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Abstract 

Categorization of objects is an important cognitive capability 
for human and higher animals. Phenomena related to 
category learning have been investigated both in human 
subjects and in animal behavior studies. However, it is less 
well understood in the computational processes that are 
responsible for the emergence of functionally meaningful 
categorizations from specific learning contexts. Here we 
present a unique computational model integrating object 
categorization and reinforcement learning (RL) in the Soar 
cognitive architecture. Our model simultaneously captures 
how object categorization affects behavior adaptation, and 
how behavioral adaptation influences object categorization 
over time in a specific functional context. Results from 
synthetic data demonstrate that our model successfully 
improves the speed of RL via categorization. The qualitative 
predictions from our model are consistent with existing 
theories of category learning. 

Keywords: cognitive architecture; category learning; 
reinforcement learning; behavioral adaptation 

Introduction 
Category learning has been actively studied in higher 
animals including human (Ashby & Maddox 2005) and 
primates (Smith 2010). Categorization enables an individual 
to response to a novel stimulus, which resembles some other 
stimuli with known responses. 
 In this paper, we model several related phenomena in 
human category learning. The most important one is related 
to the notion of basic-level category as described by Rosch 
(1978). Consider the following two examples of abstraction 
hierarchies: furniture-chair-rocker and vehicle-car-sedan. 
The middle categories, chair and car, are basic categories, 
because they dominate both their subordinate and 
superordinate categories in terms of how fast they can be 
retrieved when a person is asked to describe the object 
without being put in a specific context. The original theory 
about basic-level categories was mainly concerned with this 
‘uniformity’ aspect of category recognition across different 
individuals. On the other hand, there are also variations. 
First, non-basic level categories are frequently chosen in 
specific task contexts. Second, basic-levels are dependent on 
long term learning experience and can be significantly 
different across individuals in specific domains. All of these 
are characteristics of category learning. However, there has 
been a lack of computational models that coherently explain 
the combination of basic-level effects, context effects, and 
long-term learning effects in a specific functional setting, 
where a cognitive agent has to interact with the world to 
achieve some goals. 

 We present a unique computational model of category 
learning that integrates a hierarchical perceptual category 
learning component and a reinforcement learning 
component in the Soar cognitive architecture (Laird 2008). 
In our model, the underlying computation mechanism 
improves the agent’s behavioral adaptation through category 
learning and at the same time results in the emergence of 
functionally meaningful categorizations as a result of 
feedback from reinforcement learning. We term our model a 
functional category learning model. 
 Our functional category learning model relies on 
perceptual category learning, and has the following features. 
First, functional categorization requires additional 
functional properties as input that are non-perceptual. For 
example, a venomous snake is in a different functional 
category from a harmless snake, but they may look very 
similar and fall under the same perceptual category of 
snakes. Second, functional categories are by definition 
specific to a particular functional context. For example, 
categorizations of animals as sources of food versus as pets 
are very different. Third, functional categories are directly 
related to decision making and are adaptive relative to the 
agent’s experience. For example, a domain expert develops 
more detailed categorizations than novices do. Our 
hypothesis is that basic-level categories are rooted in 
people’s experience, and depending on how objects are 
used, the categories can be significantly different across 
cultures, even individuals within the same culture. 
 Our functional category learning model involves two 
components. One is a perceptual category learning system, 
which can automatically learn hierarchical category 
structures based on innate perceptual features. The other is a 
reinforcement learning system, which uses the perceptual 
categories as the representational basis and incrementally 
forms functionally meaningful categories based on their 
utility values. 

Hierarchical Categorization 
There is a long history of hierarchical models of category 
learning. Quillian (1968) proposed the semantic network 
model, which can represent categorical relationships among 
objects in a hierarchical structure. However, the semantic 
network model does not include a learning mechanism to 
build the structure. COBWEB (Fisher 1987) is an algorithm 
that can incrementally learn a hierarchical organization of 
categories. A previous version of the ICARUS cognitive 
architecture used a COBWEB-based system, called 
LABYRINTH for its declarative learning and memory 
(Langley et al. 1991). Ambros-Ingerson et al. (1990) 
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described a neurologically inspired hierarchical clustering 
algorithm, which operates in a way very different from 
COBWEB and Granger (2005) has demonstrated the 
plausibility of using such hierarchical clustering algorithm 
as a principled computational instruction for human 
cognition. 

