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Abstract

The ability to re-represent information—i.e., to see things in
new ways—is essential for human reasoning, creativity, and
learning. It forms the foundation of insight problem solving
and scientific explanation, and is hypothesized to play a pivotal
role in concept development in children. Re-representation is
useful because it allows a cognizer to make sense of things
in ways that were previously impossible. Yet, invoking this
operation can quickly become computationally intractable in
light of the combinatorial explosion of re-representation op-
tions to consider. Although this intractability may explain
why discovering useful ways of re-representing information
can be cognitively challenging at times (as in insight puz-
zles and creativity), it seems difficult to reconcile with au-
tomatic and apparently effortless forms of re-representation
(as in everyday analogizing and children’s development of
concepts). To get more insight into the conditions that can
make re-representation tractable, we performed computational
complexity analyses of a formal model of re-representation
as invoked in analogy derivation. We will discuss how
our complexity results can help explain when and why re-
representation can be invoked effectively and efficiently.
Keywords: Re-representation; Analogy; Structure Mapping;
Computational Complexity; Fixed-Parameter Tractability

Introduction
Many theories of cognitive abilities operate on mental repre-
sentations of information, each of which assumes a particular
encoding of relevant situations and concepts. As there are
typically many possible encodings, one’s initial representa-
tion may in fact be inappropriate for the task at hand, slowing
down or even stopping the ability from functioning. In such
cases, it is hypothesized that humans change encodings and
re-represent stored information.

Re-representation has been invoked in many cognitive the-
ories. It allows natural analogies that rely on semantic rather
than syntactic matching (e.g., “Bob running into the cave”
is like “Alice walking into a room” ⇒ “Bob moves into the
cave” is like “Alice moves into the room” (Gentner & Kurtz,
2006)). The powerful abstractions generated by such re-
representation in turn have been hypothesized to underlie cer-
tain types of concept development in children (e.g., the emer-
gence of abstract relations and attributes: “X is hotter than Y”
⇒ “temperature(X) is greater than temperature(Y)” (Gentner,
Rattermann, Markman, & Kotovosky, 1995)). More radi-
cal types of re-representation can in turn lead to totally new
ways of envisioning particular situations and concepts, and
thus have been invoked in theories of insight problem solving
(Ohlsson, 1992), scientific discovery (Gentner et al., 1997),
and creativity (Welling, 2007).

Investigating re-representation experimentally is difficult,
but there is increasing evidence for its psychological reality
(Gentner & Kurtz, 2006; Kurtz, 2006). This has motivated the
development of computational theories of re-representation
(e.g., Ohlsson (1992); Yan, Forbus, and Gentner (2003);
Krumnack, Gust, Kühnberger, and Schwering (2008)), which
has raised the following conundrum: The combinatorial ex-
plosion of re-representation options that must be considered
in such theories seems to be computational intractable. This
intractability may explain why certain cognitive activities in-
voking re-representation like insight problem solving and cre-
ativity are challenging, but is at odds with how other forms of
re-representation invoked in everyday reasoning or cognitive
development seem so effortless and automatic.

In this paper, we assess the computational difficulty of a ba-
sic type of re-representation, namely individual predicate re-
representation within Gentner’s Structure Mapping Theory of
analogy derivation (SMT) (Gentner, 1983; Yan et al., 2003).
We give the first proof that such re-representation is compu-
tationally intractable, even when invoked in the context of
incremental rather than general analogy derivation. This find-
ing indicates that constraints on both the re-representation
process and its inputs must be exploited to yield tractability.
In the second part of this paper we illustrate a methodology
suitable for identifying such constraints. We also discuss how
our results can help explain when and why re-representation
can be invoked effectively and efficiently.

Computational-level Models
Analogies are defined over concepts, which are repre-
sented in SMT by predicate-structures composed of enti-
ties (e.g., SUN, PLANET) and predicates relating those en-
tities (as well as other predicates) (e.g., ATTRACTS(SUN,
PLANET)). Predicate-structures are naturally represented as
vertex-labelled directed acyclic graphs in which entities are
leaves, predicates are internal vertices, and predicates are
linked to their arguments by arcs (see part (a) of Figure 1).

An analogy “T is (like) a B”, where B and T are predicate-
structures, is a mapping from a portion of B to a portion of T
that satisfies the following three conditions:

1. The mapping is structurally consistent, i.e., match-
ing relations must have matching arguments and any
element in one predicate-structure matches at most
one element in the other.
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Figure 1: Analogy Derivation in Structure-Mapping Theory.
(a) Two graph representations of predicate structures encod-
ing descriptions of the solar system (left) and the Rutherford
model of the atom (right). (b) An optimal analogy between
the structures in (a), where dotted arrows indicate the map-
pings between corresponding pairs of predicates and objects.

