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Abstract 

When feedback follows a sequence of decisions, how do 
people assign credit to intermediate actions within the 
sequence? To explore this temporal credit assignment 
problem, we recorded event-related potentials (ERPs) as 
participants performed a sequential decision task. Our ERP 
analyses focused on feedback-related negativity (FRN), a 
component thought to reflect neural reward prediction error. 
The experiment showed that FRN followed negative feedback 
and negative intermediate states. This outcome suggests that 
participants evaluated intermediate states in terms of expected 
future reward, and that these evaluations guided acquisition of 
earlier actions within sequences. We compared these results 
to the predictions of three reinforcement learning models that 
address temporal credit assignment: Actor-critic, Q-Learning, 
and SARSA. 
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Introduction 
To behave adaptively, humans and animals must learn to 
predict the outcomes of their actions. Reinforcement 
learning (RL) provides a mechanism for acquiring this 
knowledge through trial-and-error interactions with an 
environment (Sutton & Barto, 1998). According to many 
RL models, the difference between expected and actual 
outcomes, or “reward prediction error”, provides a learning 
signal. By revising estimates based on prediction error, 
humans and animals learn to anticipate outcomes, and 
consequently, to select actions that maximize reward and 
minimize punishment. 

RL methods have influenced contemporary 
neuroscientific theories. For example, one popular RL 
method, temporal difference (TD) learning, has been used to 
characterize the phasic response of midbrain dopamine 
neurons to rewarding and punishing events (Schultz, Dayan, 
& Montague, 1997). Several studies have confirmed that the 
response of these neurons depends on reward magnitude and 
reward likelihood (Tobler, Fiorillo, & Schultz, 2005). 
Rather than responding directly to experienced outcomes, 
however, these neurons respond to the difference between 
expected and actual rewards. Thus, midbrain dopamine 
neurons convey information about TD prediction error. 

Recent ERP research with humans has revealed a 
frontocentral negative component that appears 200-300 ms 
after the display of error feedback (Gehring & Willoughby, 
2002; Miltner, Braun, & Coles, 1997). Three features of this 
feedback-related negativity (FRN) indicate that it too 

reflects neural reward prediction error. First, FRN is larger 
after unexpected than expected outcomes (Holroyd et al., 
2009). Second, FRN correlates with behavioral adjustment 
(Cohen & Ranganath, 2007). Third, neuroimaging 
experiments, source localization studies, and single cell 
recordings suggest that FRN originates from the anterior 
cingulate cortex (ACC), a region implicated in goal-direct 
behavioral selection (Holroyd et al., 2009). These ideas have 
been synthesized in the reinforcement learning theory of the 
error-related negativity (RL-ERN), which proposes that 
midbrain dopamine neurons transmit a prediction error 
signal to the ACC, and that this signal strengthens or 
weakens the actions that precipitated outcomes (Holroyd & 
Coles, 2002). 

Although the RL-ERN theory has stimulated a great deal 
of research (for review, see Nieuwenhuis et al., 2004), 
feedback immediately follows actions in most studies of 
FRN. Similarly, although RL methods have stimulated a 
great deal of psychological research (for review, see Fu & 
Anderson, 2006), most studies of RL in humans also 
involve relatively simple tasks. These scenarios contrast 
with complex control problems we face in daily life. One 
such problem is temporal credit assignment. When feedback 
follows a sequence of decisions, how should credit be 
assigned to intermediate actions within the sequence? 

Here, we consider three TD learning methods that address 
the temporal credit assignment problem: Actor-critic, Q-
Learning, and SARSA. These methods evaluate actions in 
terms of immediate and future reward. For example, an 
action may bring an individual into direct contact with 
reward. Alternatively, an action may bring an individual 
into a state associated with a high probability of future 
reward. How should future reward be calculated? In the 
actor-critic model, future reward is treated as the value of 
potential options, weighted according to the probability of 
selecting each (Sutton & Barto, 1998). In Q-Learning, 
future reward is treated as the value of the best potential 
option (Watkins & Dayan, 1992). Finally, in SARSA, future 
reward is treated as the value of the future option that is 
actually selected (Rummery & Niranjan, 1994). 