Reinforcement Learning 
Hierarchical category learning provides the necessary 
representational basis, however the representation itself is 
insufficient for functional category learning because it has 
no direct connection to how the learned knowledge can be 
used. Another learning process is required to connect the 
category representations with the agent’s intrinsic functional 
meanings. We consider reinforcement learning (RL, Sutton 
& Barto 1998) as a candidate mechanism to establish such 
connections via incremental trial-and-error learning with 
feedback. 
 RL has been successfully applied in adaptively learning 
optimal control policies in the field of machine learning. 
The general model of RL has also been considered as a 
mechanism for human skill learning (Fu & Anderson 2006). 
Cognitive architectures such as Soar (Laird 2008) and ACT-
R (Anderson et al. 2004) both have a reinforcement learning 
mechanism. However, there has not been a computational 
model integrating category learning and RL in these 
cognitive architectures. 

Demonstration Task 
We briefly describe our demonstration task before 
describing the implementation of our model, so that we can 
illustrate how the model works using a concrete example. 
 The demonstration task models a hunting scenario where 
the agent is presented with pairs of prey and hunting tools. 
There are diverse types of prey and tools, and different tools 
have different effectiveness on different prey. For example, 
a slingshot is good for small birds, but it will not work for 
larger prey. We assume that the agent does not have prior 
knowledge to predict the outcomes based on perceptual 
features of the objects. The agent must incrementally 
acquire such connections based on its experience through 
RL. During interaction with the world, the agent receives a 
positive reward if hunting is successful and a negative 
reward if it is unsuccessful. In order to learn faster, the agent 
needs to generalize its predictions based on perceptual 
similarity. For example, if the agent has learned that a bow 
is good for hunting rabbits, then it is likely to work against a 
woodchuck as well. Meanwhile, to improve generality, the 
agent must adapt its learning to the right level of abstraction 
through the course of using RL. 

Model Implementation 

Overview 
Our model is implemented by combining a hierarchical 
category learning (HCL) system with Soar-RL (Nason & 
Laird 2005), which has been shown to successfully model 
animal behavioral data (Wang & Laird 2007). Our model 
uses the HCL component to perform perceptual learning. 

The output of the HCL system is the input to the RL system. 
We have experimented with both COBWEB and a 
biologically inspired hierarchical clustering algorithm 
(Ambros-Ingerson et al. 1990). In general, any incremental 
hierarchical clustering system will be compatible with our 
model. 

Learning Algorithm 
In a functional category learning model, the functional 
utilities of objects are associated with specific actions, and 
can be naturally represented as value functions in the RL 
system. Soar-RL encodes the value function as a set of 
production rules, with an expressive syntax equivalent to 
first-order logic. The left-hand side of a rule tests state and 
action features, while the right-hand side generates the 
expected value for the matching state action pair. The 
expected value of an action is the sum of the values of all 
rules matching the current state and that action. The Soar-
RL model is a special instance of the sparse-coarse coding 
approach to value function approximation (Sutton 1996). 
 In our functional category learning model, instead of 
using raw perceptual features of the objects in the state 
representation, the RL system uses the symbolic category 
representations from the HCL system. The entire structure 
of our model can be viewed as a two-layer network as 
shown in Figure 1. The bottom layer represents the HCL 
system. In this paper, we assume such hierarchical structure 
has been learned by the agent through regular perceptual 
category learning before the hunting task. And we 
investigate the emerging properties of doing reinforcement 
learning with such hierarchical categorization. The dark 
colored nodes in the hierarchies represent symbolic 
categories matching with the input objects. These symbolic 
categories are used in the state representation and are 
matched by rules in the RL system. Rules are represented as 
cells in the coarse-coding layer. A rule testing general 
category symbols will be coarser than a rule testing more 
specific category symbols. Dark colored cells represent 
rules that match the current state. The numbers on each grid 
indicates the hierarchy levels for component hierarchies, 

