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Abstract 

When formulating explanations for the events we witness in 
the world temporal dynamics govern the hypotheses we 
generate.  In our view, temporal dynamics influence beliefs 
over three stages: data acquisition, hypothesis generation, and 
hypothesis maintenance and updating.  This paper presents 
experimental and computational evidence for the influence of 
temporal dynamics on hypothesis generation through dynamic 
working memory processes during data acquisition.  Results 
suggest that data acquired from the environment undergo 
dynamic competition in working memory, the results of 
which dictate the weights allocated to individual data in the 
generation process. 

Keywords: hypothesis generation, temporal dynamics, 
working memory, abduction, diagnostic reasoning 

Introduction 

Hypothesis generation is a pre-decisional process by which 

we formulate explanations and beliefs regarding the 

occurrences we observe in our environment. The hypotheses 

we generate from long-term memory bring structure to 

many of the ill-structured decision making tasks we 

encounter on a daily basis. As such, hypothesis generation 

represents one of our most fundamental and ubiquitous 

cognitive faculties. Given such regularity, it is no surprise 

that hypothesis generation forms a core component of 

several professions. Auditors, for instance, must generate 

hypotheses regarding abnormal financial patterns and 

mechanics must generate hypotheses concerning car 

problems. Perhaps the clearest example, however, is that of 

medical diagnosis. A physician observes a pattern of 

symptoms presented by a patient (i.e., data) and uses this 

information to generate likely diagnoses (i.e., hypotheses) in 

an effort to explain the patient’s current disease state.  Given 

these examples, the importance of developing a full 

understanding of the processes underlying hypothesis 

generation is clear, as the consequences of impoverished or 

inaccurate hypothesis generation can be injurious. 

When engaged in hypothesis generation tasks, cognitive 

limitations place constraints on the acquisition of bits of 

data used to cue long-term memory for the retrieval of likely 

hypotheses. Important to the present work is the fact that 

data acquisition most often occurs serially. This, in turn, 

dictates that individual pieces of data are acquired in some 

temporal relation to one another. These constraints, 

individual data acquisition over time and the relative 

ordering of data, are likely to have significant consequences 

for hypothesis generation processes. Given these basic 

constraints it is intuitive that temporal dynamics must form 

an integral part of any comprehensive account of hypothesis 

generation processes. In our view temporal dynamics 

influence beliefs over three stages: data acquisition, 

hypothesis generation, and hypothesis maintenance and 

updating (as further data is acquired or judgments and 

decisions rendered). This paper concerns the temporal 

dynamics unfolding over the initial data acquisition phase 

which until now has remained unaddressed. 

At present there exists limited data concerning the 

temporal dynamics of hypothesis generation tasks.  Thus, 

the influences of the constraints operating over these 

processes are not yet well understood. Until such influences 

are addressed at an empirical and theoretical level a full 

understanding of hypothesis generation processes will 

remain speculative. Interest in understanding these 

underlying temporal dynamics is increasing however. For 

instance, Sprenger & Dougherty (2011) found a general 

recency bias in hypothesis generation whereby people 

tended to generate hypotheses more consistent with data 

received later than data received earlier. Additionally, 

Mehlhorn et al. (2011) investigated how hypotheses’ 

memory activations are influenced by the amount of data 

that has been received at various time steps finding 

increases in memory activation with increases in supporting 

data. 

HyGene (Dougherty, Thomas, & Lange, 2010; Thomas, 

Dougherty, Harbison, & Sprenger, 2008), short for 

hypothesis generation, is a computational architecture 

addressing hypothesis generation, evaluation, and testing. 

This framework has provided a useful account through 

which to understand the cognitive mechanisms underlying 

these processes. Here we extend this work by incorporating 

working memory dynamics from the context activation 

model of list memory (Davelaar, et al., 2005) to account for 

data acquisition dynamics subserving the cued recall process 

inherent in hypothesis generation. 

