to participant data on multi-page web search 
tasks and find its correlation on several important metrics to 
be too low to be used with confidence in the evaluation of 
user interface designs.  We examine the points of mismatch to 
inspire changes to the model in how it calculates information 
scent scores and how it assesses the utility of backing up from 
a lower-level page to a higher-level page. The outcome is a 
new model that qualitatively matches participant behavior 
better than the original model, has utility equations more 
appealing to “common sense” than the original equations, and 
significantly improves the correlation between model and 
participant data on our metrics. 

Keywords: ACT-R; CogTool-Explorer; Computational Model; 
Human-Computer Interaction; Information Foraging 

Introduction 
Predicting human performance to aid in the design of 
interactive systems is an important practical use of 
computational cognitive modeling. Models like SNIF-ACT 
2.0 (Fu & Pirolli, 2007) and AutoCWW (Blackmon, 
Kitajima, & Polson, 2005) focus on predicting user 
exploration of websites. These models use the common 
concepts of label-following and information scent 
(infoscent). That is, they posit that the user’s choice is partly 
determined by the semantic similarity between the user’s 
goal and the options presented in the user-interface (UI). 
Budiu and Pirolli (2007) and Teo and John (2008) began to 
consider the 2-D spatial layout of the UI when predicting 
exploration behavior. Budiu and Pirolli (2007) reported a 
correlation between data and model of R2 = 0.56 for the 
number of clicks to success and R2 = 0.59 for search times 
in a Degree-Of-Interest (DOI) tree. Teo and John (2008) did 
not report correlations, but their model successfully 
predicted the effect of target position in 22 search tasks in a 
two-column format. This paper furthers this work by 
considering a multi-page layout of links in a website where 
previous information is hidden as exploration progresses. 

We first describe our metrics and why they are important. 
We then present the tasks and the operation of a baseline 
model. After presenting the quantitative performance of the 
baseline model, we delve into some details of the model’s 
performance to find inspiration as to how to improve the 
model. Finally, we present the best model found to date and 
discuss directions for future work. 

Our Metrics 
Ultimately, a UI designer would want a model to predict the 
range of human behavior that would be observed in the real 
world when using the interactive system, on metrics such as 
number of errors and where they occur, performance time, 
learning time and what was learned, effects of fatigue, 
environmental factors, or emotion on performance, and even 
levels of satisfaction or joy when using the system. No 
computational model is up to that task at this writing, and 
more modest metrics are used in current work. 

For SNIF-ACT 2.0, Fu and Pirolli (2007) reported the 
correlation between model and participants on number of 
clicks on each link (R2 = 0.69 and 0.91 for two different 
websites), the correlation for number of go-back actions for 
all tasks (R2 = 0.73 and 0.80), and a table of percent of 
model runs that succeeded on each task juxtaposed with the 
percent of participants who succeeded on each task (R2 = 
0.98 and 0.94, calculated from Fu and Pirolli, 2007, Figure 
13). The first two metrics were for models run under the 
model-tracing paradigm, that is, at each step the model was 
allowed to choose its action but was re-set to the 
participant’s action if it did not choose what the participant 
chose; the last metric was for free-running models. For their 
free-running model, DOI-ACT, Budiu and Pirolli (2007) did 
not report percent success because their experiment 
participants completed all tasks (and the model could run to 
success on all but 2 of the 16 tasks), but instead reported the 
correlation between the model and participants for number 
of clicks to accomplish each task (R2 = 0.56) and total time 
for each task (R2 = 0.59). 

We will report similar metrics that are both indicative of 
model goodness-of-fit and important to UI designers. 
1. Correlation between model and participants on the 

percent of trials succeeding on each task (R2%Success). 
Percent success is common in user testing to inform UI 
designers about how successful their users will be with 
their design, so a high correlation between model and data 
will allow modeling to provide similar information. 

2. Correlation between model and participants on the 
number of clicks on links to accomplish each task 
(R2ClicksToSuccess). We eliminated unsuccessful trials 
because some participants would click two or three links 
and then do nothing until time ran out whereas others 
continued to click (as did the model). Also, AutoCWW 
(Blackmon, et al., 2005) uses this metric. 

3. Correlation between model and participants on the 
percent of trials succeeding without error on each trial 
(R2%ErrorFreeSuccess). This measure indicates the 
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model’s power to predict which tasks need no 
improvement and therefore no further design effort.  