 
Figure 1: Overall structure of the system viewed as a 
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which will be explained later. The grids form an emerging 
lattice structure, with the transitive relationship coarser-
than, represented by the arrows. 
 We formally describe the general algorithm below. To 
learn the target value function of a state action pair, the 
system first maps the input objects into a vector of 
functional roles R, which represents the argument types of 
the target function. The vector O represents the input objects 
binding with R: 
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 In the example, the function is to predict the utility of 
hunting some prey with some tool, and for a particular 
instance, the inputs are two objects: rabbit and bow. 
According to our notation, input to the system will look like 
R=(prey, tool), O=(rabbit, bow). After matching objects 
with functional roles, the HCL system incrementally builds 
a set of hierarchies H correspondingly: 
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Let height(hi) denote in the height of the hierarchy hi, and ki 
denote a cluster/category/node within the hierarchy. Let 
level(ki) denote the level of cluster ki in hierarchy hi, with 
the root level being 0. Cells, grids and their relations, shown 
in Figure 1, are defined as following: 
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More intuitively, each cell represents a rule in our RL 
system. A set of cells are composed into a grid that 
partitions the state space at a specific level of resolution. 
There is an emerging lattice structure among the grids with 
the transitive relation coarser-than (0). For a given object 
oi, the activation of a cluster ki is denoted as a(ki): 
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The mapping from oi to ki is achieved via category 

recognition in the HCL system, and only a single path of 
clusters are activated for a particular input as shown in 
Figure 1. Details of the COBWEB algorithm can be found 
in Fisher (1987). a(ki)=1 means object oi in the current state, 
bound to the corresponding functional role ri, is an instance 
of the category represented by the cluster ki. The activation 
of a cell, a(CK), is defined as: 
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a(CK)=1 only when all the objects match with the rule, 
which will fire to participate in predicting and learning the 
target value. The weight, w(CK), from the cell to the output 
unit is represented as a numeric value associated with the 
rule in the RL system. The learning algorithm updates the 
weights according to the delta rule for the identity activation 

function used in our RL system, where y is the predicted 
value and o is the target output value (current reward + 
discounted future rewards). The learning rate α for a 
specific rule CK is chosen to decay over time t, where t is 
represented by the times the rule has been trained: 
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 The connection between the coarse-coding layer and the 
output unit is always sparse, since, for any input, only one 
cell from each grid in the lattice has non-zero activation. 
This is due to the competitive learning nature of the 
hierarchical clustering layer – only one cluster is activated at 
each level. 

Simulation and Results 
We use a hunting task as described earlier with synthetic 
data to evaluate our model. The data used in the task is 
shown in Figure 2. The hierarchies represent natural 
perceptual categories based on unsupervised learning with 
perceptual features, which are outputs from the HCL system 
as shown in Figure 1. We assume the agent has innate 
feature detectors that result in such perceptual categorization 
purely based on observing the objects without any hunting 
experience with the objects.  
 The functional interaction structure in this domain is 
represented in the two-dimensional table in Figure 2. A dark 
cell means the corresponding tool is good for hunting the 
prey and the agent will receive a reward of +1 if it chooses 
the action ‘hunt’. The white cell means the corresponding 
tool is bad for hunting the prey and the agent will receive a 
reward of -1 if it chooses the action ‘hunt’. The agent can 
alternatively choose the default action ‘avoid’, which will 
always give a 0 reward. We expect that the hierarchical 
categorizations will help the agent generalize its experience 
from a specific instance to similar combinations of objects. 
For example, the experience of hunting a rabbit with a 
longbow can be successfully generalized to hunting all four-
legged animals with bow expect for one situation (longbow 
is not strong enough for hunting deer), so that both the 
category of Four-leg and Bow are useful abstractions. On 
the other hand, since there are variations within the group, 

