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Abstract 

Cyber attacks cause major disruptions of online operations, 
and might lead to data and revenue loss. Thus, appropriately 
training security analysts, human decision makers who are in 
charge of protecting the infrastructure of a corporate network 
from cyber attacks, on different frequencies of cyber threats 
(base-rates) is indispensable to improving their on-job 
performance. However, little is currently known about how 
training analysts on different cyber attacks, that differ in the 
base-rate of cyber-threats, affects their on-job performance in 
a highly dynamic environment, while confronting novel 
transfer conditions. We report a laboratory experiment where 
human participants are trained on two different cyber-threat 
base-rates, high and low, and are transferred to an 
intermediate base-rate level of threats. The experiment helps 
us to develop an understanding of the situational attributes 
that participants attend to during their detection of cyber-
threats. A linear model that is based upon participants’ 
attended attributes and calibrated to the two base-rates during 
training does well to capture the performance during transfer. 
We use the calibrated model to generate predictions in novel 
real-world transfer conditions that contain a low cyber-threat 
base-rate and a shorter training period.   

Keywords: cyber-threat; linear model; security analyst; 
training; transfer; base-rate. 

Introduction 

Cyber attacks, i.e., the disruption of computers’ normal 

functioning and the loss of sensitive information in a 

network through malicious network events (cyber-threats), 

are becoming widespread. With “Anonymous” and other 

threats to corporate and national security, guarding against 

cyber attacks is becoming a significant part of IT 

governance, especially because most government agencies 

and private companies have moved to online systems 

(Sideman, 2011). Recently, President Barack Obama 

declared that the “cyber-threat is one of the most serious 

economic and national security challenges we face as a 

nation” (2011). According to his office, the nation’s cyber-

security strategy is twofold: (1) to improve our resilience to 

cyber incidents; and (2) to reduce the cyber-threat. To meet 

these goals, the role of a security analyst (called the 

“analyst” hereafter), a human decision maker who is in 

charge of protecting the online infrastructure of a corporate 

network from random or organized cyber attacks, is 

indispensable (Jajodia, Liu, Swarup, & Wang, 2010). 

Given that the threat of cyber attacks is growing, there is 

an urgent need to emphasize training programs for analysts 

that will acquaint them with different kinds of attacks. For 

example, the U.S. Department of Homeland Security (DHS) 

has recently started offering a weeklong training program to 

help analysts learn how to deal with intrusions into their 

computer networks (Zakaria, 2011). In this training 

program, the DHS uses a scenario that contains industrial 

espionage: a fictitious company ACME has built a new 

chemical product and another company Barney Advanced 

Domestic (BAD) Chemicals tries to steal its “secret sauce” 

and disrupt operations to put ACME out of business 

(Zakaria, 2011).  

Although training programs like the one by DHS are an 

important step towards improving cyber-threat detection, 

there is little literature on how training analysts on different 

kinds of cyber attacks will influence their on-job 

performance (Dutt, Ahn, & Gonzalez, 2011). One aspect of 

analyst training is base-rate: In the real world, cyber threats 

are likely to occur with a low base-rate and given this rare 

occurrence, analysts might underweight them by relying on 

their personal experience (Hertwig & Erev, 2009). Another 

aspect of analysts’ training is length. Lengthy training is 

likely to benefit analysts, but also becomes costly in 

resources and time (Kanellis, 2006). In this regard, little is 

known about how the training period might influence 

analysts’ performance. The current documentation about 

analysts' decisions is sensitive information that is classified, 

as it could be exploited by attackers (D’Amico et al., 2005). 

Thus, in the absence of real human data, literature has 

proposed a simulation approach towards evaluating the 

effects of training manipulations on performance at transfer 

(Dutt, Ahn, & Gonzalez, 2011). For example, Dutt, Ahn, 

and Gonzalez (2011) have proposed a computational model 

based upon the Instance-Based Learning Theory (IBLT; 

and, “IBL model” hereafter; Gonzalez & Dutt, 2011), to 

generate predictions about the effects of training simulated 

analysts with different base-rates on their transfer 

performance. They pre-populated the model’s memory with 

experiences of a threat-prone base-rate (90% threats and 

10% non-threats) and a nonthreat-prone base-rate (10% 

threats and 90% non-threats). 
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Figure 1: A typical trial showing events’ description and 

accompanying alert information. Participants marked an event as a 

threat by checking the “Is threat” box against the event’s description. 