The Tasks 
To test and improve our model, we chose a multi-page 
layout used in AutoCWW experiments (Toldy, 2009, 
Experiment 1), shown in Figure 1; Dr. Marilyn Blackmon 
generously provided the participant log files from 36 
exploration tasks performed on this layout. The participants 
were given a search goal (at the top of each page) and had 
130 seconds to complete each task. There were 44 to 46 
valid participant trials recorded for each task. 

CogTool-Explorer: Mechanisms & Parameters 
We start our exploration with CogTool-Explorer (CT-E), 
developed in the ACT-R cognitive architecture (Anderson, 
et al., 2004) to account for the effects of 2-column layout on 
link choice in web search tasks (Teo and John, 2008). CT-E 
added ACT-R’s simulated “eyes” and “hands” to SNIF-
ACT 2.0 and interacts with a spatially accurate ACT-R 
“device model” generated by CogTool (John, Prevas, 
Salvucci, & Koedinger, 2004), including the position, 
dimension and text label of every link on a webpage. 

Given a text description of a goal and a device model with 
at least one visible link, CT-E moves its visual attention to a 
link, visually encodes the text label of the link and evaluates 
its infoscent relative to the goal. Three ACT-R productions 

then compete, (1) clicking on the best link so far, (2) reading 
another link on this page, or (3) going back to the previous 
page. If CT-E decides to click on the best link it has seen so 
far, it looks back at that link, moves a virtual mouse pointer 
over it, and clicks, bringing the next webpage into the 
model’s visual field. If it decides to go back, the previous 
page is brought into the model’s visual field. If it decides to 
read another link, it moves its visual attention to the next 
closest link and continues. Of course, this simple 
see/decide/act cycle is controlled by mechanisms and 
parameters that can be manipulated to produce the best 
predictive model possible. 

In more detail, CT-E uses ACT-R’s “eye” as described in 
Anderson, et al. (2004) with Salvucci’s EMMA model of 
visual preparation, execution and encoding (Salvucci, 2001), 
a long-standing implementation within CogTool. A visual 
search strategy adapted from the Minimal Model of Visual 
Search (Halverson & Hornof, 2007) guides where to move 
the eye. The strategy starts in the upper-left corner and 
proceeds to look at the link closest to the model’s current 
point of visual attention, moderated by its noise function. 
This strategy will not look at a link more than once on each 
visit to the web page.  Other noise parameters and strategies 
are possible (e.g., see Budiu and Pirolli, 2007), but as the 
strategy and noise setting from Halverson and Hornof 
(2007) produced good results in the two-column tasks in 
Teo and John (2008), the models in this paper will not vary 
any aspects of visual processing. Likewise, CT-E uses ACT-

 
Figure 1: Multi-Page Layout from Toldy (2009). Participants start on the top-level page (leftmost) and on selecting a link, 
transition to 2nd-level pages. Participants may go back to the top-level page, or may select a link to go to a 3rd-level page. 
3rd-level pages explicitly inform participants if they are on the correct path or not.  
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R’s standard “hand,” used in many CogTool models, and 
will retain that mechanism through this paper’s exploration. 

CT-E’s estimation of information scent has used latent 
semantic analysis (LSA; Landauer, McNamara, Dennis, and 
Kintsch, 2007) to calculate the semantic relatedness of the 
search goal to links on the screen. We will continue using 
LSA throughout this paper, although other estimation 
procedures are possible (e.g., Fu and Pirolli (2007) and 
Budiu and Pirolli (2007) used pointwise mutual 
information). A noise function moderated the infoscent 
values to reflect the variability a person might display when 
assessing relatedness (baseline noise = ACT-R default = 1), 
and a scaling factor of 50 (set by Teo and John, 2008) 
transforms the infoscent values provided by LSA to the 
range of values expected by SNIF-ACT 2.0.  

CT-E uses the same equations as SNIF-ACT 2.0 to decide 
which action to take based on what has been seen and 
evaluated so far, equations which also achieved good results 
in Teo and John (2008). These equations include two 
parameters, k, a “readiness to satisfice” factor, and the 
GoBackCost. Both of these were set to 5 in Fu and Pirolli 
(2007), but Teo and John’s tasks required a k value of 600 to 
fit the data well, which we will continue to use here. The 
baseline GoBackCost parameter is set to Fu and Pirolli’s 
value of 5. 