In the current experiment, we recorded ERPs as 
participants performed a sequential decision task. The initial 
decision in each sequence brought participants to an 
intermediate state associated with a high or a low 
probability of receiving positive feedback, and the final 
decision was followed by positive or negative feedback. 
Based on the idea that FRN reflects neural prediction error 

265



(Holroyd & Coles, 2002), we tested two main hypotheses. 
First, FRN should be greater for unexpected than for 
expected outcomes. This follows from the fact that RL 
models anticipate probable outcomes. Consequently, model 
prediction error is greater for unexpected than for expected 
outcomes. Second, if credit assignment occurs “on the fly”, 
as predicted by the TD model, negative feedback and 
negative intermediate states will evoke FRN. Alternate 
methods exist for performing temporal credit assignment 
(e.g. model-based RL, eligibility traces). If credit is only 
assigned at the end of the decision episode, as predicted by 
these alternate models, only negative feedback will evoke 
FRN. In addition to testing these two hypotheses, we 
compared predictions of three TD models, actor-critic, Q-
Learning, and SARSA, to the behavioral and neural results 
of the experiment. 

Experiment 
Task 
A pair of letters appeared at the start of each trial. A cue 
appeared after participants selected a letter. A second pair of 
letters followed the cue. Feedback appeared after 
participants selected a second letter. Participants completed 
2 experiment blocks of 400 trials. 13 graduate and 
undergraduate students participated in the experiment. 

Within each block, one pair of letters appeared at the start 
of all trials (Figure 1). When participants chose the correct 
letter in the first pair (“J” in this example), a positive and a 
negative cue appeared equally often. When they chose the 
incorrect letter in the first pair (“R”), a negative cue always 
appeared. A second pair of letters followed the cue. The 
correct letter in the second pair depended on the cue 
identity. The correct letter for the positive cue (“V” in this 
example) was rewarded with 80% probability, and the 
correct letter for the negative cue (“T”) was rewarded with 
20% probability. Incorrect letters were never rewarded. 
Consequently, optimal selections yielded positive feedback 
for 80% of trials involving the positive cue (0.8 Cue) and 
for 20% of trials involving the negative cue (0.2 Cue). The 
symbols “#” and “*” denoted positive and negative 
feedback. 

 
Recording 
The EEG was recorded from 32 Ag–AgCl sintered 
electrodes (10–20 system), and recordings were 
algebraically re-referenced offline to the average of the right 
and left mastoids. The vertical EOG was recorded as the 
potential between electrodes placed above and below the 
left eye, and the horizontal EOG was recorded as the 
potential between electrodes placed at the external canthi. 
The EEG and EOG signals were amplified by a Neuroscan 
bioamplification system with a bandpass of 0.1-70 Hz and 
digitized at 250 Hz. Eye blinks were corrected using ICA. 
800 ms epochs were extracted from the continuous 
recording and these epochs were baseline corrected relative 
to the 200 ms prestimulus interval. 

 

 
 
Figure 1. Experiment states, transition probabilities, and 

outcome likelihoods. 
 

Feedback-locked ERPs were analyzed for trials where 
participants selected the correct letter for the cue, and FRN 
was calculated as the difference between ERP waveforms 
after losses and wins. FRN amplitude is often confounded 
by changes in P300 amplitude, a component that is also 
sensitive to event likelihoods. Consequently, we compared 
losses and wins that were equally likely by creating an 
“expected outcome” difference wave (0.2 Cue losses – 0.8 
Cue wins), and an “unexpected outcome” difference wave 
(0.8 Cue losses – 0.2 Cue wins). FRN was measured as 
mean voltage of the difference waves from 200-300 ms after 
feedback onset, relative to the 200 ms prestimulus baseline. 
Cue-locked ERPs were analyzed for trials where 
participants selected the correct starting letter (after which 
the probability of receiving the 0.2 or the 0.8 Cue was 
equal). Cue FRN was measured as mean voltage of the cue 
difference wave (0.2 Cue – 0.8 Cue) from 200-300 ms after 
cue onset. 