The model with a 

threat-prone memory 

possessed a greater 

hit rate and a smaller 

false-alarm rate (i.e., 

greater accuracy) 

compared with the model 

with a nonthreat-prone memory. These results have been 

replicated by Dutt and Gonzalez (in press). Thus, when 

human analysts are exposed to higher base-rates during their 

training, they are more likely to perform better at transfer. 

However, these model predictions are limited by the lack of 

empirical validity from real human observations.   

In this paper, we build upon existing literature and report 

a laboratory experiment that aims to empirically evaluate 

analysts’ cyber-threat detection accuracy when they are 

trained on different base-rates before transferring to novel 

conditions. Furthermore, we evaluate the attributes to which 

participants attend during their training with self-reported 

strategies. Using this information, we propose a linear 

model that classifies cyber events as threats and non-threats. 

The proposed model fits the existing data well. Finally, we 

use this model to generate predictions in novel real-world 

transfer conditions that contain a low cyber-threat base-rate 

and a shorter training period. The low base-rate is likely to 

be representative of situations encountered in the real world, 

where cyber-threats rarely occur in a certain period of time 

(Jajodia et al., 2010). Shorter training periods might be 

plausible, given the resource and time costs imposed by 

lengthy training sessions.   

Experiment: Effects of Cyber-Threat Base-

rates on Threat Detection Performance 

We report an experiment where we train participants in two 

different conditions, high and low, that differ in the 

proportion of cyber-threats present during training. We 

evaluate the effects of their training with base-rates on their 

transfer performance. Our main motivation is to find the 

attributes to which participants attend most. According to 

prediction from the IBL model proposed by Dutt, Ahn, and 

Gonzalez (2011), we expect better performance (i.e., greater 

hit rates and smaller false-alarm rates) from participants 

who are trained in conditions involving higher base-rates. 

That is because higher base-rates provide participants with 

more frequent opportunities to formalize and test different 

hypotheses regarding what defines a threat.  

The experiment involved two between-subjects 

conditions, low (N=20) and high (N=18), that differed in the 

proportion of cyber-threats presented in a trial. Both 

conditions contained 10 training trials followed immediately 

by a transfer trial. Each trial contained 25 network events 

that were presented to participants sequentially one at a 

time. An event included a description and might be 

accompanied with an alert. The alerts were generated by an 

intrusion detection system (IDS) that might indicate whether 

these events were threats or not. The IDS systems generated 

both false-positives and false-negatives. Figure 1 shows a 

snapshot of a trial 

with 5 events 

(some with alerts 

and some without). 

The participants’ 

main goal in the 

task was to 

correctly classify each event as a threat or a non-threat by 

checking or unchecking the corresponding “Is threat” box 

for each event. A new event appeared in the window after 

every four seconds. Participants could go back and 

check/uncheck any previously presented event during the 

duration of the trial, but not after a trial had ended. 

During training in the low base-rate condition, 12% of 

events (=3) were actual threats in each training trial. For the 

high base-rate condition, 52% of events (=13) were threats 

in each training trials. A threat was defined as any event that 

by its description was: (1) initiated by a user outside the 

company; and (2) against which there was an alert 

generated. However, participants were not told this 

definition and they were expected to discover it with 

practice. In both conditions, a single transfer trial was 

presented and 32% of events were threats (=8). Thus, the 

base-rate in the transfer trial was in between the low and 

high conditions (participants were not told about any base-

rates). Participants’ performance was evaluated in terms of 

hit and false-alarm rates at the end of each trial. 

Instructions informed participants about how they would 

be paid based upon their performance. After participants 

read the instructions, they started the experiment with the 

first training trial. At the end of each training trial, they were 

asked to write down the strategy that guided their events’ 

classification. After participants submitted their written 

explanations, they were informed of the number of hits, 

misses, false-alarms, and correct-rejections they made in the 

last trial; along with their current and total earnings based 

upon performance. However, they were not shown which 

exact events in the last trial were actual threats and non-

threats. Participants were compensated with $5 as base 

payment. In addition, participants earned 1 cent for each 

threat and non-threat correctly classified and lost 1 cent for 

each threat and non-threat incorrectly classified during 

training. During transfer, participants earned 3 cents for 

each threat and non-threat correctly classified and lost 3 

cents for each threat and non-threat incorrectly classified. 

After participants had completed their experiment, they 

were paid and thanked for their time. 

Results 

We expected superior performance (i.e., a greater hit-rate 

and a smaller false-alarm rate) in the high condition 

compared with the low condition. Figure 2 shows the 

aggregated hit and false-alarm 
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Figure 2: The human hit rate and false-alarm rate in the low 

and high conditions during training and transfer. 

