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Abstract

Inspired on natural selective attention studies, we propose
a computational model of selective attention that relies on
the assumption that uncertain, surprising and motive congru-
ent/incongruent information demands attention from an intelli-
gent agent. This computational model has been integrated into
the architecture of a Belief-Desire-Intention artificial agent so
that this can autonomously select relevant, interesting infor-
mation of the (external or internal) environment while ignoring
other less relevant information. The advantage is that the agent
can communicate only that interesting, selective information to
its processing resources (focus of the senses, decision-making,
etc.) or to its human owner’s processing resources so that these
resources can be allocated more effectively. We illustrate and
provide experimental results of this role of the artificial, selec-
tive attention mechanism in the time-critical, risky situation, of
driving a vehicle, by showing that it prevents both the personal
traffic assistant agent’s and its human owner’s decision-making
resources of receiving unnecessary traffic information.
Keywords: Selective attention; Interest; Value of informa-
tion, Surprise; Uncertainty; Information overload; Resource-
bounded agents; Personal agents.

Introduction
In many ways, the advent of information technology is a pri-
mary reason for the abundance of information with which
humans are inundated, due to its ability to produce more in-
formation more quickly and to disseminate this information
to a wider audience than ever before. Contrary to what in
general could be expected, a lot of recent studies confirmed
what Alvin Toffler (1970) predicted a few decades ago: the
overabundance of information instead of being beneficial is a
huge problem having many negative implications not only in
personal life but also in organizations, business, and in gen-
eral in the world economy. Research proves that the brain
simply does not deal very well with this multitasking pro-
cess: there is a waste of time as the brain switches from one
task to another and back again (Klingberg, 2008). This ex-
plains why decision quality and the rate of performing tasks
degrades with increases in the amount of information being
considered.

A fundamental strategy for dealing with this problem of in-
formation overload (O’Connell, 2008) should include making
devices that incorporate themselves selective attention agents
in order to decrease the amount of information considered in
their own reasoning/decision-making processes or decrease
the amount of information provided by them to humans, pre-
venting these from a number of interruptions.

But how to model selective attention in artificial agents?
The problem starts at the human level. Although selective
attention has been thoroughly researched over the last 100
years in psychology and more recently in neuroscience (e.g.,

Kahneman, 1973; Wright & Ward, 2008), at present there
is no general theory of selective attention. Instead there are
specific theories for specific tasks such as orienting, visual
search, filtering, multiple action monitoring (dual task), and
multiple object tracking.

In spite of this, a number of models of selective attention
has been proposed in Cognitive Science (e.g., Horvitz, Ja-
cobs, & Hovel, 1999). Particularly related with these models
is the issue of measuring the value of information. A con-
siderable amount of literature has been published on these
measures, especially from the fields of active learning and ex-
perimental design. Most of those measures rely on assessing
the utility or the informativeness of information (e.g., Horvitz
& Barry, 1995; MacKay, 1992; Lindley, 1955; Settles, 2008)
However, little attention has been given to the surprising and
motive congruence value of information, giving the beliefs
and desires of an agent.