Models 
Actor-critic (Sutton & Barto, 1998) 
The actor-critic (AC) model computed a state-action value 
function, Q(s,a), and a state value function, V(s). The state-
action value function, which corresponded to the actor, 
enabled action selection. The state-value function, which 
corresponded to the critic, enabled evaluation of action 
consequences. Actions affected the transition from state st to 
st+1, and actions affected the presentation of reward, rt+1. 
Following the selection of an action, at, the critic issued an 
evaluation in the form of prediction error, δ, 
 
δ = rt +1 + γ • V st +1( )[ ]− V st( ). (1) 
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The AC model maximized the combined immediate, rt+1, 
and future reward, V(st+1), and future reward was discounted 
by γ (γ < 1.0). The value of the previous state, V(st), was 
updated according to 
 
V st( )← V st( )+α •δ , (2) 

 
where α controlled the learning rate (0.0 < α < 1.0). The 
value of the previous state-action pair, Q(st,at), was updated 
according to 
 

( ) ( ) δα •+← tttt asQasQ ,, . (3) 

 
Q-Learning (Watkins & Dayan, 1992) 
The AC and Q-Learning models differed in two ways. First, 
the Q-Learning model used an action-state value function, 
Q(s,a), to select actions and to evaluate outcomes. Second, 
the Q-Learning model treated future reward as the value of 
the optimal selection policy in state t + 1, 
 

( )[ ] ( )tttat asQasQr ,,max 11 −•+= ++ γδ . (4) 

 
As in the AC model, future reward was discounted by γ, and 
the state-action value function was updated according to 
Equation 3. 
 
SARSA (Rummery & Niranjan, 1994) 
Like the Q-Learning model, the SARSA model only 
required an action-state value function, Q(s,a). Unlike the 
Q-Learning model, however, the SARSA model treated 
future reward as the value of the actual state-action pair 
selected in state t + 1, 
 
δ = rt +1 + γ • Q st +1,at +1( )[ ]− Q st ,at( ). (5) 

 
As with the AC and Q-Learning models, future reward was 
discounted by γ, and the state-action value function was 
updated according to Equation 3. 

To summarize, all models used δ to learn the values of the 
state-action pairs that comprised the experiment task (Figure 
1), and all models sought to select actions that maximized 
immediate and future reward. Although the initial selection 
in each trial was not followed by immediate reward (i.e. rt+1 
= 0), the initial selection was followed by future reward 
associated with a subsequent state (AC model), or a 
subsequent state-action pair (Q-Learning and SARSA 
models). As such, prediction error for the initial selection 
was calculated as the difference between discounted future 
reward and the value of the first state (AC model), or the 
value of the first state-action pair (Q-Learning and SARSA 
models). Prediction error for the final selection was 
calculated as the difference between immediate reward and 
the value of the second state (AC model), or the value of the 
second state-action pair (Q-Learning and SARSA models). 

Positive feedback had a value of 1.0 and negative feedback 
had a value of 0.01. 

Model predictions were based on 500 simulations. All 
state and state-action pairs began with values of 0.5 and 
values were updated according to prediction error. In each 
trial, logistically distributed noise was added to state-action 
values, and the state-action pair with the greatest value was 
selected. Two model parameters, learning rate (α = .05) and 
the temporal discounting factor (γ = 0.8), were fixed 
according to values reported in Fu & Anderson (2006). 
Interestingly, when α and λ were treated as free parameters, 
mean squared error (MSE) for each model was minimized at 
values of α and γ within ±0.02 of their fixed values. 
Selection noise (t, defined as the standard deviation of the 
logistically distributed noise added to state-action pairs) 
remained as a free parameter. We compared model 
selections to participant performance. Additionally, we 
computed the difference in δ for expected feedback (0.2 Cue 
losses – 0.8 Cue wins), unexpected feedback (0.8 Cue losses 
– 0.2 Cue wins), and cues (0.2 Cue – 0.8 Cue) to derive 
model FRN. We then fit model FRN to observed FRN using 
a slope term (m) and a zero intercept. 