Finally, when SNIF-ACT 2.0 went back to a page already 
seen, the link associated with the page backed-up from was 
marked as having been selected, and SNIF-ACT 2.0 would 
not select it again (not reported in Fu and Pirolli, 2007, but 
extracted from the SNIF-ACT 2.0 code). Presumably, since 
Fu and Pirolli’s data come from naturalistic tasks, the link 
color changed when a link had been selected and thus this 
“perfect memory” was “in the world”. This mechanism is 
also in CT-E’s baseline model. 

Performance of the Baseline CT-E Model 
We ran the baseline CT-E model until the model runs 
converged. That is, we ran a set of 44-46 runs of each of the 
36 tasks (equal to the number of valid participant trials on 
each task, for a total of 1649 runs in each set) and calculated 
the %Success for each task. We then ran an additional set, 
combined it with the previous set to form a new combined 
set and compared its values of %Success per task to the 
previous set’s values. If all values were within 1% of each 
other, we considered the model converged and stopped. If 
any of the tasks had a %Success value greater than 1% from 
its counterpart in the previous set, we ran an additional set, 
combined it with the previous combined set to form a new 
combined set and compared its values of %Success per task 
to the previous combined set’s values. The baseline model 
converged after 12 sets (~20,000 runs), with the following 
calculated values for our metrics and their 95% confidence 
intervals: 

R2%Success = 0.28 (0.21, 0.35)  
R2ClicksToSuccess = 0.36 (0.29, 0.43) 
R2%ErrorFreeSuccess = 0.44 (0.37, 0.51) 

These values are disappointing for UI design because 
design practice requires far higher confidence in a model’s 
predictions to be a useful alternative to user testing. These 
values are also substantially lower than the comparable 
values reported by other SNIF-ACT derivatives, SNIF-ACT 
2.0’s R2%Success was 0.98 and 0.94 for the two websites 
modeled (Fu & Pirolli, 2007) and DOI-ACT’s 
R2ClicksToSuccess was 0.56 (Budiu & Pirolli, 2007). 

Since the baseline CT-E model used the same utility 
equations and most of the same parameters as SNIF-ACT 
2.0, it is necessary to understand why the R2%Success 
results are so different. Our first hypothesis is that different 
data collection processes are to blame. Fu and Pirolli’s 
(2007) data were from participants doing eight tasks on each 
of two websites, at their leisure, on their own computers. 
Their participants could abandon the task at will whereas the 
Toldy’s tasks were collected in the lab and participants had 
130s to complete each task (Toldy, 2009). Allowing the 
participants to abandon tasks probably eliminated the most 
difficult tasks with their higher variability. Not compelled to 
continue until success, not a single participant in Fu and 
Pirolli’s data succeeded on 4 of their 16 tasks, in contrast to 
the range seen in Toldy’s tasks (average %Success=71%, 
min=13%, max=100%). Since SNIF-ACT 2.0 also failed on 
these tasks, these four points provided a strong anchor at the 
origin for their R2%Success value. Another major difference 
that might have led to better performance is that SNIF-ACT 
2.0 used infoscent scores calculated with reference to only 
the website in the task (E. Chi, personal communication, 
June 18, 2010), whereas our infoscent scores were 
calculated with reference to the college-level TASA corpus 
(from Touchstone Applied Science Associates, Inc.). A 
corpus comprised of the task website might have produced 
infoscent scores with less noise (from word sense 
ambiguity, etc.) that the more general college-level corpus. 
Finally, simply switching tasks can illuminate deficiencies 
in any model, which will be the focus of the rest of this 
paper.  

Inspirations for What to Change in the Model 
Two glaring deficiencies in the behavior of the baseline 
model, relative to that of participants, inspired changes in 
the model.  The first is that participants revisit links that 
they clicked before (13% of their actions) and the model 
never does. This means that the mechanism in SNIF-ACT 
2.0 that perfectly remembers which links have been clicked 
on and never re-selects them must be changed to allow the 
possibility of matching the behavior in these data. We 
cannot tell from the data whether a revisit is a deliberate 
decision to click on the link a second time or that the 
participant forgot that link had been clicked (the links in this 
experiment did not change color when clicked); we chose to 
model the latter with the following mechanism in our 
baseline model. Each link is represented as a visual object 
that has a “status” attribute whose value is set to “chosen” 
when the link is clicked on by the model and then stored in 
declarative memory. ACT-R’s decay mechanism governs 
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whether the fact that the link had been chosen will be 
retrieved when it is next seen and evaluated by this model. 
We set ACT-R’s base level learning activation parameter, 
:bll, to 0.5 as recommended in the ACT-R tutorial (section 
4.3), the retrieval activation threshold to -0.5 as shown in 
section 4.2, and both the permanent noise, :pas, and the 
instantaneous noise, :ans, to nil (section 4.5). 