HyGene & Temporal Dynamics 

HyGene rests upon three core principles. First, it is assumed 

that hypothesis generation represents a generalized case of 

cued recall. Data observed in the environment (Dobs), which 

one would like to explain, act as cues prompting the 

retrieval of hypotheses from long-term memory (LTM). For 
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Figure 1: Flow diagram of processing in HyGene 

 

instance, when a physician examines a patient, he/she uses 

the symptoms expressed by the patient as cues to related 

experiences stored in LTM.  These cues activate a subset of 

related memories in episodic memory which guide the 

generation of hypotheses from semantic memory. These 

retrieval processes are indicated in steps one, two, and three 

of Figure 1. As viable hypotheses are retrieved from LTM 

they are placed in the Set of Leading Contenders (SOC) as 

demonstrated in step four. The SOC represents HyGene’s 

working memory construct to which the second principle 

applies. 

The second principle holds that the quantity of hypotheses 

that can be maintained at one time is constrained by 

cognitive limitations as well as task characteristics. That is, 

the more working memory resources that one has available 

to devote to the generation and maintenance of hypotheses, 

the more accommodating the SOC will be of additional 

hypotheses. Working memory capacity places an upper 

bound on the amount of hypotheses (and data) that one will 

be able to maintain at any point in time.  In many 

circumstances, however, attention will be divided by a 

secondary task. Under such conditions this upper bound is 

reduced as the alternative task siphons resource that would 

otherwise allow the population of the SOC to its 

unencumbered capacity (Dougherty & Hunter, 2003a; 

Dougherty & Hunter, 2003b; Sprenger & Dougherty, 2006; 

Sprenger et. al., 2011).   

The third principle states that the hypotheses maintained 

in the SOC form the basis from which probability 

judgments are derived and provide the frame from which 

hypothesis testing is implemented. This principle 

underscores the function of hypothesis generation as a pre-

decisional process underlying higher-level decision making 

tasks and can be seen as step five in the diagram.  

These assumptions form the core of HyGene’s theoretical 

framework. HyGene in its current form is static with regards 

to data acquisition and utilization. The model receives all 

available data from the environment simultaneously and 

engages in only a single iteration of hypothesis generation.  

Given the static nature of the model, each piece of data used 

to cue LTM contributes equally to the recall process.  There 

is reason to suspect, however, that all available data do not 

generally contribute equally. What is needed is an 

understanding of working memory dynamics as data 

acquisition, hypothesis generation, and maintenance 

processes unfold and evolve over time in hypothesis 

generation tasks. 

A Dynamic Model of Data Acquisition and 

Hypothesis Generation 

We now forward a dynamic version of HyGene in which the 

activations of individual pieces of data acquired from the 

environment fluctuate over time in working memory prior to 

hypotheses being generated from long-term memory. The 

activation levels possessed by each piece of data at the time 

of generation are used as weights in the retrieval of 

hypotheses. This allows the activation of each piece of data 

in working memory to govern its individual contribution to 

the generation process. These dynamic working memory 

processes were borrowed from the context-activation model 

of memory (Davelaar et al., 2005).  This model dictates that 

the activations of the items in working memory 

systematically fluctuate over time as the result of competing 

processes described by Equation 1. 
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Equation 1: activation calculation of the  

context-activation model 
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The activation level of each item in the buffer, xi, is 

determined by the items activation on the previous time 

step, self-recurrent excitation that each item recycles onto 

itself , sensory input I, inhibition from the other active 

items , and zero-mean Gaussian noise  with standard 

deviation .  is the Euler integration constant that 

discretizes the differential equation. 
   Figure 2 illustrates the interplay between these competing 

forces in noiseless runs of the buffer when five pieces of 

data have been presented to the model for a fast rate of 100 

iterations (top panel) and for a slower rate of 1500 iterations 

(bottom panel).  The activation of each data rises as it is 

presented to the model and its bottom-up sensory input 

contributes to the activation. These activations are then 

dampened in the absence of bottom-up input as inhibition 

from the other items drive activation down. Self-recurrency 

can keep an item in the buffer in the absence of bottom-up 

input, but this ability is in proportion to the amount of 

competition from other items in the buffer. As can be seen, 

the fast presentation rate, in comparison to the slow rate, 

results in less competition from later items as the truncation 

of sensory input renders them less competitive. Importantly, 

this shift from recency to primacy with increasing 

presentation rate is a unique prediction made by this 

dynamic buffer and challenges other buffer models 

(Davelaar, et al., 2005).  