Opposed to other approaches (e.g., Itti & Baldi, 2006; Pe-
ters, 1998; Schmidhuber, 2006; Oudeyer, Kaplan, & Hafner,
2007) relying on low-level, raw information, Macedo, Car-
doso, and Reisenzein (2001; 2004), and Lorini and Castel-
franchi (2007) proposed, independently, computational mod-
els of surprise that are based on the mechanism that compares
newly acquired beliefs to preexisting beliefs. Both models of
artificial surprise were influenced by psychological theories
of surprise (e.g., Meyer, Reisenzein, & Schützwohl, 1997),
and both seek to capture essential aspects of human surprise
(see Macedo, Cardoso, Reisenzein, Lorini, & Castelfranchi,
2009, for a comparison). In agreement with most theories of
human surprise, both models of artificial surprise conceptu-
alize surprise as a fundamentally expectation- or belief-based
cognitive phenomenon, that is, as a reaction to the disconfir-
mation of expectations or, more generally, beliefs. Further-
more, in both models, beliefs are understood as propositional
attitudes (e.g., Searle, 1983), and a quantitative belief con-
cept (subjective probability) is used. Both artificial surprise
models draw a distinction between two main kinds of expec-
tations or beliefs whose disconfirmation causes surprise (see
also Ortony & Partridge, 1987): Active versus passive ex-
pectations. Although Macedo and Cardoso initially used the
same surprise intensity function, according to which the in-
tensity of surprise about an event is proportional to its unex-
pectedness, Macedo, Reisenzein and Cardoso subsequently
opted for a ”contrast model” of surprise intensity. This model
assumes that the intensity of surprise about an event reflects
its probability difference to the contextually most expected
event (see also Teigen & Keren, 2003).
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In this paper we describe an artificial selective attention
mechanism that may be used by artificial agents so that
only cognitively and affectively, interesting/relevant informa-
tion is selected and forwarded to reasoning/decision-making
units. Our approach relies on the psychological and neuro-
science studies about selective attention which defend that
variables such as unexpectedness, unpredictability, surprise,
uncertainty, and motive congruence demand attention (e.g.,
Berlyne, 1960; Kahneman, 1973; Ortony & Partridge, 1987).
One of the features of the selective attention mechanism is
that it should work in the absence of a model of decision-
making of the artificial agent, or of its designer, owner or user
for whom the artificial agent might act on his/her behalf.

The next section describes the computational model of se-
lective attention, focusing on how the multidimensional value
of information is computed, which will be illustrated with an
example in Section 3 . Section 4 examines the performance
of the selective attention mechanism as well as its role on the
decrease of unnecessary information while not affecting sig-
nificantly an agent decision-making performance. Finally, in
Section 5 we present conclusions.

A Computational Model for Forms of Selective
Attention

Selective attention may be defined as the cognitive process
of selective allocation of processing resources (focus of the
senses, etc.) on relevant, important or interesting informa-
tion of the (external or internal) environment while ignoring
other less relevant information. The issue is how to measure
the value of information. What makes something interesting?
In cognitive science, attentional focus is linked with expec-
tation generation and failure, i.e., with surprise (Ortony &
Partridge, 1987). Therefore, it is reasonable to consider that
any model of selective attention should rely on a cognitive
model of surprise. However, surprise is not enough. Hap-
piness/pleasantness, which according to cognitive theories of
emotion and specifically to belief-desire theories of emotion
(Reisenzein, 2008) is directly related to congruence between
new information and the human agent’s motives/desires, may
also play also a fundamental role on attention. For this reason,
the system must also incorporate a measure of the expected
satiation of the desires.

In order to accomplish all those requirements, we devel-
oped an architecture for a personalized, artificial selective at-
tention agent (see Figure 1). We assume: (i) this agent in-
teracts with the external world receiving from it information
through the senses and outputs actions through their effec-
tors; (ii) the world is described by a large amount of sta-
tistical experiments; (iii) the agent is a BDI agent (Rao &
Georgeff, 1995), exhibiting a prediction model (model for
generating expectations, i.e., beliefs about the environment),
a desire strength prediction model (a model for generating
desire strengths for all the outcomes of the statistical experi-
ments of the world that are know given the desires of the agent
– profile of the agent which include basic desires), as well as
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Figure 1: Architecture of an artificial selective attention
agent.

the intentions (these define the profile of the agent); (iv) the
agent contains other resources for the purpose of reasoning
and decision-making.

While the belief strengths are inferred from data using a
frequentist approach and updated as new information is ac-
quired, the desirability of the outcomes is previously set up
although they depend on the intention of the agent, suffering
changes whenever the agent is committed with a new inten-
tion.