The second deficiency in the baseline model is that 22% 
of the participants’ actions involve going back from a page 
and only 7% of the models’ actions do. This behavior is 
comparable to Fu and Pirolli’s 5% go-back actions, which, 
we believe matched their data because they allowed their 
participants to abandon tasks instead of going to 
completion. This calls into question the SNIF-ACT 2.0 
mechanisms that govern go-back behavior, that is, both the 
GoBack utility equation and the GoBackCost parameter. We 
will lower the GoBackCost from 5 to 1 to get the 
exploration started and examine the GoBack utility equation 
with a more detailed examination of the model behavior. 

After making the two fundamental changes motivated by 
global behavior of the baseline model (call this model 
baseline++), we guided our investigation by examining 
tasks where participants were least likely to be exploring in 
a random fashion, i.e., on tasks where participants were 
most successful. We sorted the 36 tasks by highest 
%ErrorFreeSuccess and then focused on the top four tasks. 

The third task in this list, to search for information about 
pigeons (correct top-level link = “Life Sciences”, correct 
2nd-level link = “Birds”) had infoscent scores that were all 
very low and not widely distributed for the top-level 
headings. Budiu and Pirolli (2007) discuss this problem as 
well; misleading and/or non-discriminating infoscent scores 
will plague any model and we did not consider this task 
further for inspiration about what to change. However, the 
other three tasks inspired three ways to change the 
baseline++ model.  

Refinement of Infoscent Values for Top-level links 
The topmost task was to search for information about ferns 
and its correct top-level link was “Life Sciences”. The 46 
participants only selected other top-level links 8% of the 
time and but went back from those 2nd-level pages to select 
“Life Science” and then “Plants” (in all but 2 cases) to 
complete the task. In contrast, the baseline++ model 
selected other top-level links about 70% of the time before 
selecting “Life Sciences”, and on some model runs it never 
selected “Life Sciences” and failed the task. 

One possible explanation for the model behavior was that 
it did not look at “Life Science” before deciding to select a 
link on the top-level page. When we examined the details of 
the model runs, this was not the case, as the model runs did 
see “Life Science” before selecting a link in over 95% of 
first-visits to the top-level page. A second possible 
explanation was that the model looked at too many links and 
saw other higher infoscent links before selecting a link on 
the top-level page. This also was not the case because, in all 
model runs up to the point where it finished looking at “Life 

Science”, if we forced the model to choose the best link so 
far, it would have selected “Life Science” in over 60% of 
the runs. A third possible explanation lies in the infoscent 
values used by the model. 

Given a particular goal, the baseline models followed 
AutoCWW (Blackmon, et al., 2005) by using LSA to 
compute an infoscent value for each link, based on the 
cosine value between two vectors, one representing the 
words in the goal description and the other the words in the 
link text. To approximate how a reader elaborates and 
comprehends the link text in relation to his or her 
background knowledge, AutoCWW adds all the terms from 
the LSA corpus that have a minimum cosine of 0.5 with the 
raw text and a minimum word frequency of 50 to the raw 
link text before using LSA. Kitajima, Blackmon and Polson 
(2005) explained that “elaborated link labels generally 
produce more accurate estimates of semantic similarity 
(LSA cosine values).” Our baseline model used the same 
method, thus, for the link “Life Science”, the words 
“science sciences biology scientific geology physics life 
biologist physicists” were added and then submitted to LSA 
to compute the infoscent value. 