 

 
Figure 2: Activation trajectories for 5 sequentially received 

data at fast presentation rate (top) and slow presentation rate 

(bottom)  

 

   HyGene utilizes a representation from the multiple trace 

global matching models of MINERVA II (Hintzman, 1986, 

1988) and the decision making model MINERVA-DM 

(Dougherty et al., 1999)
1
. Separate episodic and semantic 

                                                           
1 For a more thorough treatment of HyGene’s computational 

architecture please see Thomas, Dougherty, Harbison, & Sprenger, 

(2008) or Dougherty, Thomas, & Lange (2010) 

memory stores are present in the model.  While semantic 

memory stores only individual prototypes of each disease, 

each experience the model acquires is represented in 

episodic LTM as a series of concatenated minivectors of 1s, 

0s, & -1s where each minivector represents a hypothesis or 

data. That is, each trace is made up of one hypothesis and 

several pieces of data (in our case four). Retrieval is 

initiated when Dobs are matched against the data minivectors 

in LTM. This results in an activation level for each trace 

where a greater overlap in features present in the trace and 

in the Dobs results in greater activation. The weightings from 

the data acquisition buffer are used to weight the activations 

of each minivector in episodic memory at this point in 

retrieval. Therefore, the activation levels associated with 

each trace are directly influenced by the weightings for each 

data supplied by the dynamic working memory processes of 

the buffer. 

    Once these activation values have been obtained, only a 

subset of the episodic traces activated over a criterion are 

used for further processing in the model. From this subset of 

traces a probe is derived as a cue to semantic memory for 

the generation of hypotheses. This cue is matched against all 

known hypotheses in semantic memory. The activation 

values for each hypothesis serve as input into sampling via 

Luce’s choice rule. Generation proceeds until a stopping 

rule is reached based on the total number of resamplings of 

previously generated hypotheses (i.e., retrieval failures). 

    We now present two experiments investigating separate 

consequences of hypothesis generation being extended over 

time. The first experiment examines how the mere serial 

position of a diagnostic datum influences the generation of 

the hypothesis it implies. Experiment two examines how 

processing time (i.e., presentation duration) per datum 

influences the contributions of the individual data in the 

generation process. The novel model of dynamic data 

acquisition and hypothesis generation discussed above is 

used to simulate the findings from both experiments. 

Critically, although many instantiations of a working 

memory buffer may predict the results from Experiment 1, 

the results from Experiment 2 provide support for our 

specific buffer instantiation, as borrowed from the context- 

activation model, underlying data acquisition in hypothesis 

generation tasks. 

The Influence of Data Acquisition Dynamics 

on Hypothesis Generation 

Experiment 1 

 

The generalized order effect paradigm was developed by 

Anderson (1973) to examine the differential weighting of 

descriptive attributes presented in impression formation 

tasks.  The procedure involved embedding a fixed list of 

information with a critical piece of information at various 

serial positions thereby allowing differences in the final 

rating to be uniquely attributable to the serial position of the 

critical data.  The present experiment represents an 
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adaptation of this paradigm to a simulated medical diagnosis 

task to assess the impact of specific data serial positions on 

hypothesis generation. 

Method  

Participants Seventy-two participants participated in this 

experiment for course credit. 

 

 

Design The design of Experiment 1 was a one-way 

between-subjects design with data order as the independent 

variable.  The ecology for this experiment as defined by the 

conditional probabilities between the hypotheses and data is 

shown in Table 1. Each of the values appearing in this table 

represents the probability that the symptom will be present 

(e.g., fever) given a particular hypothesis whereas the 

complementary probability represents the probability of the 

symptom absence.  As demonstrated in the table, the only 

diagnostic piece of data was D1 whereas the remaining 

cues, D2-D4, were non-diagnostic. 

 

Table 1: Disease (Hypothesis) x Symptom (Data) ecology 

of Experiment 1. 

 

Symptoms 

 
D1 D2 D3 D4 

Diseases 

H1: Metalytis 0.8 0.6 0.6 0.6 

H2: Zymosis 0.2 0.6 0.6 0.6 

H3: Gwaronia 0.2 0.6 0.6 0.6 

 

Table 2 displays the four data orders.  Each of these orders 

was identical (D2  D3  D4) except for the position of 

the D1 data within them. 