 

rates in both conditions during training and at transfer. As 

can be seen in Figure 2, during training, the average hit rate 

in the high condition (83%) was significantly greater than 

that in the low condition (47%), t(36) = -3.89, p < .001. The 

same relationship existed for the hit rate at transfer between 

the low condition (37%) and the high condition (81%), t(36) 

= -4.95, p < .001. Although false-alarm rates generally 

appeared to be greater in the low condition compared with 

the high condition, these differences were insignificant, both 

during training (t(36) = 1.74, ns) and at transfer (t(36) = -

1.23, ns). Overall, these results are in agreement with our 

expectation of superior performance in the high condition. 

Attention to Situational Attributes 

In order to gain deeper understanding of the overall 

performance in the detection task, we analyzed the 

explanations that participants provided about their 

classifications at the end of each trial. Although there was 

diversity present in their explanations across trials, five 

main categories emerged in each condition for which a 

majority of explanations could be categorized into (45% and 

35% in the low and high conditions). Table 1 provides a 

description of these categories with statistical differences 

between the two conditions. We believe participants' 

explanations under different categories were based upon the 

descriptions of events and corresponding alerts that were 

presented to them during training and transfer trials (see 

Figure 1 for the format of presentation). Four out of the five 

categories, “word malicious (present/absent),” “fileserver 

(attacked/not attacked),” “operation 

(successful/unsuccessful),” and “user (inside/outside),” 

overlapped between the two conditions. Two categories, 

“alerts (present/absent)” and “files (manipulated/not-

manipulated),” were uncommon across conditions. For the 

overlapping categories, the proportions of usage were 

somewhat different for the two conditions. However, a 

significant difference was found only for the “word 

malicious” category, its proportions were greater in the low 

condition compared with the high condition. As the “word 

malicious” category did not always classify threats correctly 

in this experiment, the difference in attention between the 

two conditions might partly explain participants’ superior 

performance in the high condition. 

As seen in Table 1, the two leading categories of rules 

that participants used in the low condition were user 

location and the presence of the word malicious. Similarly, 

in the high condition, the two categories that participants 

attended to most were user location and the presence of an 

alert. The user location and alerts represent categories that 

could correctly classify an event in this task. In the high 

condition, participants paid attention to both of these 

categories among the top five; in the low condition, 

however, they only paid attention to the user category and 

ignored the alerts category. This difference in attention 

likely accounts for the superior performance in the high 

condition. 

A Linear Model: Validating Attention to 

Situational Attributes 

The literature on heuristics and biases shows that linear 

models have been highly successful in explaining human 

behavior and leads to approximate correct responses that are 

more accurate than even expert judgments (Dawes, 1979; 

Goldberg, 1970). For example, when Dawes and Corrigan 

(1974) applied different linear models to five different 

datasets to predict a criterion, an equal weighting linear 

model (the simplest assumption of linearity) outperformed 

all other competing models. If the categories and weights 

(i.e., the relative proportion) reported in Table 1 are 

representative of our behavioral findings, then they should 

produce a close fit to the hit and false-alarm rates observed 

in human data when these categories are simulated in a 

linear model. To explore this idea further, we developed a 

stochastic linear model consisting of derived categories and 

attention weights. 

Stochastic Linear Model 

We represent the binary decision process of classifying 

events as threats and non-threats in a trial according to the 

following rule: 

 

If the model's Outcome > threshold, then classify the event 

as threat; otherwise, classify the event as a non-threat. (1) 

 

The threshold is a free parameter that is calibrated in the 

model. The Outcome is defined according to a linear model: 
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Table 1: The top five attention categories and their descriptions in the low and high conditions. 

Note: The r is the effect size. 