AutoCWW uses a further elaboration method motivated 
by UI layouts with links grouped into regions labeled with a 
heading. Kitajima et al. (2005) explained that “readers scan 
headings and subheadings to grasp the top-level 
organization or general structure of the text”. To represent a 
region, AutoCWW first elaborates the heading text as 
described in the previous paragraph, and then adds all the 
text and their elaborations from links in the same region. 
The baseline model did not use this elaboration method for 
top-level links because their subordinate links appeared on 
2nd-level pages, different from Kitajima et al.’s assumption. 
However, participants did practice trials on the same multi-
page layout as the actual trials, and perform all 36 test trials 
on the same layout. Therefore, we would expect that this 
experience would influence how participants assessed 
infoscent of the top-level link. This reasoning motivated our 
first refinement to the baseline++ model to better represent 
these participants: for the infoscent of a top-level link, we 
elaborate the top-level link and then add the text from all 
links in the corresponding 2nd-level page. While this 
refinement is similar to AutoCWW’s procedure, the 
justifications are different. This refinement is also in line 
with Budiu and Pirolli’s (2007) use of category-based scent, 
but approximates their human-generated categories with an 
automated process. 

Refinement of Mean Infoscent of Previous Page 
The second task on our list was to search for information 
about the Niagara River. The baseline++ model selected the 
correct link “Geography” on the top-level page, but went 
back from the 2nd-level “Geography” page over 60% of the 
time, while participants never did. To investigate, we looked 
at how the model decided to go back. Recall that like SNIF-
ACT 2.0, after looking at and assessing the infoscent of a 
link, the baseline CT-E models choose between reading 
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another link, selecting the best link seen so far, or going 
back to the previous page using utility functions. The utility 
functions of reading another link and selecting the best link 
so far have both strong theoretical support (Fu & Pirolli, 
2007) and empirical support from several studies that did 
not use or emphasize go-back behavior (Fu & Pirolli, 2007 
and Teo & John, 2008). However, the utility function for 
going back has less support and was therefore a focus of our 
attention. From SNIF-ACT 2.0, the baseline CT-E models 
used the following GoBack utility equation. 
 

 UtilityGoBack = MIS(links assessed on previous page) 
 – MIS(links assessed on current page) 
 – GoBackCost 
 where MIS is Mean Information Scent [Eq. 1] 

 
The infoscent values for the nine top-level links are 

sensible: the correct link, “Geography”, has the highest LSA 
value by an order of magnitude. After selecting the top-level 
link with the highest infoscent and visiting the 
corresponding 2nd-level page, Eq. 1 includes “Geography’s” 
high scent in its first operand, which attracted the model 
back to the top-level page. This behavior violates common 
sense; since the model had just selected the best top-level 
link to visit its 2nd-level page, it should not be pulled back to 
the previous page by the infoscent of the selected link. This 
reasoning inspired another refinement to the baseline++ 
model, changing Eq. 1 to Eq. 2: 

 
UtilityGoBack = MIS(links assessed on previous page 

            excluding the selected link) 
 – MIS(links assessed on current page) 
 – GoBackCost 
 where MIS is Mean Information Scent [Eq. 2] 

Refinement of Mean Infoscent of Current Page 
The last task on our list of four was to find information 
about the Hubble Space Telescope. While both participants 
and model in this task selected the correct link “Physical 
Science & Technology” on the top-level page, the model 
went back from the corresponding 2nd-level page 50% of the 
time, but participants never did. Inspection of the model 
runs in the Hubble task revealed a different problem from 
that in the Niagara River task, however. After selecting the 
link with the highest infoscent and visiting the 
corresponding 2nd-level page, if the first link the model saw 
on that page had very low infoscent, the GoBack utility 
would be high because the value of the second operand 
would be low. This behavior also violates common sense; 
since the model had just selected the best link on the top-
level page because it looked promising, the model should 
carry that confidence into the next page and should not 
immediately go back just because the first link it saw on the 
2nd-level page did not relate to the task goal. This reasoning 
inspired our last refinement to the baseline++ model, 
changing Eq. 2 to Eq. 3: 

 

UtilityGoBack = MIS(links assessed on previous page 
            excluding the selected link) 

 – MIS(links assessed on current page) 
             including the selected link) 
 – GoBackCost 
 where MIS is Mean Information Scent [Eq. 3] 

 
This change has a nice symmetry with the previous 

change, carrying along the “confidence” inspired by the 
high infoscent top-level link. If the selected link’s infoscent 
score is very high compared to the other top-level links, 
those other top-level links alone will not exert much pull to 
go back. If the selected link’s infoscent score is high relative 
to the first few links it sees on the 2nd-level page the model 
will not go back until it “loses confidence” by seeing several 
low infoscent links, thereby diluting the effect of the high 
infoscent link that led the model to this page. 