 

Table 2: Data presentation orders. 

 
→ Presentation Position → 

 
1 2 3 4 

Order 1 D1 D2 D3 D4 

Order 2 D2 D1 D3 D4 

Order 3 D2 D3 D1 D4 

Order 4 D2 D3 D4 D1 

 

Procedure The procedure was comprised of two stages. The 

first stage was an exemplar training task in which a series of 

hypothetical pre-diagnosed patients was presented to the 

participant in order for them to learn the contingencies 

between the hypotheses and data through repeated 

experience. Each of these patients was represented by a 

diagnosis at the top of the screen (H1, H2, or H3) and a 

series of test results (i.e., symptoms) pertaining to the 

columns of D1, D2, D3, and D4. Over the course of the 

training phase the specific test results precisely respected 

the disease-symptom contingencies appearing in Table 1. 

Following an arithmetic distraction task, the second stage 

of the procedure commenced. This was an elicitation phase 

in which we implemented our manipulation of data order 

and assessed hypothesis generation performance. The 

participants were then told that they were now going to see 

an individual patient’s symptoms and would then be asked 

to report the most likely diagnosis for the patient. The 

participant triggered the onset of the patient’s data stream at 

their readiness. Each datum of was presented individually 

for 1.5 seconds. The order in which the data were presented 

was determined by the order conditions as shown in Table 2.  

Following the presentation of the last datum the participant 

responded with the most likely disease. 

Results 

Empirical Nominal logistic regression was carried out on 

the generation data to examine the effect of data serial 

position on the generation of H1 (Metalytis), the disease 

with the greatest posterior probability given the data. There 

was a significant trend for H1 being reported as the most 

likely hypothesis as the serial position of the diagnostic data 

increased, χ
2
(1) = 4.32, p < 0.05. 

 

Computational To simulate Experiment 1, the model’s 

episodic memory was endowed with the Hypothesis-Data 

contingencies described in Table 1. On each trial each piece 

of data was presented to the buffer for 1500 iterations 

(mapping onto the presentation duration of 1500 ms) and 

the order of the data was manipulated to match the data 

orders used in the experiment.  1000 iterations of the entire 

simulation were run for each condition
2
.  The model data 

was supplemented with a constant guessing parameter of 

0.31 across all conditions. 

 
Figure 3: Human and Model results for Experiment 1 

plotting the probability of reporting H1 as most likely across 

order conditions.  Error bars represent standard errors.  

 

As is demonstrated in Figure 3, the model is able to capture 

the empirical data quite well. This effect is directly 

attributable to the weights from the buffer being applied to 

the generation process. 

                                                           
2 The parameters used for this simulation were the following. 

HyGene: L=0.85, Ac=0.075, Phi=4, KMAX=8 Buffer: Alpha=2.0, 

Beta=0.2, Lambda=0.98, Delta=1.0 
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Experiment 2 

Method 

Participants One hundred and twenty four participants 

participated in this experiment for course credit. 

 

Design The design of Experiment 2 was a one-way 

between-subjects design with the presentation rate of the 

data as the independent variable. The ecology for this 

experiment appears in Table 3.  The important aspect of this 

ecology is that the early data (D1 and D2) are diagnostic in 

favor of H1 whereas the later data (D4 and D5) favors H2. 

 

Table 3: Disease (Hypothesis) x Symptom (Data) ecology 

of Experiment 2. 

  D1 D2 D3 D4 D5 

H1:Metalytis 0.8 0.7 0.5 0.3 0.3 

H2:Zymosis 0.3 0.3 0.5 0.7 0.8 

 

Procedure The procedure of this experiment was very 

similar to that of Experiment 1. Participants learned the 

hypothesis-data contingencies in an exemplar training phase 

prior to elicitation. However, in between these two phases of 

the experiment there was a learning test to discriminate 

participants that had learned the contingencies well from 

those that did not learn the contingencies.  For this test the 

participants were provided with an individual piece of data 

and asked what the most likely hypothesis was.  Their total 

learning score was the amount of correct responses in this 

task
3
. 