2. Relational focus: The mapping must involve com-
mon predicates but need not involve common objects,
i.e., matched predicates must have the same type, ar-
gument, number and order but matched objects need
not have the same name.

3. Systematicity: The mapping tends to match inter-
connected, deeply-nested predicate-substructures.

Let val(A) be the systematicity of an analogy A. The most
systematic analogy between a pair of predicate-structures is
an optimal analogy (see part (b) of Figure 1).

Under SMT, re-representation of predicates is only invoked
to better the analogical match between two given predicate-
structures. As such, it relaxes identical-only predicate-type
matches (e.g., ATTRACTS → ATTRACTS) to allow selected
non-identical matches (e.g., WALK→MOVE). There are two
classes of mechanisms for performing re-representations:

1. Rule-guided (part (a) of Figure 2): A predicate of type
x can be re-represented as a predicate of type y if there
is a rule x → y. Collections of rules can be encoded
as predicate-type similarity tables (represented explicitly
(Holyoak & Thagard, 1989) or generated implicitly by
predicate decomposition (Gentner et al., 1995)) or gen-
eralization lattices (in which the most specific predicate-
types are at the bottom of the lattice and the most abstract
predicate-types are at the top) (Winston, 1980).

2. Context-guided (part (b) of Figure 2): A predicate p of
type x can be re-represented as a predicate of type y if p
appears in a structural context immediately “outside” an

(a)

(b)

Figure 2: Re-Representation Mechanisms in Structure-
Mapping Theory. (a) Rule-guided. (b) Context-guided.
Analogically-matched regions are enclosed by dashed boxes.

existing analogy between two predicate-structures which,
if p’s type is changed, will allow an incremental addition
to that analogy which increases its systematicity. The most
basic type of context is a “hole”, in which a pair of pred-
icates in B and T have different types but both their argu-
ments and parents have the same types and can be matched.

Analogy derivation alternates with such re-representation un-
til a satisfactory analogy is reached. In any one round of re-
representations, it is assumed that each predicate in the given
predicate-structures can change at most once. Though we
focus here on single-predicate re-representation, more com-
plex re-representations involving larger changes in structure
are also possible (Yan et al., 2003).

Acting on all available re-representation opportunities can
both be computationally expensive and potentially result in
analogies that are meaningless or misleading, e.g., “ana-
logical hallucinations” (Gentner & Kurtz, 2006, Page 616).
There are many possible strategies for selecting which re-
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representations to perform. Two general principles underlie
all such strategies (Yan et al., 2003, Page 1269):

1. Systematicity: All else being equal, re-representation
suggestions that lead to increases in the systematicity
of the derived analogy will be preferred.

2. High Selectivity: The selection process should be
tightly controlled, so that very few of the possible op-
portunities are selected for consideration.

The above considerations yield the following
computational-level models of representation under SMT.
All three models assume that re-representation is done to
improve on a given optimal analogy. The first of these
models is general, in that it does not require that the created
analogy be an extension of the given analogy.

ANALOGY DERIVATION WITH RE-REPRESENTATION
(ADR)

Input: Predicate-structures B and T , an optimal analogy
A(B,T ), a rule-set R, and integers k and c.
Output: Predicate-structures B′ and T ′ and an analogy
A′(B′,T ′) such that (i) B′ and T ′ are derivable from B
and T by at most k applications of rules from R and (ii)
val(A′)− val(A)≥ c.

The second and third models are restrictions of the first, as
they are required to extend the given analogy.

ANALOGY IMPROVEMENT WITH RULE-GUIDED
RE-REPRESENTATION (AIR[R])

Input: Predicate-structures B and T , an optimal analogy
A(B,T ), a rule-set R, and integers k and c.
Output: Predicate-structures B′ and T ′ and an analogy
A′(B′,T ′) such that (i) A⊂A′, (ii) B′ and T ′ are derivable
from B and T by at most k applications of rules from R,
and (iii) val(A′)− val(A)≥ c.

ANALOGY IMPROVEMENT WITH CONTEXT-
GUIDED RE-REPRESENTATION (AIR[C])

Input: Predicate-structures B and T , an optimal analogy
A(B,T ), and integers k and c.
Output: Predicate-structures B′ and T ′ and an anal-
ogy A′(B′,T ′) such that (i) A ⊂ A′, (ii) B′ and T ′ are
derivable from B and T by at most k context-guided re-
representations, and (iii) val(A′)− val(A)≥ c.

