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The half-day tutorial introduces participants to the CLAR-
ION cognitive architecture and presents a detailed descrip-
tion, as well as simulation examples, advanced topics, and 
demonstrations. It will combine conceptual (psychological), 
theoretical, and implementation aspects of the architecture. 
Participants should have some prior exposure to cognitive 
architectures and artificial neural networks. Preferably, par-
ticipants should also have some experience with program-
ming languages (in particular Java). However, prior under-
standing of these areas can be limited, as both basic and 
advanced topics related to cognitive modeling using CLAR-
ION will be covered. 

Tutorial Outline 
A General Overview of CLARION (15 min.) 

In this section, an introduction to cognitive architectures 
in general, and CLARION in particular, will be presented. 
CLARION will be compared to various other architectures 
and a brief discussion of some past and current applications 
of CLARION will be presented along with cognitive justifi-
cations and implications. 

CLARION is a unified, comprehensive theory of the mind 
based on two basic theoretical assumptions: representational 
differences and learning differences of two different types 
of knowledge --- implicit vs. explicit (Sun, Merrill, & Peter-
son, 2001; Sun, Slusarz, & Terry, 2005), among other essen-
tial assumptions/hypotheses (Sun, 2003).  

The first assumption, the representational difference be-
tween these two types of knowledge, relates to accessibility. 
In each subsystem of CLARION, the top level contains eas-
ily accessible explicit knowledge whereas the bottom level 
contains less accessible implicit knowledge.  

The second assumption of CLARION concerns the differ-
ent learning processes in the top and bottom levels of each 
subsystem (Sun et al., 2001, 2005). In the bottom level, im-
plicit associations are learned through gradual trial-and-
error learning. In contrast, learning of explicit knowledge is 
one-shot and captures its abrupt availability. The emphasis 
on bottom-up learning (i.e., the transformation of implicit 
knowledge into explicit knowledge) is, in part, what distin-
guishes CLARION from other cognitive architectures (al-
though top-down learning is also a capability of CLAR-
ION). 

In addition to the aforementioned theoretical assumptions, 
CLARION is a cognitive architecture composed of four 
main subsystems: the Action-Centered Subsystem, the Non-
Action-Centered Subsystem, the Motivational Subsystem, 
and the Meta-Cognitive Subsystem.  

The Action-Centered Subsystem (60 min.) 
In this section, the Action-Centered Subsystem (ACS) 

will be defined in detail. The structure and design of the 
various aspects of the ACS, along with the learning mecha-
nisms and the properties of the model, will be presented. 
Finally, a series of simulation examples related to the opera-
tions within the ACS will be presented. 

The Action-Centered Subsystem is used mainly for action 
decision-making. In the ACS, the top level generally con-
tains simple “State  Action” rules, while the bottom level 
uses multi-layer perceptrons to associate states and actions. 
Reinforcement learning algorithms (usually with back-
propagation) are used in the bottom level while rule learning 
in the top level is mostly “one-shot” and can be performed 
bottom-up (via “explicitation”) or independently (e.g., 
through linguistic acquisition). 

The ACS has been used to model anything from naviga-
tion in minefields (Sun et al., 2001) to Towers of Hanoi, etc. 
In addition, because CLARION focuses on the dichotomy 
between explicit and implicit knowledge, benchmark psy-
chological tasks used to demonstrate implicit learning have 
also been successfully modeled and explained (Sun et al., 
2005).  

The Non-Action-Centered Subsystem (45 min.) 
 Similar to the section on the ACS, this section will detail 

the Non-Action-Centered Subsystem (NACS). The structure 
and design of the various aspects of the NACS, along with 
the learning mechanisms and the theorems describing the 
properties of the model, will be presented. In addition, as 
with the section on the ACS, a series of simulation exam-
ples demonstrating the operations within the NACS will be 
presented. 