Results 
Behavioral Results 
Selection accuracy varied by choice, F(2,24) = 10.33, p < 
.001, and selection accuracy increased by block half, 
F(1,12) = 102.54, p < .0001 (Figure 2). Selection times for 
correct responses did not vary by choice, F(2,24) = 2.47, p > 
.1, or block half, F(1,12) = 2.55, p > .1. 
 
ERP Results 
We first analyzed feedback-locked ERPs. Waveforms 
showed a pronounced negativity from 200-300 ms after loss 
feedback (Figure 3). This FRN (loss – win) appeared to be 
greater for unexpected than for expected outcomes. A 3 
(site: Fz, Cz, Pz) by 2 (outcome likelihood: expected, 
unexpected) ANOVA on FRN amplitude revealed effects of 
site, F(2,24) = 10.91, p = .005, and outcome likelihood, 
F(1,12) = 13.26, p = .003. FRN was greater for unexpected 
than for expected outcomes at site Fz, t(12) = 3.69, p = .003. 
We also considered FRN over the first and the second 
halves of blocks (Figure 5). A 2 (outcome likelihood) by 2 
(block half) ANOVA at Fz showed an effect of outcome 
likelihood, F(1,12) = 11.68, p = .005, but not block half, 
F(1,12) = 0.10, p > .1. Although the interaction was not 
significant, F(1,12) = 3.13, p > .1, experience caused FRN 
to increase for unexpected outcomes and to decrease for 
expected outcomes2. 

We then analyzed cue-locked ERPs. A 3 (site) by 2 (cue) 
ANOVA revealed a nonsignificant effect of site, F(2,24) = 

                                                           
1 Because the model used a soft-max decision policy, choice 

proportions depended only on the absolute differences between Q-
values. Consequently, changes to the noise parameter, t, can 
accommodate a wide range of positive and negative reward values. 

2 In a subsequent experiment with a larger sample size, this 
interaction reached significance. 
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0.24, p > .1, a marginal effect of cue, F(1,12) = 3.05, p = .1, 
and a nonsignificant interaction, F(2,24) = 1.78, p > .1. 
ERPs were relatively more negative for 0.2 than for 0.8 
Cues at site Fz, but the effect failed to reach significance, 
t(12) = 1.77, p = .1. When we considered the first and the 
second halves of blocks separately, however, a different 
picture emerged (Figure 4). A 2 (cue) by 2 (block half) 
ANOVA at Fz revealed a significant interaction between 
cue and block half, F(1,12) = 6.56, p = .025. In the first half 
of blocks, ERPs did not vary by cue, t(12) = .46, p > .1, but 
in the second half of blocks, ERPs were relatively more 
negative for 0.2 than for 0.8 Cues, t(12) = 2.76, p = .017. 
The discovery of cue FRN indicates that participants 
evaluated intermediate outcomes in terms of future reward, 
as predicted by the temporal difference models. 
 

 
 
Figure 2. Selection accuracy for start pair, 0.8 Cues, and 0.2 
Cues by block half and for participants (bars), AC (squares), 

Q-Learning (circles), and SARSA (triangles). 
 
Model Performance 
For each model, we estimated the value of noise, t, that best 
accounted for selection accuracy over the first and second 
halves of experiment blocks. For the Q-Learning and 
SARSA models, MSE was minimized at t = 0.1 (Q-
Learning: MSE = 0.002, r2 = 0.90; SARSA: MSE = 0.002, 
r2 = 0.90). For the AC model, MSE was minimized at t = 
0.2 (MSE = 0.004, r2 = 0.71). As seen in Figure 2, all 
models displayed effects of choice and block half like those 
seen for participants. Additionally, the Q-Learning and 
SARSA models, which were structurally most similar, 
yielded nearly identical predictions to one another (r2 = 
0.99). Finally, the AC model outperformed participants and 
the other two models over the second half of blocks. 