We ran one set of many preliminary models to get a feel 
for the contributions of these changes. The combination of 
all changes described here seemed to be the best model. 

Performance of the Best Model So Far 
With all the changes described above combined, we ran the 
model to convergence (10 sets, a total of 16490 runs), and 
attained the following calculated values for our metrics and 

Table 1. Summary of Results. Gray shading indicates 
mechanism and parameters that did not change.  

Mechanism, Parameter, 
or Metric	
  

Baseline 
Model	
  

Best Model So 
Far	
  

Visual processes	
  

ACT-R + 
Salvucci, 2001 + 
Halverson & 
Hornoff, 2007 2	
  

No change	
  

Manual processes	
   ACT-R 2	
   No change	
  
Information Scent Process	
  

Heading-level input	
   link labels	
   link labels + 
lower link labels	
  

Link-level input	
   link labels	
   No change	
  
Decision Process	
  
Click best link utility eq	
   SNIF-ACT2.01	
   No change	
  
k (readiness to satisfice)	
   6002	
   No change	
  
Read next link utility eq	
   SNIF-ACT2.01	
   No change	
  

GoBack utility equation	
   SNIF-ACT2.0: 
Eq. 11	
  

Improved here 
Eq. 3	
  

GoBackCost	
   51	
   1..	
  

Memory of selected links	
   Perfect1	
  

Imperfect 
:bll = 0.5 
:rt = -0.5	
  
:ans = nil 
:pas = nil	
  

Metrics	
  

R2%Success	
   0.28 
(0.21, 0.35)	
  

0.72 
(0.66, 0.76)	
  

R2ClicksToSuccess	
   0.36 
(0.29, 0.43)	
  

0.66 
(0.60, 0.71)	
  

R2%ErrorFreeSuccess	
   0.44 
(0.37, 0.51)	
  

0.82 
(0.79, 0.85)	
  

1 from Fu & Pirolli, 2007 
2 from Teo & John, 2008 
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their 95% confidence intervals (Table 1): 
R2%Success = 0.72 (0.66, 0.76) 
R2ClicksToSuccess = 0.66 (0.60, 0.71) 
R2%ErrorFreeSuccess = 0.82 (0.79, 0.85) 

Discussion and Future Work 
The improved model presented above made large and 
significant improvements on all our metrics over the 
baseline model coming into this investigation. R2%Success 
more than doubled and the other two metrics increased by 
more than 50%. Although there is room for improvement, 
these values are in the range where UI designers could use 
them to identify the tasks at the extremes. That is, this 
analysis identifies which tasks are sufficiently supported by 
the interface that effort can be diverted to other areas and 
which tasks are in most need of attention. 

Future work will take at least two paths. First we must 
systematically explore the benefits of the model 
mechanisms and parameters described in this paper. We 
have presented only the conjunction of these elements, with 
a single set of parameters, but we will examine the 
mechanisms’ individual and pairwise effects on model 
performance and explore the parameter space before moving 
on to other UI layouts and tasks. 

Second, we should reconsider the metrics and how to use 
them. Although we believe the metrics presented here are 
both meaningful for goodness of fit and useful for UI 
design, other metrics should be considered. For example, Fu 
and Pirolli (2007) reported the correlation between the 
number of go-back actions by the model and participants; 
how might this help inform model improvements or design? 
As a second example, consider root mean square error 
(RMS error), a standard metric for quantifying the 
difference between the values estimated by a model and 
what is observed in empirical trials. UI designers often need 
to know absolute quantities when making decisions about 
design and development effort and cost trade-offs. Thus, a 
low RMS error would be as valuable as a high correlation 
(the RMS error did reduce for each metric with our 
improved model, but are not yet <20% which is desirable 
for UI design practice). In addition, we need to understand 
how to combine or trade-off metrics against one another, as 
it is unlikely that model exploration will produce the most 
desirable levels of all metrics at once. 

In the meantime, AutoCWW has shown it could be used 
to improve the design of website links with only 54% of the 
variance explained for ClicksToSuccess (Blackmon, et al., 
2005) and this improved version of CogTool-Explorer 
exceeds that level. If these results can be shown to extend 
beyond simple web search tasks, to other layouts, types of 
interfaces, and tasks, CogTool-Explorer will be well on its 
way to being a useful tool for design. 
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