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Abstract

We present a framework for cognitive modeling of aes-
thetic decision making based on dynamic prototypes.
Starting point of our work is empirical evidence which
shows that subjects’ initial ratings of attractiveness of
objects can be influenced by adapting them to new,
typically more innovative objects. The framework con-
sists of three steps: (1) Estimating an initial proto-
type from the ratings, (2) adapting the prototype due
to the impact of the new objects, and (3) predicting
the attractiveness ratings for subsequently presented ob-
ject by their similarity to the adapted prototype. The
framework allows representation of prototypes and ob-
jects as feature vectors containing metrical or catego-
rial attributes or as structural representations. Within
the framework, a variety of similarity measures and
similarity-to-rating mappings can be explored to gain
more precise insight in the cognitive processes under-
lying aesthetical appreciations. We instantiated the
framework for a first set of data obtained in a psycholog-
ical experiment. In this experiment subjects rated the
attractiveness of an initial set of chairs which varied in
length of the backrest and the saturation of the color.
Subjects then were adapted to a new set of chairs with
extreme values on both dimensions. Finally, subjects
again rated the initial objects. We tested our model
and obtained promising first results.

Introduction

Aesthetical judgements are not only underlying the eval-
uation of works of art but also guide our purchase de-
cisions for mundane objects (Whitfield & Slatter, 1979;

1The reported results were obtained in a student project
of J. Folger, S. Schineller, and D. Seuß, supervised by Ute
Schmid and Michael Siebers. The collaboration between the
Cognitive Systems group of Ute Schmid and the General Psy-
chology Group of Claus-Christian Carbon is supported by
a grant of Bayerisches Staatsministerium für Wissenschaft,
Forschung und Kunst.

Hekkert, Snelders, & Wieringen, 2003). Whenever we
buy something – may it be clothing, furniture, a phone,
or a car – our decision is influenced by aesthetical as-
pects. That is, given a class of objects with comparable
functionality, price range, and brand image, we still pre-
fer one object over another. Often, this preference is
based on visual cues and, more often than not, we can-
not give a clear justification for our preference.

One possible explanation for such aesthetical prefer-
ences is the similarity of objects to our individual pro-
totype for the object category (Rosch, 1978; Kruschke,
2008). Such prototypes are constructed over personal
experience and therefore dynamic (Medin & Heit, 1999;
Ashby & Maddox, 2005). This is reflected, for example,
in the way we are affected by changes of fashion. The
majority of people typically does not like a new style in
clothing or car design if it is freshly introduced to the
market. However, if they are exposed to the new design
over some time, their aesthetical judgement adapts and
the previously liked designs appear less attractive while
the new design gains attractiveness (Carbon, 2010).

Experimental evidence for adaptation effects in aes-
thetical judgements was, for example, given by Faerber
and Carbon (2010). An experimental procedure for an
adaptation experiment can be realized in the following
way: Initially (T1), subjects are presented a set of stim-
uli (e.g., chairs) which vary on some dimensions (e.g.,
length of backrest and saturation of color, see Fig. 3).
Some objects are similar to standard – that is, proto-
typical – artefacts, others highly deviate from typical
appearance. Subjects have to rate the attractiveness of
the given objects. In a second phase (adaptation phase
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Figure 1: Illustration of a prototype-shift in feature
space due to adaptation to novel objects (represented
as squares)

A), subjects are induced to engage with artefacts which
deviate not, moderately or strongly from the typical ob-
jects. For example, they have to rate different functional
and aethetical features of these objects. Afterwards (T2),
subjects have to rate the attractiveness of the objects in
the initial set again. Over several experiments, Carbon
and his coworkers could show, that if subjects were en-
gaged with strongly deviating objects during the adap-
tation phase, at T2 the more deviating stimuli are rated
more attractive as at T1 while the more standard objects
are rated less attractive.

Carbon and colleagues explain this effect by recalibra-
tion or dynamic prototype change (see Fig. 1): When
confronted with a new artefact which deviates too much
from the prototype for this class of objects (e.g., very
angular car shape, belly-bottom trouser legs), such new
artefacts are rated as not attractive (T1). However, if one
gains more experience with such innovative objects (A),
the prototype undergoes a dynamic change, incorporat-
ing the new objects. Consequently, after a while (T2),
the objects which were originally similar to the prototype
at (T1) are now more distant and the objects which orig-
inally strongly deviated from prototype are now similar
to the updated prototype (T2).

To gain more precise insights in the dynamic changes
of prototype representations and their impact on aes-
thetical decision making, we propose a cognitive mod-
eling framework which allows (1) to estimate an initial
prototype from aesthetical judgements of objects at the
time of the first exposure (T1), (2) to adapt this initial
prototype with respect to the adaptation set (A), and
(3) to use this prototype to predict subsequent aesthet-
ical judgements of objects (T2). Such a model can help
to gain a deeper understanding of aesthetical decision
making. Furthermore, it can provide an initial building
block for an assistant system which allows designers to
evaluate the possible market success of new design lines.