 
Figure 2: Input Data – Perceptual Category Hierarchies 
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we expect both concepts will be dominated by their 
subordinate categories in certain situations. In addition to 
trying to be close to reality, we designed the data so that it is 
complex, while at the same time, it has structure that tests 
specific aspects of the system, and it is simple enough to 
interpret the results.  
 To emphasize that the initial categorizations are based on 
innate perceptual features as opposed to taxonomic features, 
we use the labels such as Four-leg, Large, and Small, 
instead of Mammal, Ungulate, and Rodent to indicate they 
are perceptual categories. Birds have feathers, sharp beaks, 
and can fly. Fish all have similar shape, scales and swim in 
the water. A hierarchical clustering algorithm such as 
COBWB can automatically discover such statistical 
correlations among high dimensional perceptual features 
and incrementally build up a hierarchical structure as shown 
in Figure 2. Since we focus on the interaction between 
hierarchical categorization with RL, we did not include a 
detailed perceptual learning step in our simulation. 
 The effectiveness of tools with regard to prey may appear 
obvious to the reader. We make the assumption that the 
agent has no relevant prior knowledge to derive the 
effectiveness of a tool based on perceptual features. It has to 
incrementally learn the effectiveness of a tool for a prey 
through experience and build up the connections from 
perceptual similarities to functional outcomes piece by piece 
via the RL mechanism.  
 Figure 3 shows the details in the layer of coarse-coding 
rules for a specific input: hunting a deer with a crossbow. 
The black dots spatially represent the specific input in 
different grids. The gray areas represent the generalization 
effects when the more general rules fire. In this case, the 
agent receives a reward of +1 and each of the 16 rules 
participates in prediction and updating. Since a general rule 
(a larger cell) receives more training samples than a more 
specific rule (a smaller cell), it converges to the target value 
faster. On the other hand, the smaller cell will tend to 
compensate for the value in the context of the larger cell. 
The region with the dotted border in 7 of the grids on the 
lower and right borders means there are no more specific 
rules generated for those regions because it has already 
reached the leaf level of the categorization hierarchies. 

Result 1: Category Learning to RL 
 Figure 4 compares the learning performance of 
hierarchical categorization with a baseline that uses the leaf 
level nodes without generalization. In the training data, 
there are two instances under each of the leaf nodes shown 
in Figure 2. For example, there are two instances of Goat 
that look different but have the same functional properties. 
Therefore, the size of the input space is: 16 (prey) times 12 
(tools) equals 192. We evaluate the performance 
improvement during the course of learning. The agent is 
trained with random samples from the input space with 
replacement. The learning rate is set at 0.1. For a given 
amount of training episodes, we evaluate the rates of correct 
decisions it makes if it follows the policy derived from the 
current value function. The result shows that the model 
successfully integrates hierarchical categorization to speed 
RL. 

Result 2: RL to Category Learning 
 Next, we analyze how functionally meaningful 
categorizations emerge from the process of RL. For a given 
input, there are multiple rules firing simultaneously, each 
coming from a different grid as shown in Figure 3. We 
define the dominant rule as the rule with the highest 
absolute value, or equivalently the winning cell with largest 
magnitude in its weight: 
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Correspondingly, we define the dominant categories as the 
categories associated with the dominant rule. In the hunting 
task for a specific input, there will be a dominant category 
for prey and a dominant category for tool. For example, the 
rule testing Fish and Pole Arm (the lower-right dark square 
consisting of 4 cells) dominates all the more specific rules 
that involve subtypes of Fish or subtypes of Pole Arms 
because it receives more training samples. It also dominates 
more general rules because there are inconsistent updates 
for those rules that cancel out each other. Consequently, the 
categories for Fish and Pole Arm are the dominant 
categories in these particular situations. The general 
principle is that a rule simultaneously maximizing both 
generality and consistency will dominate other rules. 
Intuitively, the associated dominant categories are more 

 
Figure 3: Details of Coarse-coding Grids for the Input 
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functionally salient than their superordinate and subordinate 
categories, since they are the sources contributing to most of 
the decisions made by the voting mechanism. We use the 
overall domination rates across all possible inputs to 
measure the functional saliency of a category in a more 
context-free manner, which indicate how likely a category 
will become a basic-level category when there is no context 
effect. 
  The left side of Figure 5 shows the dynamics of 
domination rates up to 1,000 training episodes for all the 
categories of prey and tools. The trend is that the more 
general categories initially have higher domination rates 
because they cover more inputs and are trained with higher 
frequencies. As more experience is gained, consistent 
categories under a less consistent parent category have 
increasing domination rates (such as the two subtypes of 
birds), while less consistent superordinate categories 
become less dominant (such as the general category Prey, 
Four-legged animal, and Bird). On the other hand, a 
perceptual category that does not have any functional 
differences from other members under the same 
superordinate category does not arise as a functionally 
salient category (such as Rabbit, Woodchuck and the two 
subtypes of Fish). The middle of Figure 5 shows the 
domination rates after 1,000 training episodes. Since the 
ordering of inputs causes variations in the value of rules, we 
measure the mean domination rates across 300 independent 
learning trials, and the estimated standard errors for the 
means (not shown in the figure) are all less than 0.01. For 
example, the category for Small Four-legged animal 
dominates its superordinate and subordinate categories 
(including Prey, Four-legged animal, Rabbit and 
Woodchuck) in about 68% of all possible inputs. The 
category of Rabbit rarely dominates because its 
superordinate category completely captures the decision 
boundaries.  
 The right side of Figure 5 shows the context-free basic-
level categories in boxes, which are the dominating 