   In the elicitation phase the participants were provided with 

the data in the order in which they appear in Table 3, that is, 

consecutively from D1 to D5. Directly following the last 

piece of data the participant entered the disease they thought 

was most likely given the patient’s symptoms. What varied 

between participants was the rate at which these data were 

presented.  Half of the participants were presented the data 

at a fast rate (144 ms each) while the other half were 

presented the data at a slow rate (1504 ms each).   

   As displayed in Figure 2, the context-activation model 

predicts the fast presentation rate to lead to the earlier data 

residing more strongly in working memory following D5 

whereas the model predicts the opposite for the slower 

presentation rate. Therefore we predicted that the fast 

presentation rate should lead to greater relative activations 

of early data thereby leading to greater generation of H1, 

whereas the opposite would be the case when the data are 

presented slowly leading to a preference for H2 and 

accordingly a lower rate of H1 relative to the fast condition. 

Results 

Empirical Although the rate of H1 selection was slightly 

higher in the fast presentation rate condition, this difference 

                                                           
3 Responses were counted automatically correct for responses to 

the D3 data as both hypotheses were equally likely. 

did not reach significance, z = 1.27, p = 0.102. A further 

analysis was performed within groups of high learning and 

low learning participants based on their performance in the 

learning test. Those scoring higher than 60% were counted 

as high learners and those scoring lower were counted as 

low learners. Conditional analyses within each learning 

group revealed a marginal effect of presentation rate for the 

low learners, z = 1.6, p = 0.054 and no effect for the high 

learners, z = 0.34, p = 0.367. This result reflects the fact that 

the trend witnessed in the overall data was, somewhat 

counter-intuitively, due to those that did not learn the 

contingencies in the task as fully. We explain this effect 

below with our model. 

 

Computational To simulate Experiment 2 the model was 

endowed with experience in the ecology displayed in Table 

3. The manipulation of presentation rate was implemented 

in the model by varying the number of iterations the model 

was presented each piece of data. For instance, in the fast 

condition each piece of data received bottom-up input for 

100 iterations whereas in the slow condition each piece of 

data received bottom up activation for 1500 iterations. 

     In line with the empirical result, however, we are not 

solely concerned with capturing differences in presentation 

rate, but we are additionally interested in capturing the 

difference that manifesting between the high and low 

learning groups. We posit this difference to be attributable 

to the role of working memory capacity (WMC). It is likely 

that high capacity participants were better able to learn the 

contingencies as each exemplar provided several bits of 

information for encoding. Furthermore, successful learning 

likely included some form of hypothesis testing carried out 

over successive exemplars which would be cognitively 

taxing, but beneficial to learning. Therefore we suggest that 

the high learning group possessed a greater proportion of 

high capacity participants. 

    In the present analysis, we ask if differences in a 

parameter governing the emergent capacity of the buffer 

could explain the presence of a presentation rate effect 

amongst low learners and its amelioration amongst high 

learners. As the beta parameter governs the strength of the 

global inhibition that is applied to each item this parameter 

can be used to impose capacity constraints (Davelaar, 2007). 

As beta is increased, competition between items is increased 

and fewer items will cohabitate the buffer. We manipulated 

beta at two levels to capture low learning/low capacity 

(beta= 0.1) and high learning/capacity (beta=0.05) and used 

presentation rates of 100 iterations (fast rate) and 1500 

iterations (slow rate)
4
. This resulted in averaged summed 

activations in the buffer of 2.22 in the slow rate and 2.33 in 

the fast rate under beta=0.05 and values of 1.96 in the slow 

rate and 1.74 in the fast rate under beta=0.1. Therefore, 

more activation was present in working memory on average 

when beta=0.05 relative to beta=0.1. This entire simulation 

was run for 700 model runs of each condition. 

                                                           
4 All other model parameters were the same as those used for 

Experiment 1. 
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Figure 5: Human and Model results for Experiment 2 

plotting the probability of generating H1 and H2 as most 

likely by presentation rate and learning/capacity groups.  

Error bars represent standard errors. 

   

    As demonstrated in Figure 5, the model is able to capture 

the patterns in the data occurring with differences in 

presentation rate and differences in learning between 

participants. 

Discussion   

We presented and tested an extension of the HyGene model. 