The first of the modules of the architecture (module 1 in
Figure 1) is concerned with getting the input information. The
second is the computation of the current world state. This is
performed by generating expectations or assumptions (mod-
ule 2), based on the knowledge stored in memory, for the
gaps of the environment information provided by the sensors
(module 1). We assume that each piece of information re-
sulting from this process, before it is processed by other cog-
nitive skills, goes through several sub-selective attention de-
vices, each one evaluating information according to a certain
dimension such as surprise (module 4), uncertainty (module
5), and motive-congruence/incongruence – happiness (mod-
ule 6). For this task the selective attention mechanism takes
into account some knowledge container (memory — preex-
isting information (module 7)), and the intentions and desires
(motives — module 8). There is a decision-making module
(module 9) that takes into account the values computed by
those sub-selective attention modules and decides if a piece of
information is relevant/interesting or not. Then, this module
of decision-making selects the higher relevant pieces of infor-
mation so that other resources (reasoning, decision-making,
displaying, communication resources, etc.) (module 10) can
be allocated to deal with them.

The representation of the memory contents (beliefs) re-
lies on semantic features or attributes much like in semantic
networks (Russell & Norvig, 2010) or schemas (Rumelhardt
& Ortony, 1977). Each attribute, attri, viewed by us as a
statistical experiment, is described by a probabilistic distri-
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bution, i.e., a set Ai = {< value j, prob j,desireStrength j >:
j = 1,2, . . . ,n}, where n is the number of possible values of
the attribute, P(attri = value j) = prob j, and desireStrength j
is the desirability of attri = value j (for a related work see
(Reisenzein, 2008)).

The next sub-sections describe each one of the dimensions
for evaluating information, namely surprise, uncertainty, and
motive congruence/incongruence. While the dimensions of
surprise and uncertainty are related to the value of informa-
tion to the belief store of the agent, the dimension of motive
congruence/incongruence is related to the value of informa-
tion to the goals/desires of the agent (these dimensions are
related to the concepts of cognitive and affective feelings of
(Clore, 1992) and belief-belief and belief-desire comparators
of (Reisenzein, 2008)).

Surprise Value of Information
We adopted the computational model of surprise of (Macedo
& Cardoso, 2001; Macedo et al., 2004) which is formally
defined in Definition 1 (for related models see Macedo et
al., 2009). Macedo, Cardoso and Reisenzein computational
model of surprise suggests that the intensity of surprise
about an event Eg, from a set of mutually exclusive events
E1,E2, . . . ,Em, is a nonlinear function of the difference, or
contrast, between its probability and the probability of the
highest expected event Eh in the set of mutually exclusive
events E1,E2, . . . ,Em.

Definition 1 Let (Ω,A,P) be a probability space where Ω

is the sample space (i.e., the set of possible outcomes of the
experiment), A=A1,A2, ..,An is a σ-field of subsets of Ω (also
called the event space, i.e., all the possible events), and P is
a probability measure which assigns a real number P(F) to
every member F of the σ-field A. Let E = {E1,E2, . . . ,Em},
Ei ∈A, be a set of mutually exclusive events in that probability
space with probabilities P(Ei)>= 0, such that ∑

m
i=1 P(Ei) =

1. Let Eh be the highest expected event from E. The intensity
of surprise about an event Eg from E is given by:

S(Eg) = log(1+P(Eh)−P(Eg)) (1)

The probability difference between P(Eh) and P(Eg) can
be interpreted as the amount by which the probability of Eg
would have to be increased for Eg to become unsurprising.

Proposition 1 In each set of mutually exclusive events, there
is always at least one event whose occurrence is unsurprising,
namely, Eh.

Uncertainty-based Value of Information
Information is a decrease in uncertainty which, according to
information theory, is measured by entropy (Shannon, 1948).
When new information is acquired its amount may be mea-
sured by the difference between the prior uncertainty and the
posterior uncertainty.

Definition 2 Let (Ω,A,Pprior) be a probability space where
Ω is the sample space (i.e., the set of possible outcomes of
the experiment), A = A1,A2, ..,Am is a σ-field of subsets of
Ω (also called the event space, i.e., all the possible events),
and Pprior is a probability measure which assigns a real num-
ber Pprior(F) to every member F of the σ-field A. Let E =
{E1,E2, . . . ,Em}, Ei ∈ A, be a set of mutually exclusive events
in that probability space with probabilities Pprior(Ei) >= 0,
such that ∑

m
i=1 Pprior(Ei) = 1. Let Ppost be the posterior prob-

ability measure, after some data is acquired, which assigns
a real number Ppost(F) to every member F of the σ-field A
such that it assigns Ppost(Ei) >= 0 with ∑

m
i=1 Ppost(Ei) = 1.