The Non-Action-Centered Subsystem is used to store de-
clarative (“semantic” and episodic) knowledge and is re-
sponsible for reasoning in CLARION. In the NACS, the top 
level contains simple associations while the bottom level 
involves a nonlinear neural network. Associative learning 
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algorithms (e.g., backpropagation or contrastive Hebbian) 
are generally used in the bottom level whereas associations 
in the top level are mostly learned “one-shot” (similar to the 
ACS). 

The NACS has mostly been used to simulate memory and 
reasoning. In particular, CLARION was able to capture the 
effect of mixed rule-based and similarity-based reasoning 
(e.g., when judging the likelihood of simple deductive 
forms). In addition, other reasoning phenomena (e.g., inheri-
tance-based reasoning, reasoning from incomplete informa-
tion, etc) have also been explained using CLARION (e.g., 
Sun & Zhang, 2006).  

The Motivational and Meta-Cognitive Subsystems (30 min.) 
In the fourth section, the structure and design of the moti-

vational (MS) and meta-cognitive (MCS) subsystems will 
be explored in detail. In addition, several past and current 
simulation examples related to the operations within the MS 
and the MCS will be presented.  

The Motivational Subsystem contains both low-level 
(physiological) and high-level (social) primary drives that 
take into account both environmental and internal factors in 
determining drive strengths. These drive strengths are re-
ported to the Meta-Cognitive Subsystem, which regulates 
not only goal structures but also other cognitive processes as 
well (e.g., monitoring, parameter setting, etc). For more 
details on motivation and meta-cognition see Sun (2003, 
2007, 2009). 

Simulations using these subsystems, for example, have 
shown how anxiety-inducing drives can affect the parame-
ters within the ACS in terms of explicit vs. implicit response 
weighting and overall performance (Wilson et al., 2009). 
Other simulations have addressed the combination of drives 
in the MS toward the setting of goals by the MCS.  On this 
basis, models of human personality have been developed. 

Introduction to the CLARION Library (30 minutes) 
The CLARION implementation (in Java) has recently un-

dergone a number of improvements and enhancements al-
lowing for the simulating of a wide variety of tasks, as well 
as interfacing with a variety of virtual environments. In the 
last section of the tutorial, an overview of the CLARION 
Library will be presented. Participants will be given copies 
of the newest release of the library and will be shown how it 
can be used to run new and existing simulations. 

Relevance for Cognitive Science 
The CLARION cognitive architecture is well established 

and has been the subject of more than 100 scientific papers 
and several books. CLARION is particularly relevant to 
cognitive scientists because of its strong psychological plau-
sibility and the breadth of its application to cognitive model-
ing and simulation. In CLARION, each structure corre-
sponds to a psychological process/capacity. CLARION-
based models have been used to explain data as diverse as 
implicit learning, cognitive skill acquisition, inductive and 
deductive reasoning, meta-cognition, motivation, personal-
ity, and social simulations (Sun, 2006). 

Presentation Details & History  
Descriptions and demonstrations during the presentation 

will be provided using PowerPoint and the Eclipse Java 
development environment. 

Participants in the tutorial are encouraged to ask questions 
throughout the presentation to clarify any ideas described. 
The presenters are versed in both the conceptual and imple-
mentation details of the CLARION cognitive architecture. 

An older variation of the proposed tutorial had been pre-
sented at the 30th Annual Meeting of the Cognitive Science 
Society in Washington D.C. as well as the 2009 Interna-
tional Joint Conference on Neural Networks in Atlanta, GA. 
In addition, this tutorial has been given as a lecture series on 
several occasions for various courses in Cognitive Science 
at Rensselaer Polytechnic Institute. 

Sample Materials 
• A complete technical specification of CLARION: 

http://www.cogsci.rpi.edu/~rsun/sun.tutorial.pdf 
• A list of CLARION-related publications:  

http://www.cogsci.rpi.edu/~rsun/clarion-pub.html 
• Current versions of the CLARION Library, slides, etc.: 

http://www.cogsci.rpi.edu/~rsun/clarion.html 
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