For simplicity, we will assume that all context-guided re-
representations in the third model are of the basic “hole” type
shown in part (b) of Figure 2.

It is possible that the act of analogy derivation rather than
re-representation may artificially boost the difficulty of the
models described above. To this end, we will also ana-
lyze a fourth model of re-representation, whose goal is to
re-represent a given predicate-structure in order to satisfy a
polynomial-time computable function Prop that returns ei-
ther True or False, e.g., does the re-represented T contain a
particular type of easily-recognizable structure?

GENERAL DERIVATION WITH RE-REPRESENTATION
(GDR)

Input: Predicate-structure T such that Prop(T ) =
False, rule-set R, and integer k.
Output: Predicate-structure T ′ such that (i) T ′ deriv-
able by at most k applications of rules from R and (ii)
Prop(T ′) = True.

The four models above are those that will be considered
below. However, as will be explained later in the paper, re-
sults derived relative to these models have implications for a
broad range of cognitive theories invoking re-representation.

Re-representation is Intractable
To investigate the computational (in)tractability of the mod-
els of re-representation given in the previous section, we have
adopted standard complexity-theoretic proof techniques from
Computer Science (Garey & Johnson, 1979). Using these
techniques, we have proven the following (see the supple-
mentary materials for proofs1):

Result 1 ADR, AIR[R], AIR[C], and GDR are NP-hard.

These results imply that there do not exist any algorithms for
performing basic re-representation in the sense of the models
considered here in polynomial time for all inputs (i.e., time
upper-bounded by some function nc where n is a measure of
input size and c is some constant).2 In other words, all algo-
rithms for these models will run in exponential time or worse
(i.e., time upper-bounded at best by some function cn for c
and n as above). As exponential-time algorithms have unre-
alistically long runtimes for all but very small inputs, they
are generally considered to be computationally intractable
(Garey & Johnson, 1979).

Given that it is NP-hard to derive analogies of a specified
systematicity (van Rooij, Evans, Müller, Gedge, & Wareham,
2008; Veale & Keane, 1997), the NP-hardness of ADR is
not unexpected. The NP-hardness of AIR[R] and AIR[C] is
surprising, as deriving analogies that must be built on and in-
clude given analogies (Forbus, Ferguson, & Gentner, 1994)
was not previously thought to be intractable. This suggests
that the act of re-representation all by itself is intractable,
which is confirmed by the NP-hardness of GDR. That all
of these results hold in the most basic case as well – that
is, re-representation of individual predicates — has addi-
tional power, as this means that these results may actually
under-estimate the complexity of more complex types of re-
representation invoking larger scale structural changes such
as those proposed in Yan et al. (2003).

All this being said, the above does not say that re-
representation is impossible – rather, it suggests that re-
representation in practice may require one or more additional
constraints on the inputs and/or the re-representation process

1http://www.cs.mun.ca/∼harold/Papers/ICCM12supp.pdf
2This assumes that the conjecture P 6= NP is true, which is widely

believed within the Computer Science community on both theoreti-
cal and empirical grounds (Fortnow, 2009).
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not considered so far in order to be computationally practical.
In the next section, we describe a methodology that can be
used to both model such specific constraints and investigate
their computational effects.

A Method for Identifying
Tractability Conditions

A computational problem that is intractable for unrestricted
inputs may yet be tractable for non-trivial restrictions on the
input. This insight is based on the observation that some
NP-hard problems can be solved by algorithms whose run-
ning time is polynomial in the overall input size and non-
polynomial only in some aspects of the input called parame-
ters. In other words, the main part of the input contributes to
the overall complexity in a “good” way, whereas only the pa-
rameters contribute to the overall complexity in a “bad” way.
In such cases, the problem Π is said to be fixed-parameter
tractable (Downey & Fellows, 1999) for that set of parame-
ters. The following definition states this idea more formally.

Definition 1 Let Π be a problem with parameters k1,k2,
. . .. Then Π is said to be fixed-parameter (fp-) tractable
for parameter-set K = {k1,k2, . . . ,kc} if there exists at least
one algorithm that solves Π for any input of size n in time
f (k1,k2, . . . ,kc)nc, where f (·) is an arbitrary function and c
is a constant. If no such algorithm exists then Π is said to be
fixed-parameter (fp-) intractable for parameter-set K.