Next, we examined whether FRN related to model δ. To 
do so, we computed model FRN as the difference in δ for 
expected feedback, unexpected feedback, and cues. For each 
model, we estimated the value of the slope parameter, m, 
that best accounted for FRN over the first and second halves 
of experiment blocks. For the Q-Learning and SARSA 
models, MSE was minimized at m = 2.6 (Q-Learning: MSE 
= 0.295, r2 = 0.85; SARSA: MSE = 0.294, r2 = 0.85). For 

the AC model, MSE was also minimized at m = 2.6 (MSE = 
0.262, r2 = 0.86). As seen in Figure 5, all models predicted 
that cue FRN would increase with experience, and that FRN 
for unexpected outcomes would increase with experience 
while FRN for expected outcomes would decrease with 
experience. These trends were observed. 

 

 
 
Figure 3. ERPs evoked by unexpected and expected losses 
and wins at site Fz (left panels). Scalp voltage topography 
for loss – win comparison from 200-300 ms (right panels). 
 

 
 
Figure 4. ERPs evoked by 0.2 and 0.8 Cues for the first and 

the second halves of blocks at site Fz (left panels). Scalp 
voltage topography for 0.2 Cue – 0.8 Cue comparison from 

200-300 ms (right panels). 
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Figure 5. FRN for unexpected outcomes, expected 
outcomes, and cues by block half and for participants (bars), 
AC (squares), Q-Learning (circles), and SARSA (triangles). 

 
The behavioral results favored the Q-Learning and 

SARSA models. The AC model outperformed participants 
and the other two models over the second half of blocks. 
Performance differences between models related to the 
nuanced meaning of state-action pairs, Q(s,a), for each. In 
the Q-Learning and SARSA models, Q-values approximate 
values of state-action pairs. In the AC model, Q-values 
approximate selection preferences that maximize the state-
value function, V(s). Because a deterministic selection 
policy maximized the state-value function, V(s), in our task, 
Q-values in the AC model became increasingly polarized 
until near-deterministic selections emerged. The same effect 
could be achieved in the Q-Learning and SARSA models by 
annealing the noise parameter. 

To further distinguish between the Q-Learning and 
SARSA models, we re-analyzed cue-locked waveforms 
based on cue identity (0.2 Cue, 0.8 Cue) and the response 
that followed the cue. If prediction error depended on the 
value of future actions, as predicted by SARSA, we 
expected that cue-locked waveforms would be more 
negative before participants chose the incorrect response 
than before they chose the correct response. From 200-300 
ms after cue presentation, average area under the 0.2 Cue 
waveform was less than area under the 0.8 Cue waveform at 
site Fz, F(1,12) = 8.40, p = .013 (Figure 6). Waveforms did 
not depend on the accuracy of the forthcoming response, 
however, F(1,12) = 1.71, p > .1. 

We computed model δ for the same combination of 
factors3. Q-Learning and AC predictions were consistent 
with observations (Q-Learning: MSE = 0.237, r2 = .0.77; 
AC: MSE = 0.225, r2 = .0.76) in that they predicted an 
effect of cue but not response accuracy. In contrast, the 
SARSA model predicted a more negative signal before 
incorrect than correct responses (MSE = 0.419, r2 = .0.32), 
owing to how the algorithm computed future reward (Eq. 5). 

                                                           
3 This analysis was based on the area under individual 

waveforms rather then FRN. Consequently, we computed new 
slope and intercept terms to compare model δ to observations. 

 
 

Figure 6. Cue-locked voltages preceding correct and 
incorrect responses by cue and for participants (bars), AC 
(squares), Q-Learning (circles), and SARSA (triangles). 

General Discussion 
Although the RL-ERN theory has stimulated a great deal of 
research, feedback immediately follows actions in most 
studies of FRN. Similarly, although RL methods have 
stimulated a great deal of psychological research, most 
studies of RL in humans involve simple environments. In 
the current experiment, we examined learning in a more 
complex problem space. We asked how people assign credit 
to intermediate actions when making sequences of 
decisions. 

