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Problem Description
Motivated by object representation in psychology, we present
a binary feature classifier for the purpose of semantic concept
category identification/classification by incorporating feature
distribution. We propose the classification algorithm based on
the variant of l1 norm regularized sparse classifiers, where the
features are weighted according to their distribution, which is
estimated by “maximum collocation”. This method achieves
high accuracy in identifying semantic concepts, outperform-
ing standard benchmark methods on a large database of ani-
mal and artifact features.

Suppose your friend tells you they are thinking of a par-
ticular mammal animal, asks you what type it is, and starts
listing its features: it has a tail, has four legs, can’t swim,
and so on. You are now faced with a category identification
problem, which requires you to infer the most likely cate-
gory of an instance given knowledge of some of its features
(Kemp, Chang, & Lombardi, 2010). Category identification
offers an interesting window onto the structure of mental rep-
resentations, since it involves the relationship between cat-
egories and features, and so requires the representation of
both what makes instances different, and what makes them
the same. One of the main shortcomings of existing clas-
sification work is that feature importance has not been well
investigated (Zhang, Yu, Lee, & Xin, 2011). Features are
often preselected from the beginning which actually do not
equally or positively contribute to the performance of classi-
fication. However, not all of the features will be important to
an object’s representation. Thus, weighting features without
adversely affecting the performance is an important task for
classification.

Feature Distribution and Weighting
We propose to weight the features such that categories can
be differentiated more efficiently according to the binary fea-
ture’s distribution1. This is motivated by stimuli represen-
tation in psychology (Jones, 1983) since it was studied that
people identify the semantic concepts by choosing features in
a systematic way. One task is to choose important features by
how useful they are in distinguishing categories. For exam-
ple, in mammal domain, feature “is pregnant” is less impor-
tant than “has long neck”. This empirical motivation becomes
the principle for feature importance measure.

Maximum collocation is described here for measuring the
feature importance based on two heuristics (Zeigenfuse &

1Feature value is “yes” or “no”

Table 1: Representative features illustrating behavior of the
usefulness measures. Black dot means that the instance has
the corresponding feature.

C 1 C 2 C 3 Cue Cat. Colloc.
f 1 • • • 1 1 1
f 2 • • • • 3/4 1 3/4
f 3 • • 1 2/3 2/3
f 4 • 1 1/3 1/3
f 5 • • • • • • • 3/7 1 3/7
f 6 • • • • • • 1/2 1 1/2

Lee, 2010). The first of these is maximum cue validity, de-
fined as the maximum over categories c j ( j = 1,2, ...,nc

2) of
cue validity, the probability an instance belongs to c j given
that it has a feature f , p(c j| f ). We also look at maximum
category validity, defined similarly as the maximum over cat-
egories c j of the category validity, the probability an instance
has a feature f given that it belongs to c j, p( f |c j). Finally, the
maximum collocation is the maximum over categories c j of
the collocation, the product of a feature’s cue and category va-
lidities, p(c j| f )p( f |c j). Maximum collocation is a measure
of how simultaneous concentrated in and diffuse across a cat-
egory a feature is. Features with high maximum collocation
are associated with most instances within a category and few
outside it, as illustrated by Feature 1 in Table 1. Alternatively,
Features 4 and 6 show why it is necessary for both of these to
be true. Those features associated with only a small fraction
of instances within a single category will have high maximum
cue validity but low maximum category validity (Feature 4).
Those features possessed by most instances in more than one
category will have high maximum category validity but low
maximum cue validity (Feature 6).

Collocation Weighted Classifiers
The motivation for using sparse representation (SR) for cate-
gory identification is that SR adaptively selects the relevant
support data points from the training data, allowing us to
identify the semantic concept using a few relevant examples
from the training dataset, and alleviating adverse effects of
instances variability in the training dataset. Mathematically,
in a typical SR formulation, a dictionary D is constructed as
D = [d1,d2, ...,dn], where each di ∈ Rm is a feature vector of
ith instance. To represent a test instance in terms of its fea-
ture vector y, SR solves the equation y = Dθ, where a reg-
ularization is enforced on θ, such that only a small number

2nc is the number of categories.
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of instances from the dictionary D are selected to describe y.
Sparsity regularization helps the representation to rule out ir-
relevant instances and be insensitive to within-category vari-
ability in the dictionary. The test instance is assigned to the
category with the smallest residual in representing y as a lin-
ear combination using all instances from that category.

With the feature importance measure, features are
weighted by maximum collocation. Denote Ucol as the diago-
nal matrix with ucol( f ) as the diagonal entries, where ucol( f )
is the maximum collocation for feature f . The weighted
dictionary and test instance become UcolD and Ucoly respec-
tively. We developed three SR variants for the classification.
Then, as a result, all the features contribute unequally in the
sparse representation. The conventional SR optimization is
given by

θ
∗ = argmin

θ

1
2
||Ucoly−UcolDθ||22 +µ||θ||1, (1)

where µ is the trade-off parameter.
Due to the non-negativity of the features, the above l1 reg-

ularized unconstrained convex optimization (1) becomes a
non-negative penalized l1 regularized constrained convex op-
timization (2) as below. The non-negative weights in θ indi-
cate the importance of an instance with the natural interpreta-
tion that this constraint forces representations that include on
instances that provide evidence for a category identification
decision.

θ
∗ = argmin

θ

1
2
||Ucoly−UcolDθ||22 +µ||θ||1 s.t. θ≥ 0

Eventually, since we expect sparse representation errors,
for which l1 norm regularization seems to be more appropri-
ate. The optimization (1) is re-formulated as

θ
∗ = argmin

θ
||e||1 +µ||θ||1 s.t. Ucoly =UcolDθ+ e. (2)

Dataset and Evaluations
Our data come from the Leuven Natural Concept Database
(DeDeyne, et al, 2008), involving 295 words (i.e. categories),
distributed over 11 semantic domains: five animal domains
(30 mammals categories, 30 birds categories, 23 fish cate-
gories, 26 insects categories, and 20 amphibians&reptiles cat-
egories) with 764 animal features, and six artifact domains
(31 kitchen utensils categories, 30 clothing categories, 27
musical instruments categories, 29 vehicles categories, 19
weapons categories and 30 tools categories) with 1295 ar-
tifact features. Features used to describe those words in-
clude perceptual, functional characteristics and any other
background information that applies. Most importantly for
our modeling, the words (i.e. semantic concept categories)
and features were combined in a feature verification task, in
which four participants judged whether or not each of the fea-
tures belonged to each of the words. In the experimental eval-
uations, we split the data into training and test sets for a 4-fold

cross-validation. In each validation, we train the classifier us-
ing data from three participants and test on the participant that
is left out, i.e. a leave-one-out cross-validation. We use the
set of features a participant assigned to a word — “can fly”,
“is small”, and so on — as the input to a category identifi-
cation problem, for which the task is to identify the category
associated with that list of features.

The identification accuracy for the proposed variants of
weighted sparse representation methods achieves 84 per-
cent in average, outperforming typical classification methods,
such as k nearest neighbor, logistic regression and decision
tree. To examine the performance variation of the proposed
feature collocation based classifiers on different categories
and domains, we compute an overall rank of average resid-
ual for each category, shown in Fig. 1 as an example. Large
magnitudes suggest ambiguities in semantic category identi-
fication.The identification errors for mammals is very small,
but large for amphibians&reptiles domain. We believe the
proposed approach constitutes a useful starting point for un-
derstanding how people do semantic concept category induc-
tion.
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Figure 1: Performance variation for semantic concepts in an-
imal domains.
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