The model was endowed with a dynamic working memory 

buffer and adequately captured a recency bias in generation 

(Experiment 1).  In addition, the sensitivity of the dynamic 

buffer to presentation rate was shown to influence 

hypothesis generation (Experiment 2). Moreover, individual 

differences in learning or WMC interacted with the balance 

of incorporating primacy and recency items in the decision. 

Moreover, the ability of our model to capture the results 

from both experiments lends credence to our specific buffer 

implementation. 

    The present work demonstrates the utility of 

understanding working memory dynamics during data 

acquisition (cf. Mehlhorn et al., 2011) and suggests that the 

activations of individual pieces of data in working memory 

govern their individual contributions to the hypothesis 

generation process. The model presented here will be 

extended in future work such that the activations of 

hypotheses themselves will be subject to the competitive 

buffer dynamics demonstrated here. This model will address 

the hypothesis maintenance and updating components of 

temporally dynamics hypothesis generation and utilization 

following retrieval from long-term memory. 

Acknowledgments 

This research was supported by a grant from the US 

National Science Foundation (#SES-1024650) awarded to 

Rick Thomas, Nicholas Lange, and Eddy Davelaar. 

References 

Anderson, N. H. (1973). Serial position curves in 

impression formation. Journal of Experimental 

Psychology, 97(1), 8-12. 

Davelaar (2007). Sequential retrieval and inhibition of 

parallel (re)activated representations: A 

neurocomputational comparison of competitive cueing 

and resampling models. Adaptive Behavior (15)1, 51-71. 

Davelaar, E.  J., Goshen-Gottstein,Y, Ashkenazi, A.,  

Haarmann, H. J., & Usher, M. (2005). The demise of 

short term memory revisited: Empirical and 

computational investigations of recency effects. 

Psychological Review, 112(1), 3-42. 

Dougherty, M.R.P., Gettys, C. F., & Ogden, E. E. (1999). A   

    memory processes model for judgments of likelihood.    

    Psychological Review, 106(1), 180-209. 

Dougherty, M. R. P., & Hunter, J. E. (2003)a. Probability  

    judgment and subadditivity: The role of WMC and  

    constraining retrieval. Memory & Cognition, 31(6), 968-   

    982. 

Dougherty, M. R. P., & Hunter, J. E. (2003)b. Hypothesis  

generation, probability judgment, and working memory 

capacity. Acta Psychologica, 113(3), 263-282. 

Dougherty, M. R., Thomas, R. P., & Lange, N. (2010).  

Toward an integrative theory of hypothesis generation, 

probability judgment, and information search. In B. H. 

Ross (Ed.), The Psychology of Learning and Motivation 

(Vol. 52). San Diego: Elsevier. 

Hintzman, D. L. (1986). “Schema Abstraction” in a  

multiple-trace memory model. Psychological Review, 

93,411-428. 

Hintzman, D. L. (1988). Judgments of frequency and  

    recognition memory in a multiple-trace memory model.  

    Psychological Review, 95, 528-551. 

Mehlhorn, K., Taatgen, N. A., Lebiere, C., & Krems, J. F.  

(2011). Memory activation and the availability of 

explanations in sequential diagnostic reasoning. Journal 

of Experimental Psychology: Learning, Memory, and 

Cognition, 37(6), 1391-1411. 

Sprenger, A. & Dougherty M.R. (2011). Generating and  

   evaluating options for decision making: The impact of    

   sequential presented evidence. Journal of Experimental  

   Psychology: LMC doi: 10.1037/a0026036 

Sprenger, A. & Dougherty, M. R. (2006). Differences  

between probability and frequency judgments: The role of 

individual differences in working memory capacity. 

Organizational Behavior and Human Decision Processes, 

99(2), 202-211. 

Sprenger, A. M., Dougherty, M. R., Atkins, S. M., Franco- 

Watkins, A. M., Thomas, R. P., Lange, N., & Abbs, B. 

(2011). Implications of cognitive load for hypothesis 

generation and probability judgment. Frontiers in 

Psychology-Cognitive Science, 2, 1-15 

Thomas,R. P, Dougherty, M. R., Sprenger, A. M., &  

Harbison, J. I. (2008). Diagnostic hypothesis generation   

and human judgment. Psychological Review, 115(1), 155-

185. 

36