According to information theory, the information gain of an
agent after some data is acquired, IG(E), is given by the de-
crease in uncertainty:

IG(E) = Hprior(E)−Hpost(E)

= −
m

∑
i=1

Pprior(Ei)× log(Pprior(Ei)−

(−
m

∑
i=1

Ppost(Ei)× log(Ppost(Ei)) (2)

Hpost = 0 if and only if all the Ppost(Ei) but one are zero,
this one having the value unity. Thus only when we are cer-
tain of the outcome does Hpost vanish, otherwise it is positive.

IG is not normalized. In order to normalize it we must
divide it by log(m) since it can be proved that IG≤ log(m):

IG(E) =
Hprior(E)−Hpost(E)

log(m)
(3)

Motive Congruence/Incongruence-based Value of
Information
While the measure of surprise takes into account beliefs that
can be confirmed or not, the pleasantness function that we de-
scribe in this subsection takes as input desires that, contrary
to beliefs, can be satisfied or frustrated. Following the belief-
desire theory of emotion (Reisenzein, 2008), we assume that
an agent feels happiness if it desires a state of affairs (a propo-
sition) and firmly beliefs that that state of affairs obtains. The
intensity of happiness about an event is a monotonically in-
creasing function of the degree of desire of that event as for-
mally defined in Definition 4.

Definition 3 Let (Ω,A) be a measurable space where Ω is
the sample space (i.e., the set of possible outcomes of the
experiment) and A = A1,A2, ..,Am a σ-field of subsets of Ω

(also called the event space, i.e., all the possible events). We
define the measure of desirability of an event on (Ω,A) as
D : A→ [−1,1], i.e., as a signed measure which assigns a
real number −1 ≤ D(F) ≤ 1 to every member F of the σ-
field A based on the profile of the agent, so that the following
properties are satisfied:
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• D( /0) = 0, −|Ω| ≥ D(Ω)6 |Ω|

• if A1,A2, . . . is a collection of disjoint members of A, in that
Ai∩A j = /0 for all i 6= j, then

D(
∞⋃

i=0

Ai) =
∞

∑
i=0

D(Ai) (4)

The triple (Ω,A,D) is called the desirability space.

Definition 4 Let (Ω,A,P) and (Ω,A,D) be the probability
and the desirability spaces described, respectively, in Defi-
nition 1 and Definition 3. Let E = {E1,E2, . . . ,Em}, Ei ∈ A,
be a set of mutually exclusive events in that probability space
with probabilities P(Ei)>= 0, ∑

m
i=1 P(Ei) = 1. If P(Eg) = 1,

the intensity of happiness, i.e., motive congruence, about an
event Eg from E is given by:

MC(Eg) = D(Eg) (5)

The Principle of Selective Attention
Having defined the motive, the uncertainty-based, and
surprise-based selective attention modules, we are now in a
position to formulate, in a restricted sense (without the inclu-
sion of other information measures such as complexity), the
principle that a resource-bounded rational agent should fol-
low in order to avoid an overabundance of information and
interruptions in the absence of a model for decision-making.
Note that if this model is known, the problem is reduced to
the classical computation of the value of information that has
been extensively studied (e.g., Horvitz & Barry, 1995; Rus-
sell & Norvig, 2010).

Definition 5 A resource-bounded rational agent should fo-
cus its attention only on the relevant and interesting informa-
tion, i.e., on information that is congruent or incongruent to
its motives/desires, and that is cognitively relevant because it
is surprising or because it decreases uncertainty.

We may define real numbers α, β, and γ as levels above
which the absolute values of motive congruency, surprise,
and information gain (decrease of uncertainty), respectively,
should be so that the information can be considered valuable
or interesting. These are what we called the triggering lev-
els of alert of the selective attention mechanism. Note that,
making one of those parameters null is equivalent to remov-
ing the contribution of the corresponding component from the
selective attention mechanism.