In the following, we first propose a general frame-
work for prototype based generation of aesthetical judge-
ments. Afterwards, we present a first instantiation of the

framework where we model data gained from a psycho-
logical experiment. We conclude with a short discussion
and further work to be done.

A Framework for Generating Aesthetical
Judgements

Given the proposition that an individual generates
his/her aesthetical judgement of an object with respect
to its similaty to his/her prototype, the general frame-
work can be expressed as

∀o ∈ O : K(σ(o, p)) = a(o) (1)

where σ(o, p) is the similarity of the object o to proto-
type p, K is a kernel function, and a(o) is the resulting
attractiveness rating for the object. To simplify matters,
we do not discriminate between a(o) as the mental repre-
sentation of the attractiveness of the object and a(o) as
the externally expressed judgement which, for instance,
is given as a rating on a Likert scale.

To instantiate the general approach, the following
questions must be answered:

• What kind of information of the real-world objects is
included in the prototype?

• How is the prototype represented?

• With what type of measure is the similarity between
prototype and object established?

• Which kernel function is used to map the similarity to
the attractiveness rating?

Illustration

We illustrate these aspects using the material which will
be presented in more detail in section Experiment. The
objects under consideration are chairs. A chair might be
represented using

• holistic visual information such as shape, which char-
acterize a chair as elegant, comfortable, etc.

• metrical visual features such as length of the backrest,

• metrical visual relations such as the proportion of
length of the beackrest to depth of the seat,

• metrical non-visual features such as weight,

• categorial visual features such as color (which typically
is perceived qualitative and not as a metrical feature rep-
resenting wave length),

• categorial non-visual features such as producing coun-
try,

• qualitative spatial relations such as that the back legs
of the chair are under the backrest or in front of the back-
rest.
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Each subset of these different types of information im-
plies a different representational format (Schmid et al.,
2011). If only metric features are considered, each object
can be represented as a feature vector and the prototype
can be represented by an average value for each feature.

Under the – in most domains not valid – assumption
(Nosofsky, 1988), that the features are not correlated
and that the variability of feature values is comparable,
a standard distance metric, such as Euclidian distance
or Manhatten distance could be used to calculate the
similarity between an object and a prototype. However,
it is an open question, whether one of these measures
is guiding the mental similarity assessment or whether
more complex similarity measures are needed. Maybe,
different features have different salience which would re-
sult in a measure with different weights for the different
features. In general, the similarity measure should not
only take into account the isolated features but also in-
teraction terms.

Finally, there are many possible mappings from simi-
larity to aesthetical judgements. In the most simple case,
this might be a linear regression β0 +β1(σ(o, p)) = a(o).
In the case of a similarity measure which deals with dif-
ferent components of object-representation differently, σ
and β1 might be vectors. Alternatively, the mapping
might be non-linear and only captured by specific non-
linear functions. A typical obeservation is that ratings of
attractiveness are based on the MAYA (most advanced
yet acceptable) principle (Hekkert et al., 2003). That
is, objects which are very similar to the prototype are
not perceived as highly, but only medium attractive (be-
cause they are somewhat boring) and objects which de-
viate too far from the prototype are considered as highly
unattractive.

The proposed general model can be viewed as a guide-
line for exploring empirical data to obtain more specific
information about the processes underlying aesthetical
decision making.

Identifying the Similarity and Mapping
Functions

In the context of an experimental setting researching
adaptation as described above (see sect. Introduction),
the ratings obtained during initial representation (T1) of
objects are used to determine K(σ(o, p)) in such a way
that the ratings of each individual can be reproduced as
exactly as possible. To identify σ and K, we propose the
following procedure:

• Predefine a set of plausible measures Σ = {σ1, . . . , σn} and
functions κ = {K1, . . . ,Km}.

• For each combination Kj(σi(o, p)) estimate p such that the
prediction error of a(o) is minimal over all objects o in O1.
How the estimation can be performed depends on the form
of σi and Kj . In the most simple case, it might be possible
to gain the estimate analytically. Alternatively, the pro-
totype values could be identified by gradient descent, or –

if non-derivable functions are involved – by Monte Carlo
studies.

• Select the most simple function Kj and measure σi which
produces minimal errors.

We believe it reasonable to assume that the functions
found to be fitting the individual ratings best should
be kept constant for the attractiveness ratings after the
prototype adaptation phase (at T2).

Predict Aesthetical Judgements Due to
Dynamic Shift of the Initial Prototype

To include the dynamic change of the initial prototype
due to adaptation to novel objects, the framework is ex-
tended to

∀o ∈ O : K(σ(o, S(p,OA))) = a(o) (2)

where S(p,OA) is a function modeling the shift of the
initial prototype due to adaptation.