In other words, a problem Π is fp-tractable for a parameter-set
K if all superpolynomial-time complexity in solving Π can be
confined to the parameters in K. In this sense the unbounded
nature of the parameters in K can be seen as a reason for
the intractability of the unconstrained version of Π. For any
given fixed-parameter (in)tractability result, other results may
be implied courtesy of the following lemmas:

Lemma 1 If Π is fp-tractable for K then Π is fp-tractable
for any K′ such that K ⊂ K′.

Lemma 2 If Π is fp-intractable for K then Π is fp-
intractable for any K′ such that K′ ⊂ K.

It follows from the definition of fp-tractability that if an in-
tractable problem Π is fp-tractable for parameter-set K, then
Π can be efficiently solved even for large inputs, provided
only that all the parameters in K are relatively small. In the
next section we report on our investigation of whether or not
parameters may be used in this way to render the models
ADR, AIR[R], AIR[C], and GDR tractable.

What Does (and Doesn’t)
Make Re-representation Tractable?

Table 1 lists the parameters that we will consider in our fixed-
parameter analyses of re-representation. Each of these pa-
rameters is of interest for different reasons. Parameters o and
p are already known to individually render analogy deriva-
tion fp-tractable (van Rooij et al., 2008; Wareham, Evans,

Table 1: Overview of Parameters Considered.
Name Description

o Maximum number of objects over B and T
p Maximum number of predicates over B and T
k Amount of allowed re-representation
|R| Rule-set size
a Total number of re-representation

opportunities in B and T

& van Rooij, 2011) and may in turn make analogy deriva-
tion with re-representation fp-tractable. Parameters k and |R|
explicitly and implicitly, respectively, encode the High Se-
lectivity principle for re-representation selection strategies,
and should thus be small in practice. Finally, in addition
to considering parameters that separately characterize the in-
puts (o, p) and the re-representation process (k, |R|), we will
investigate parameter a, which in a sense encodes the de-
gree of interaction between the given predicate-structures and
the re-representation mechanisms (either rules in R or hole-
contexts) in terms of the number of opportunities that these
inputs provide for the application of these mechanisms.

The results of our analyses relative to these parameters are
given below (see the supplementary materials for proofs). As
we are still in the early stages of our investigation, these re-
sults in tandem with Lemmas 1 and 2 do not yet fully charac-
terize the parameterized complexity of our models relative to
all possible combinations of the considered parameters. How-
ever, even at this initial stage, we can still draw some inter-
esting conclusions and conjectures.

Let us start with the fp-intractability results:

Result 2 ADR and GDR are fp-intractable for parameter-
sets {o,k,a} and {k, |R|}.

Result 3 AIR[R] is fp-intractable for parameter-set {o,k,a}.

Result 4 AIR[C] is fp-intractable for parameter-set {o,k}.

Though there are still some open questions (in particular, the
parameterized status of AIR[R] relative to {|R|}, AIR[C] rel-
ative to {a}, and GDR relative to {p}), these results in tan-
dem with Lemma 1 establish that almost none of the param-
eters considered here can, if individually restricted to small
values, render any of our models computationally feasible.
The same also holds for any combinations of the parameters
within the parameter-sets mentioned in these results. Of par-
ticular note is the fact that neither of the four models consid-
ered here can be made feasible by restricting k alone. This
suggests that other principles in addition to High Selectiv-
ity must underlie re-representation selection strategies if re-
representation is to be made feasible. These principles may
have to be model-specific; for example, the current scarcity
of fp-intractability results for AIR[R] and AIR[C] suggests
that requiring derived analogies to build on given analogies
may provide model-specific opportunities for restrictions that
yield fp-tractability.
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Consider now the fp-tractability results:

Result 5 ADR, AIR[R], and AIR[C] are fp-tractable for
parameter-set {p}.

Result 6 GDR is fp-tractable for parameter-set {p, |R|}.

Result 7 ADR and AIR[R] are fp-tractable for parameter-set
{o, |R|,a}.

Result 8 AIR[C] is fp-tractable for parameter-set {o,a}.

Result 9 GDR is fp-tractable for parameter-set {|R|,a}.

Each of these results implies that if all parameters in that re-
sult’s parameter-set have small value, then the model men-
tioned in that result can be computationally feasible on in-
puts of arbitrary size. For example, Result 8 says that if o
and a are simultaneously of small value, then AIR[C] may be
computationally feasible. Results 7, 8, and 9 are of partic-
ular interest. The constraint on predicate-structure size im-
posed by o is not overly onerous, as many kinds of predicate-
structures are based on a relatively small number of objects
(Schlimm, 2008); moreover, it seems reasonable to conjec-
ture that for certain applications (e.g., those involving large-
scale re-representation rules), a and |R|may be suitably small.