categories along a path. The top figure shows the situation at 
1,000 training episodes (for an experienced hunter) and the 
bottom figure at 10,000 episodes (for an expert hunter). The 
additional training experiences can “pull down” the basic-
level towards more specific categories (indicated by the 
arrows). This effect arises naturally in our model and 
corresponds to the fact that a human domain expert 
possesses more specific basic-level vocabularies than a less 
experienced person. 

Discussion 
The general definition of category learning is the process 
that groups similar stimuli together so that similar responses 
can be made. Traditional cognitive theories of category 
learning include two competing views: the prototype view 
(Rosch 1973) and the exemplar view (Medin & Schaffer 
1978). The prototype view is based on the principle of 
cognitive economy (Rosch 1978) and is supported by the 
existence of linguistic representations of abstract categories. 
However, there has been a shift of favor from the prototype 
towards the exemplar view because exemplar models 
provide superior empirical results in a variety of 
experimental settings (Nosofsky & Zaki 2002). A practical 
concern about the prototype view is that a prototype may 
fail to retain sufficient discriminative information. More 
recent models reconcile the two extreme forms and rely on 
representations at multiple abstraction levels (Vanpaemel & 
Storm 2008, Love et al. 2004). 
 Our model is consistent with both the prototype and 
exemplar views. In addition, it explicitly models the 
learning process and can deal with the more challenging 
situations where the input states involve multiple objects 
(such as the interaction between prey and tools). In terms of 
decision making, our model is more like exemplar based 
models, where the agent acquires information about specific 
inputs, and then makes generalizations to novel inputs based 
on perceptual similarity. In terms of category abstraction, 
our model agrees with prototype models. In particular, it 

 
Figure 5: Dynamics of Domination Rates up-to 1,000 Episodes (on the left),  

Domination Rates at 1,000 Episodes (in the middle),  
Push-down of Basic-level Categories (boxed) with more Training Episodes – 1,000 vs. 10,000 (on the right) 
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predicts a similar trend as in the phenomenon of basic-level 
category (Rosch 1978) where the most prominent categories 
(basic-level categories) reside in the middle of a 
categorization hierarchy.  
 Furthermore, our model predicts that category domination 
is context specific. For example, in the hunting context used 
as our demonstration task, Pole Arm is the dominant 
category if the sub-context is hunting Fish (all subtypes of 
Pole Arms are good for fishing). In a different context, 
however, Spear and Trident will dominate if the sub-context 
is hunting Deer. Our model explicitly supports the 
hypothesis that the “context-free” basic level categories, as 
described by Rosch, are the overall effects acquired across 
multiple functional contexts. Since the everyday activities 
related to common objects are largely the same across 
individuals, the context-free basic-level categories appear to 
be consistent as manifested in natural language.  
 Our model does not involve a dedicated process of 
selecting functional meaningful categories. Selection is 
achieved as an emerging by-product of the RL process. As a 
consequence, our model cannot explain certain types of 
category learning that rely on deliberate reasoning or higher 
degrees of abstractions, where the agent generalizes across 
instances that are perceptually distinctive but functionally 
similar. Such deliberate categorization is better described by 
rule based category learning model (Rouder & Ratcliff, 
2006), or analogical reasoning processes such as in the 
structure-mapping engine (SME, Falkenhainer et al. 1989). 

Conclusion 
In this paper, we have presented the first computational 
model that integrates hierarchical category learning and RL 
in a general cognitive architecture, which can be used to 
coherently model basic-level effects, context effects and 
long-term learning effects in category learning. The unique 
feature of this model is that it simultaneously captures how 
categorization affects behavior adaptation, and how 
behavior adaptation influences categorization in a functional 
context. The general trends predicted by our model are 
consistent with existing category learning theories. 
Although the Soar-RL model has been successfully applied 
to match animal behavior data (Wang & Laird 2007), 
further empirical experiments are required to confirm its 
validity in our category learning model.  