Practical Application
Advanced Travel Information Systems (ATIS) are designed
to assist travelers in making pre-trip and en-route travel de-
cisions by providing them pre-trip and en-route information.
However, while these information systems can undoubtedly
help humans perform better in these complex traveling sce-
narios, they might provide an unhandled amount of informa-
tion to humans that may compromise their performance.

It is contended that while many traveler information sys-
tems are innovative and make use of cutting edge technolo-
gies, they lack real machine intelligence and therefore may
be limited in their ability to service the traveling public over
the long-run. On the one hand, a wave of technological devel-
opments, in particular the increasing deployment of GIS and,
on the other hand, the introduction and rapid market pene-
tration of mobile devices such as cell phones boosted the de-
velopment of ATIS towards what has been termed Intelligent
Traveler Information Systems (ITIS) (Adler & Blue, 1998),
in which artificial intelligence techniques are drawn upon to
create systems capable of providing travelers with more per-
sonalized planning assistance. This is the goal of integrat-
ing selective agents in personal devices that receive informa-
tion from the ATIS to act as personal assistant selective atten-
tion agents in order to avoid unnecessary interruptions to their
users by enabling that only interesting information (i.e., with
a value above a threshold defined by the user) is provided to
them.

We are developing an ITIS that receives information about
the traffic conditions and sends it to the mobile devices of
the travelers. All that collected information is stored in the
knowledge base/memory of the ITIS. There is a personal se-
lective attention agent for each registered traveler. Each one
of these personal agents has information about the expecta-
tions of its owner based on their travel history.

Let us illustrate how the value of information is computed
by the selective attention mechanism. Suppose that a trav-
eller’s navigation system provided the pre-route path contain-
ing a road A for an agent (a driver) based on its profile (e.g.,
preference for shortest routes). Suppose the agent has the fol-
lowing expectations for the traffic conditions of road A, for a
certain period/time of the day for a certain day of the week:
60% of probability of ”good traffic conditions” (event E1),
30% of probability of ”moderate traffic conditions” (event
E2), and 10% of probability of ”bad traffic conditions” (event
E3). Suppose the desire strengths of these events are 1, -0.5,
and -1, respectively. Given that the agent plans to go trough
that route, suppose its module for generating/managing de-
sires assigns a null desire strength for the other routes as it
does not care about the traffic conditions of the other roads
that are not part of its planned route. What is the relevance
of becoming aware that the current traffic conditions of road
A are good (event E1)? Considering solely the motive-based
component, the outcomes (events E1, E2, and E3) elicits hap-
piness (motive congruence) with intensity 1, -0.5 and -1, re-
spectively. E1 is congruent/consistent with the goals of the
agent, while E2 and E3 are incongruent with the goals of the
agent.

According to Equation 1, the surprise value of E1, E2, and
E3 are, respectively, 0, 0.38, and 0.58. Illustrating for the case
of E3:

Surprise(E3) = log(1+P(E1)−P(E3))

= log(1+0.6−0.1) = 0.58 (6)
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According to Equation 3, the normalized information gain
value of E1, E2, or E3 is:

IG(E) =
Hprior(E)−Hpost(E)

log(m)
=

Hprior(E)−0
log(3)

=
−∑

3
i=1 Pprior(Ei)× log(Pprior(Ei))

log(3)
= 0.82(7)

Assume the Principle of Selective Attention described
above, with parameters α = 0.3, β = 0.5, and γ = 0.6. Are
all these events interesting? Considering the motive-based
component all those events are interesting. However, from
the perspective of the surprise-based selective attention com-
ponent, the answer is ”no” to the question related with the
events E1 and E2 in that their surprise values, 0 and 0.38, re-
spectively, are below β. With respect to E3 the answer is ”yes”
given that its surprise value is 0.58. Taking the uncertainty-
based component into account, the answer is ”yes” for all the
events because their occurrence gives a normalized informa-
tion gain of 0.82 which is above γ.