Generality of Results
All of the intractability results reported in this paper, though
defined relative to a specific theory of analogy derivation,
have broad applicability. This is because the models exam-
ined here are restricted versions of models for other cognitive
theories that invoke re-representation, e.g.,

• The re-representation modes encoded in our models are
used in many cognitive theories (e.g., GDR’s single-
structure re-representation parallels re-representation in
insight problem solving (Ohlsson, 1992)).

• The predicate-structures on which our models are based are
a powerful but basic form of representation, and it seems
reasonable to conjecture that these other theories can be
phrased in terms of predicate-structures.

• The basic single-predicate-change rules and hole-contexts
used in our models are special cases of the more complex
re-representation invoked in these other theories.

Results for models of other theories that satisfy the above then
follow from the well-known observation that intractability re-
sults for a problem Π also hold for any problem Π′ that has
Π as a special case and can hence solve Π (suppose Π is in-
tractable; if Π′ is tractable, then it can be used to solve Π

efficiently, which contradicts the intractability of Π – hence,
Π′ must also be intractable).

Our fp-tractability results are more fragile, as innocuous
changes in the form of the inputs or the re-representation rules
and contexts may in fact violate assumptions critical to the
operation of the algorithms underlying these results. For now,
we can say that as the parameters mentioned in Results 7, 8,

and 9 encode only the combinatorics of re-representation pos-
sibilities (via |R| and/or a) and require only that the structures
generated by each such possible set of re-representations can
be evaluated to determine if they comprise a viable solution in
a reasonable amount of time, these results apply to all models
whose input-types and re-representation mechanisms satisfy
these conditions.

Discussion
Our research was motivated by the question of how the com-
putational difficulty of re-representation in general can be
reconciled with the ease of many instances of everyday re-
representation. To address this question, we first set out
to assess using formal methods whether re-representation as
proposed in one such instance, namely analogy derivation,
was computationally tractable. We found that this is not the
case. In contrast, even these models of analogy derivation
that only allow the simplest forms of re-representation can
be proven NP-hard (Result 1). This means that no practi-
cal (read: polynomial time) algorithm can exist that perform
such re-representation for all representations. To our knowl-
edge, this is the first formal proof of the intractability of re-
representation in the context of analogy derivation.

As this left the questions of how and under what condi-
tions re-representation can become tractable, we performed
complexity analyses to identify parameters that when re-
stricted to small values render re-representation tractable (see
Table 1 and its associated section for results). We believe that
the following two of our findings are of particular interest:

1. Limiting the amount of re-representation (i.e., small k)
does not by itself (nor when combined with many other pa-
rameters) make re-representation tractable (Results 2–4).

2. What does make re-representation tractable in the case of
analogy (and, as noted above, many other more complex
models) is when all of the parameters in the sets {p} (Re-
sult 5) or {o, |R|,a} (Results 7 and 8) are simultaneously
restricted to take small values.

The latter set in (2) may be applicable to re-representation
in everyday analogy derivation (especially those cases apply-
ing large-scale re-representations) and the former set may be
reasonable for re-representation in concept development, as
it is strongly hypothesized that children’s representations are
object- and attribute-rich and relationally poor (i.e., small p)
(Gentner et al., 1995). The question now is whether these
properties actually hold in these and other observedly fast
forms of re-representation. If empirical evidence of these
properties can be found, then our tractability results provide a
psychologically plausible explanation of how the modelled
forms of re-representation can be tractable despite the in-
tractability of re-representation in general.

To summarize, in this paper we have given the first for-
mal proofs not only that re-representation is computation-
ally difficult even by itself, but that there are restrictions that

115



may allow it to operate quickly in practice. Promising direc-
tions for future work include extending parameterized anal-
yses of the models defined here to other parameters (in par-
ticular, parameters like a that describe interactions between
the given input and the re-representation process), developing
good fixed-parameter algorithms for re-representation within
analogy derivation for implementation in large-scale AI sys-
tems like the Companions architecture (Forbus & Hinrichs,
2006), and investigating in detail the extent to which results
and conclusions presented here apply to other models of re-
representation-assisted analogy such as AMBR (Kokinov &
Petrov, 2000) and HDTP (Krumnack et al., 2008) as well as
models of insight problem solving and creativity.
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