Acknowledgement 
This research was supported in part by the Ground Robotics 
Reliability Center (GRRC) at the University of Michigan, 
with funding from government contract DoD-DoA 
W56H2V-04-2-0001 through the Joint Center for Robotics.  

References 
Ambros-Ingerson, J., Granger, R., & Lynch, G. (1990). 
Simulation of paleocortex performs hierarchical 
clustering. Science, 247(4948), 1344-1348. 

Anderson, J., Bothell, D., Byrne, M., Douglass, S., Lebiere, 
C., & Qin, Y. (2004). An integrated theory of the mind. 
Psychol. Rev., 111(4), 1036-1060. 

Ashby, E. G., & Maddox, W. T. (2005). Human category 
learning. Annu. Rev. Psychol., 56, 149-178.  

Falkenhainer, B., Forbus, K., & Gentner, D. (1989). The 
structure-mapping engine - algorithm and examples. 
Artificial Intelligence, 41(1), 1-63. 

Fisher, D. H. (1987). Knowledge acquisition via incremental 
conceptual clustering. Machine Learning, 2(2), 139-172. 

Fu, W., & Anderson, J. R. (2006). From recurrent choice to 
skill learning: A reinforcement-learning model. J. Exp. 
Psychol. Gen., 135, 184-206. 

Granger, R. (2006). Engines of the brain: the computational 
instruction set of human cognition. AI Mag., 27(2), 15-32. 

Laird, J. E. (2008). Extending the Soar cognitive 
architecture. In Proceeding of the 2008 Conference on 
Artificial General Intelligence. 

Langley, P., McKusick, K. B., Allen, J. A., Iba, W. F., & 
Thompson, K. (1991). A design for the ICARUS 
architecture. SIGART Bull., 2(4), 104-109. 

Love, B. C., Medin, D. L., & Gureckis, T. M. (2004). 
SUSTAIN: A network model of category learning. 
Psychol. Rev., 111(2), 309-332. 

Medin, D. L., & Schaffer, M. M. (1978). Context theory of 
classification learning. Psychol. Rev., 85(3), 207-238.  

Nason, S., & Laird, J. E. (2005). Soar-RL: integrating 
reinforcement learning with Soar. Cognitive Systems 
Research, 6(1), 51-59. 

Nosofsky, R. A., & Zaki, S. R. (2002). Exemplar and 
prototype models revisited: response strategies, selective 
attention, and stimulus generalization. J. Exp. Psychol. 
Learning, 28(5), 924-940. 

Quillian, M. R. (1967). Word concepts: A theory and 
simulation of some basic semantic capabilities. 
Behavioral Science, 12(5), 410-430. 

Rosch, E. (1978). Principles of categorization. In Cognition 
and Categorization (pp. 27-48). John Wiley & Sons Inc. 

Rosch, E. (1973). Natural categories. Cognitive Psychology, 
4(3), 328-350. 

Rouder, J. N., & Ratcliff, R. (2006). Comparing exemplar- 
and rule-based theories of categorization. Current 
Directions in Psychological Science, 15(1), 9-13. 

Smith, J. D., Chapman, W. P., & Redford, J. S. (2010). 
Stages of category learning in monkeys (Macaca mulatta) 
and humans (Homo sapiens). J. Exp. Psychol. Anim. B, 
36(1), 39-53. 

Sutton, R., & Barto, A. (1998). Reinforcement Learning: An 
Introduction (Adaptive Computation and Machine 
Learning). The MIT Press. 

Sutton, R. S. (1996). Generalization in reinforcement 
learning: successful examples using sparse coarse coding. 
NIPS 8, 1038-1044. 

Vanpaemel, W., & Storms, G. (2008). In search of 
abstraction: The varying abstraction model of 
categorization. Psychon. B. Rev., 15(4), 732-749. 

Wang, Y., & Laird, J. E. (2007). The importance of action 
history in decision making and reinforcement learning. In 
Proceedings of the Eighth International Conference on 
Cognitive Modeling. Ann Arbor, MI. 

276