Experiment
We conducted an experiment to evaluate the performance and
the potential benefits of the personal selective attention model
for filtering unnecessary information for human travelers. To
do that we assessed its performance considering the opinions
of the human travelers, comparing their classifications about
whether some information is relevant or not and the classifi-
cations of the selective attention agent. The selective atten-
tion agent is considered to perform erroneously if it filters a
relevant information or if it does not filter an irrelevant in-
formation. The environment considered was Bissaya Barreto
Avenue of the city of Coimbra, Portugal. We configured a se-
lective attention agent to provide real time information about
the traffic conditions in that street to 5 volunteer travelers
whose path include that street. We collect information about
the relevance of the information the agent delivered during
10 days at the same time (9h:00m) and always concerning
the same street . In addition, after the trip, the information
the agent didn’t delivered, when the value computed by its
selective attention mechanism was below the triggering level
of alert, was shown to the travelers and these were asked to
rate the relevance they would had assigned that information
if it was delivered. All these data were used to compute the
true and false positives. In each situation, the human agent,
if prevented from receiving information, maintains the plan
suggested by the navigation system, otherwise, if informed,
he/she may consider alternative routes and change its mind
by planning to proceed through one of those alternative route.

The parameters considered were α = 0.3, β = 0.3, γ = 0.6.
These are average values obtained from a questionnaire pre-
sented to human drivers in which they were asked to spec-
ify reasonable values for those parameters. Table 1 presents
the confusion matrix for this model. We found evidence in-
dicating that the selective attention mechanism (with those

Table 1: Confusion matrix of the selective attention mecha-
nism for α = 0.3, β = 0.3, and γ = 0.6.

Prevented Not Prevented
Not relevant 64.55% 9.09% 73.64%

Relevant 19.09% 7.27% 26.36%
83.64% 16.36% 100%

parameters) contributes significantly to decrease the amount
of irrelevant information by an average of 83.64% (p=0.000).
Furthermore, and not less important, we found evidence in-
dicating that, preventing the human agent from receiving
that amount of irrelevant information, the performance of the
agent was not affected significantly. In fact, we found that
from these there is only an average of 22.83% (correspond-
ing to 19.09% of all the information) of false negatives, which
indicates those means are statistically different (p=0.000).
However, with respect to the false positives, we found that
from the 16.36% of interruptions, an average of 55.56% (cor-
responding to 9.09% of all the information) was not relevant,
which are not significantly different (p=0.146) and, therefore,
we can not reject the null hypothesis in this case.

The accuracy of this specific model is 0.72, while the re-
call (true positive rate) and the precision are 0.28 and 0.44,
respectively. The F1 measure is 0.34.

Discussion and Conclusions
We presented a computational model for selective attention
based on cognitive and affective feelings. We found evi-
dence indicating that the mechanism contributes for decreas-
ing the amount of unnecessary information while maintaining
acceptable the performance of the owner (a human).

The advantages of reasoning correctly with less informa-
tion include spending less time in processing information
which is important in time-critical, high-risk situations. Be-
sides, agents equipped with a selective attention filter can be
successful personal assistants of humans, integrated for in-
stance in mobile devices, so that their human users are pre-
vented from unnecessary interruptions. This may be of high
value in critical situations such as driving a car in that, as
reported by (Horvitz & Barry, 1995), numerous cognitive
studies have provided evidence of the problems in informa-
tion processing exhibited by humans when dealing with large
amounts of information such as that the speed at which hu-
mans perform tasks drops as the quantity of information be-
ing considered increases, and that the rate of performing tasks
can be increased by filtering irrelevant information. In this
particular case of transportation systems, the ultimate advan-
tage may be less vehicle accidents and less deaths, while in
organizations the advantage may be an improvement in their
workers productivity and therefore less costs.

An hypothesis that might be risen is that taking other sub-
selective attention modules such as those based on other cog-
nitive or affective feelings (Clore, 1992) (e.g., familiarity,
complexity) into account improves the performance of the
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mechanism. More experiments should be done with this aim.
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