The experiment yielded two clear results. First, FRN was 
greater for unexpected than for expected outcomes. 
Although some studies have reported a relationship between 
FRN and prediction error (Holroyd et al., 2009), others have 
not (Hajcak et al., 2005). This discrepancy has led to the 
proposal that FRN relates most strongly to prediction error 
when outcomes are contingent on behavior (Holroyd et al., 
2009). In our experiments, feedback was contingent on 
behavior, and consistent with the proposal of Holroyd et al. 
(2009), we did observe a relationship between prediction 
error and FRN. Second, FRN also followed negative 
intermediate outcomes even though these outcomes did not 
directly signal reward. This result shows that people 
evaluated intermediate outcomes in terms of expected future 
reward. Although many theories propose that such 
evaluations underlie temporal credit assignment (Fu & 
Anderson, 2006; Holroyd & Coles, 2002; Schultz, Dayan, & 
Montague, 1997; Sutton & Barto, 1998), these results 
provide one of the clearest demonstrations of TD learning to 
our knowledge. 

We also examined three TD methods: Actor-critic, Q-
Learning, and SARSA. A recent neuroimaging study 
provided support for the AC model by showing that activity 
in the dorsal and ventral striatum of the basal ganglia 
corresponded to the behavior of the actor and the critic in 
the AC model (O’Doherty et al., 2004). Alternatively, 
single-cell recordings from midbrain dopamine neurons in 
monkeys have supported SARSA (Morris et al., 2006), and 
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recordings from dopamine neurons in rats have supported 
Q-Learning (Roesch, Calu, & Schoenbaum, 2007). An 
integrative account of these findings is hindered by the 
between species comparison. Consequently, it is unclear, as 
of yet, which form of TD control is most applicable to 
humans. The behavioral and neural results of the current 
experiment were consistent with Q-Learning. This 
considerations not withstanding, the current data do not 
definitively distinguish between TD variants. The more 
valuable contribution of this work is the demonstration that 
intermediate states inherit value, a feature central to each 
TD model. Future studies should aim to elucidate the 
precise TD algorithms that underlie neurological 
computations. 

Our simulations demonstrated that the core Q-Learning 
model could account for the behavioral and neural data. 
Additionally, our computational instantiation clarified two 
nuanced features of the experiment results. First, FRN 
decreased for expected outcomes and increased for 
unexpected outcomes. Model FRN changed in the same 
manner. Because utility estimates began at 0.5, δ was 
initially -0.5 (0.0 – 0.5) for all losses, and δ was initially 0.5 
(1.0 – 0.5) for all wins. As the model learned, the utility of 
the correct response for the 0.2 Cue approached 0.2 and the 
utility of the correct response for the 0.8 Cue approached 
0.8. Consequently, δ magnitude decreased for expected wins 
and losses, and δ magnitude increased for unexpected wins 
and losses, giving rise to the observed changes in FRN.  

Second, cue FRN increased with experience. The Q-
Learning model (and in fact all TD models) also showed an 
experience-dependent increase in cue FRN. The models 
only distinguished between positive and negative cues after 
the values of the states and actions that followed those cues 
(e.g. future reward) became polarized. As this result 
demonstrates, the TD models learn the utility of actions that 
are near to rewards before learning the utility of actions that 
are far from rewards. Humans and animals also exhibit this 
learning gradient (Fu & Anderson, 2006). 

Do the results of this experiment indicate that TD 
methods alone are sufficient for coping with temporal credit 
assignment? We think not. Although participants faced a 
discrete Markov decision process (MDP) in our experiment, 
people must sometimes identify current states and recall 
past transitions. Violations of the Markov property may be 
problematic for TD methods. Additionally, although TD 
learning reduces the delay between action selection and 
credit assignment, TD learning does not typically eliminate 
delays in continuous time domain tasks. An important 
question for future research is how people integrate TD 
learning with other RL methods, like eligibility traces and 
model-based RL, to behave proficiently in complex 
environments. 
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