 

For the low condition: Outcome = 0.23 * Word malicious + 

0.15 * Fileserver + 0.11 * Operation + 0.34 * User + 0.17 * 

Files 

 

 

 

 

For the high condition: Outcome = 0.08 * Word malicious + 

0.08 * Fileserver + 0.11 * Operation + 0.53 * User + 0.20 * 

Alerts      (2) 

 

Where the “Word malicious,” “Fileserver,” “Operation,” 

“User,” “Files,” and “Alerts” are dummy variables (taking a 

values of 0 or 1) corresponding to the five categories in 

Table 1. The weights (i.e., coefficients) that multiply the 

dummy variables are the relative proportions of the 

respective categories reported in Table 1. The model is 

“stochastic” because the exact value of a dummy variable (0 

or 1) for each event in a trial depends upon comparing U(0, 

1) with the dummy variable’s attention probability 

parameter. The rule for paying attention to a dummy 

variable in the model is the following: 

 

If the category is applicable (i.e., present in the event's a 

description) to the network event and U(0, 1) ≤ dummy 

variable’s attention probability, then the dummy variable 

equals 1; otherwise, the dummy variable equals 0  (3) 

 

Each dummy variable’s attention probability is a free 

parameter that is calibrated in the model. This parameter 

represents whether a model participant pays attention to a 

category when it is present in the event’s description or in 

the accompanying alert. Furthermore, if the category is 

attended to, then the Outcome takes a weighted contribution 

of the category into the binary decision. Also, more than one 

category could be attended to 

(dummy variable = 1) for an 

encountered event. Therefore, the 

model captures the property that human 

participants might stochastically pay 

attention to multiple categories for an 

encountered event. 

Parameter Calibration 

The model’s free parameters, i.e., each 

dummy variable’s attention probability 

and threshold, were calibrated to 

human data in the low and high 

conditions, separately. Calibrating the 

model to human data means running it 

in the same training conditions 

experienced by human participants to 

find the parameters values which 

minimize the sum of mean squared 

deviations (Sum of MSDs) between the 

model’s hit and false-alarm rates and 

human hit and false-alarm rates, 

respectively. The smaller the sum of 

MSDs, the better the model’s ability to 

capture human behavior is. The model 

was calibrated separately to training trials in the low and 

high conditions using a genetic algorithm program. To 

calibrate the model, we varied the threshold and attention 

probability parameters between 0.0 and 1.0 (their minimum 

and maximum values). The model was run using the same 

number of simulated participants as the number of human 

participants that participated in the two conditions.  

Table 2 presents a summary of the calibrated parameters 

and the models’ performance (MSD) in the two conditions. 

The model performed reasonably well to capture the hit and 

false-alarm rates in both conditions; however, it was slightly 

better in capturing the false-alarm rate than the hit rate. The 

calibrated value of the threshold parameter was found to be 

similar in both conditions (close to 30%). Moreover, based 

upon the attention probability parameters, the model 

seemed to frequently attend to the correct categories, “user” 

and “alerts,” in the high condition to make decisions. In fact, 

the model’s attention to the user category was greater in the 

high condition (.76) than in the low condition (.50). Figure 3 

shows the model fits to human data in both conditions for 

training and transfer. 

The MSDs between the model and human hit rates at 

transfer in the low and high conditions were 0.0003 and 

0.0002, respectively. Similarly, the MSDs between the 

model and human false-alarm rates at transfer in the low and 

high conditions were 0.0001 and 0.0052, respectively. These 

MSDs are very small and therefore the model provides a 

good approximation to the human transfer performance. 
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Table 2: Summary of calibration of the linear model during training. 

Figure 3: The model and human hit rate and false-alarm rate in the 

low and high conditions during training and transfer. 

Table 3: Summary of half calibration length of the linear model 

during training. 

Predictions in Novel Transfer Conditions 

Typically, one could think of cyber-threats  as rare events in 

the real world (Jajodia et al., 2010). If these threats occur 

rarely at transfer, then participants trained in the low 

condition might benefit more from their training. That is 

because, the experiences gained in the low base-rate training 

condition are likely to be more suited to the rare transfer 

condition compared with those gained in the high condition. 

One way to test this expectation is by creating a rarer 

transfer trial (i.e., whose base-rate is less than that in the low 

condition’s training trials and that in the original transfer 

trial). One such rare transfer trial could have a threat base-

rate of 4% (i.e., only 1 event out of 25 events is an actual 

threat in the trial).  

In the transfer trial of our experiment, 

the human hit rate in the high condition 

was 81% while it was 37% in the low 

condition (i.e., a gap of 44%; see Figure 

2). In the transfer trial, the human false-

alarm rate in the high condition was 8% 

while it was 4% in the low condition (i.e., 

a gap of 4%). Thus, we expect the 

accuracy to be greater in the high 

condition than in the low condition; 

however, based upon the discussion above, 

it is also possible that people trained in the 

low condition will perform better in the 

rare transfer trial (with a 4% threat base-

rate). Therefore, we expect the model’s hit rate predictions 

in the low condition to increase and in the high condition to 

decrease at transfer, closing the overall gap. However, for 

the same rare transfer trial, we expect the model’s false-

alarm rate predictions in the low condition to decrease and 

in the high condition to increase at transfer, widening the 

overall gap.  