The form of the shift function is dependent on the sim-
ilarity measure and mapping function obtained from the
initial ratings. If, for instance, the similarity measure is
based on independent, equally salient features and the
kernel is a linear function, than the prototype is shifted
in the direction of the feature vector of the average over
all objects in the adaptation phase (see Fig. 1). How-
ever – again – things can get more complex. Therefore,
different shift functions S should be investigated in the
context Kj and σi identified in the previous step. The
general procedure for selecting a suitable S is analogous
to the previous step.

Experiment
The stimuli used in the experiment are chairs which were
constructed by varying length of the backrest (l(o)) and
saturation (s(o)). A matrix of chairs where length and
saturation is varied in ten equi-distant steps is given in
Figure 2. For the experiment, chairs for every second
variation were selected as test sets – that is, saturations
are -60, -30, 0, 30, 60 and lengthes are 1, 3, 5, 7, 9. This
selection was made to ensure that the visual variations
were perceivable when presenting the objects at a com-
puter monitor. To refer to a specific chair o, we give its
feature vector 〈l(o), s(o)〉.

21 subjects participated in the study. In a first session
(T1), subjects rated each of the 25 chairs of the test
set on a 7-step Likert scale. Afterwards (A), subjects
were adapted to four chairs with extreme values: the
most extreme chair with 〈9,−60〉 was already contained
in the test set, the other three chairs were the neighbours
〈8,−60〉, 〈8,−45〉, and 〈9,−45〉 (see Fig. 3). After a
time-lag of seven days, this adaptation set was presented
again (A) and afterwards (T2), attractiveness ratings for
the 25 test chairs were obtained the second time.

The experiment was not specifically designed to ex-
plore our cognitive framework. With one rating for each
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Figure 2: Variations of length and saturation

Figure 3: Object space with 10 equi-distant variations
of the two dimensions length of chairback and saturation
(only every second variation per dimension was included
in the initial object set)

of the 25 chairs in the test set, we have a rather small
number of data available for individual models. Con-
sequently, we can only explore similarity measures and
mapping functions which involve a small number of free
parameters. Furthermore, it can be assumed that sat-
uration is perceived more dominantely for chairs with
longer backs than for chairs with shorter ones. Finally,
there might be some impact of the amout of space taken
by a presented chair in relation to the background. With
these caveats, we now will present the cognitive models.

A Model For Attractiveness Ratings of
Chairs

To generate a model based on our framework presented
in equation 1, the values of length and saturation were
normalized via z-transformation.

Exluding a Simple Linear Model

Applying the Occam’s razor principle of simplicity, the
first choice for modeling was to assume that ratings of
attractiveness are linearly dependent on similarity. That
there is no simple linear relation between prototypical-
lity and attractiveness is obvious from the interaction
diagrams of l(o), s(o) and a(o) (see Fig. 4).

Figure 4: Interaction between length l(o), saturation
s(o) and initial attractiveness rating a(o) for three sub-
jects
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Approximating a First Model for the Initial
Prototype

To capture the non-linear effect of variations in length
and saturation, we propose the following instantiation of
the framework given in equation 1:

σ(o, p) =

(
|l(o)− lp|
|s(o)− sp|

)
(3)

K(〈xl, xs〉) = β0 + β1e
−xl + β2e

−xs + β3e
−xlxs (4)

Using the e function (instead of a polynomial) is reason-
able because it results in the fewest possible number of
free parameters in the models. When taking into account
two feature dimensions and their interaction the minimal
number of free parameters is 4. The initial prototypes
where estimated by minimizing

1

2

25∑
i=1

(a(oi)−K(σ(oi, p)))
2 (5)

for each subject where oi and p are vectors 〈l, s〉. The val-
ues for the initial prototypes 〈lp, sp〉 were calculated us-
ing gradient descend with decaying learning rate η with
initial value η = 0.025 and momentum α = 0.25 iterat-
ing over 500 cycles. Values lp and sp were initialized to
the means of the highest rated objects.

The estimated prototypes produced acceptable small
deviations between predicted and observed attractive-
ness ratings (see Tab. 1). The estimated initial proto-
types are given in Figure 5. Note, that there are three
subjects (11, 15, 21) who preferred chairs with long back-
rests from the beginning.

Predicting Attractiveness Ratings From the
Shifted Initial Prototypes

Given the estimates for the individual initial prototypes,
in the next step the model was applied to predict the
attractiveness ratings after shifting the initial prototype
due to the adaptation set. Equation 2 as proposed above
was used for estimation. The parameters β estimated
for the initial prototype were kept as it is reasonable
to assume that the individual influence of the different
features is constant within subjects. Again, gradient de-
scent was applied with initial η = 0.0005.

With the exception of three subjects (6, 11, 15), the
predicted attractiveness ratings again have acceptable
small deviations from the observed ratings. For these
three subjects it might be possible that the good fit for
the initial prototype was due to a local minimum.

The prototype shifts are given in Figure 5. For the
majority of subjects the shift is in the direction of longer
chairs. This is plausible because the adaptation set con-
sisted of four chairs with lengthes 8 and 9. Only subjects
11, 17, and 21 show a shift towards shorter lengthes.
However, this shift is very small for 17 and 21. In the
direction of saturation (which was -60 and -45 in the

Table 1: Estimated values 〈lp, sp〉 for the initial proto-
type and estimated values 〈ls, ss〉 for the shifted proto-
type with mean squared residuals

Pb lp sp MSSQ(a1) ls ss MSSQ(a2)

1 1.42 41.08 17.29 1.75 41.07 39.22
2 1.00 -0.07 6.81 1.73 -0.004 48.51
3 1.54 9.67 27.22 2.79 -0.005 65.62
4 1.43 32.34 37.58 1.56 32.34 24.10
5 1.56 -51.09 10.19 2.13 -51.09 17.67
6 1.66 59.58 13.97 3.91 59.61 100.42
7 2.24 57.63 10.57 2.37 57.65 25.88
8 1.95 51.28 7.64 2.53 32.35 45.06
9 1.25 -4.78 29.46 3.00 -5.18 31.66

10 1.99 -50.52 18.93 5.00 -50.51 45.09
11 6.38 48.60 9.91 5.00 30.00 108.15
12 1.54 9.78 11.79 1.60 18.31 23.93
13 3.88 -35.14 17.86 4.74 -35.13 34.03
14 1.53 55.55 11.26 1.89 55.55 89.45
15 8.21 -56.70 44.86 8.33 -56.75 103.34
16 1.97 -59.97 14.97 3.14 -58.13 24.49
17 1.33 -25.16 2.66 1.23 -25.16 11.77
18 3.72 54.17 8.34 4.02 47.23 14.09
19 2.17 40.46 38.44 2.25 40.46 37.94
20 1.00 -44.86 6.02 1.90 -44.86 33.56
21 7.05 29.91 19.24 6.72 29.00 21.11

Figure 5: Initial prototypes and their shift which predict
initial attractiveness ratings and attractiveness ratings
after adaptation

adaptation set) there is no clear pattern for the shift.
This might be due to the fact that the visual salience
of saturation is more variable between subjects than the
visual salience of length.

Conclusion

Given empirical findings which demonstrate that aes-
thetical preferences change dynamically over time, we
proposed a cognitive framework. Within this framework
it is claimed that aesthetical judgements are based on
similarity to prototype. Similarity assessment and map-
ping of similarity to attractiveness are proposed as sub-
processes underlying aesthetical decision making. The
framework therefore gives a guideline to explore empir-
ically which types of similarity measures and mapping
functions are realised when subjects perform ratings of
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attractiveness.

We explored the framework with empirical data which
were obtained in an experiment where subjects rated the
attractiveness of chairs which varied in the length of the
backrest and the saturation of color. Although there
were only 25 data points per subject, we got satisfying
results in predicting the shift of aesthetical judgements
due to adaptation to novel stimuli.

Based on this initial work, there are several aspects
which we plan to explore in future work: In the current
model the shift of the prototype is estimated in a single
time step over all objects of the adaptation set. A psy-
chological more plausible approach would be to model an
incremental shift. However, for an incremental model, it
is necessary to determine in advance (a) the degree of the
shift – that is, how strong a new object pulls the proto-
type in its direction – and (b) the direction of the shift –
that is, the possible different weights of the dimensions
in the object space. Such an incremental model would
have an additional advantage since it allows a new way
to combine empirical evidence of mere exposure respec-
tively the exemplar theory of categorization and proto-
type theory: Because each presented object induces a
shift, the prototype updates are sensitive not only to
variations in object attributes but also to frequency of
object presentation. That is, if the same objects is pre-
sented serveral times, each presentation would induce a
shift.

Another aspect we plan to explore in the future is
to investigate more sophisticated measures of similarity,
e.g., using different similarity measures for the different
aspects of the objects. Another alternative could be to
replace the similarity measure by fuzzy memberships.
Furthermore, we are interested in models which capture
a mixture of metrical and categorial features and in mod-
els which capture the holistic visual impression.

Finally, the experiment was not specifically designed
to test the proposed framework. Therefore, we plan to
conduct more specific experiments to explore the ex-
planatory power of our framework. Especially, we plan
to investigate attractiveness ratings when object appear-
ance is varied on different kinds and numbers of dimen-
sions. Stimuli should be obtained from different artificial
and natural domains.
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