Predictions generated from our calibrated model were in 

agreement with these expectations. The model’s 

performance in the rare transfer trial showed a hit rate in the 

high and low conditions to be 76% and 46%, respectively. 

Therefore, its overall performance in terms of hit rate was 

superior in the high condition compared with the low 

condition; however, the gap between the hit rates in the two 

conditions was reduced to 29%. Similarly, the model’s 

performance showed a false-alarm rate in the high and low 

conditions of the rare transfer trial to be 16% and 4%, 

respectively (i.e., an increased gap of 11% as expected). 

Overall, the gap between hit and false-alarm rates in the low 

and high conditions moved in the direction as expected 

above.  

Another aspect to consider is the length of analysts’ 

training sessions. In the real world, lengthy training might 

become costly because of resources and time (Kanellis, 

2006). In such situations, one method to save costs is to 

reduce the training length and evaluate cyber-threat 

detection accuracy at transfer. Here, we derive predictions 
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from the linear model in a situation where the training in 

both the low and high conditions is reduced by halving its 

original length (i.e., only first 5 trials long), and the model is 

then transferred to the rare transfer trial with a 4% base-rate. 

Table 3 provides the summary of the calibrated parameters 

and the MSDs to the halved training length.  

Again in the high condition, the free parameters have 

greater values in the “user” and “alert” categories compared 

to those in the low condition. Furthermore, the MSDs in 

Table 3 are slightly higher compared with those reported for 

full-length training in Table 2. At transfer, the calibrated 

model’s hit and false-alarm rates were 67% and 29% in the 

high condition, respectively; whereas,  these rates were 37% 

and 14% in the low condition, respectively. When these 

proportions are compared with those reported above for the 

rare transfer trial with full-length training, we find a drop in 

hit rate as well as an increase in false-alarm rate in both 

conditions. Thus, our model predictions suggest that 

reducing training conditions by half their original length is 

likely to save time and costs, but also likely to decrease the 

analysts’ detection accuracy at transfer.  

 

Discussion 

In this paper, we evaluated the effects of training security 

analysts in conditions with different threat base-rates (low 

and high) and transferring them to novel conditions (that 

were either in-between those encountered during training or 

possessing a very low base-rate). We found that their 

transfer performance is superior when their training 

environments provide them with lengthy training and higher 

threat base-rates. That is likely because higher base-rates 

allow participants to form improved hypotheses about 

threats that they could test during their training and transfer 

performance (Dutt & Gonzalez, in press). This reasoning is 

clearly reflected in the greater proportions of calibrated 

attention probability for the “user” and “alert” attributes 

(i.e., the attributes that reveal the ground truth) in the high 

condition compared with in the low condition. 

Our results suggest that any training interventions for 

analysts should pay close attention to how the base-rate of 

threats compare to their actual work conditions. Also, the 

length of training (e.g., weeklong or half a week) is likely to 

influence analysts’ learning and performance at transfer. 

Thus, the training length is likely to affect their performance 

in actual work conditions. Generally, it would be advisable 

to keep the training extended in length, as well as train 

analysts on scenarios that makes them experience a high 

threat base-rate. In fact, the linear model could be used to 

derive the optimal length of training session for a desired 

level of accuracy. Although we can only speculate, but our 

results are also likely to be valid for other emergency 

situations like training miners for a low-probability mine 

emergency, or training air-traffic controllers for low 

probability air accidents.  

In this paper, we contribute to the growing literature on 

cyber security by evaluating the benefits and costs of 

training analysts in scenarios that differ in threat base-rates. 

Although base-rates were different, other aspects of the 

scenario (i.e., the sequence of attack, computers 

compromised, etc.) were identical. Thus, future research is 

likely to benefit from our results by manipulating other 

aspects of attack scenarios and evaluating the influence on 

training and transfer interventions. Also, as the linear model 

might be more mathematical than cognitive in its 

formulation, future research is also likely to benefit by 

comparing how other cognitive models, which use memory 

and activation (including some data-mining algorithms), 

perform compared to the linear model. Finally, we also 

contribute a method of going from an experiment about 

detecting cyber threats to developing a cognitive model 

based upon participants’ self-reported strategies. This 

“model discovery” approach that uses human data to 

construct cognitive models might provide useful insights for 

alternative modeling approaches to model development.  
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