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Imagine you are about to write a paper for an upcoming 
conference. Before you decide how to write it, you are 
likely to read a number of related articles. How many 
articles do you read? When do you stop searching for more 
articles and start writing? While we know much about how 
people make decisions, little is known about the search 
process that precedes a consequential decision. Here, we 
analyze participants search behavior in a binary choice task 
and present a cognitive model that is able to explain both, 
the process of information search, as well as the subsequent 
consequential choice. 

Information search in decisions from experience 
In the classical decision-making literature, decision-making 
has often been studied by explicitly presenting the decision 
maker with the information relevant for the decision. Thus, 
this literature largely ignores the process of information 
search. Recently, experimental paradigms have studied 
experiential decisions and allowed the investigation of the 
search process before decisions are made. One prominent 
example is the sampling paradigm (e.g., Hertwig, Barron, 
Weber, & Erev, 2004). In this paradigm, participants are 
presented with two options (visualized as two buttons on the 
screen) that are associated with monetary payoff 
distributions. For example, in the decision problem shown 
in Figure 1, the left button (risky button) yields a high 
payoff (17.1) with 10% probability and a low payoff (6.9) 
with 90% probability. The right button (safe button) yields a 
medium payoff (8) with 100% probability. Participants are 
not explicitly told about the payoffs or their probabilities. 
Instead, they are asked to sample from both options until 
they feel confident to make a consequential choice for the 
option they prefer. 

 
 

Figure 1. Procedure in the sampling paradigm. 

Research has shown that, overall, people tend to take only 
a small number of samples (medians range from 9-19 in 
most studies; Erev et al., 2010; Hau, Pleskac, & Hertwig, 
2010). This small sample size is surprising, given that the 
chance to correctly estimate the payoff distribution is likely 
to increase with the sample size (Gonzalez & Dutt, 2012). 
While the sample size seems to be affected by several 
characteristics of the decision maker, not much is known 
about how it is influenced by different properties of the task. 

To learn more about when people stop searching for 
information, we analyzed data from the Technion Prediction 
Tournament (Erev, et al., 2010), which is the largest data set 
on the sampling paradigm currently available (79 
participants, each solving 30 out of 120 problems). In 
agreement with the small sample size effect, Figure 2 shows 
that in the TPT data set the distribution of the sample size is 
heavily right-tailed. To take a closer look at how the sample 
size is affected by properties of the decision problems, we 
investigated two factors: experienced variability and payoff 
domain. As shown in Figure 3, the sample size increases 
when variability was experienced in a problem (i.e., when 
the risky button displayed two possible outcomes, as in 
Figure 1), compared to problems where no variability was 
experienced (the risky button displayed only one outcome); 
average medians: 11.1 vs. 15.3. Furthermore, the number of 
samples is lower if the observed payoffs constituted gains 
(as in Figure 1), rather than losses (where outcomes on both 
buttons were negative); average medians: 12.2 vs. 14.0. A 
linear mixed effects model, showed the effects of both 
factors to be significant (variability: !=4.65, p<.001; 
domain: !=1.64, p=.001). 

Modeling information search  
Recently, Gonzalez and Dutt (2011) have shown that a 
computational model based on instance-based learning 
theory (IBLT; Gonzalez, Lerch, & Lebiere, 2003) can not 
only explain how people make experiential decisions, but 
also explain how information is sampled before a 
consequential decision is made. The basic idea in the IBL 
model is that, during sampling, instances of the observed 
payoffs in both options are stored in memory. Behavior 
during sampling and at final choice depends on the 
experienced utility (or bended value) of the options. The 
experienced utility of an option is a function of its 
associated payoffs and the probability of retrieving these 
payoffs (i.e., instances) from memory, using a simplified 
ACT-R activation mechanism (Anderson & Lebiere, 1998). 
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The IBL model explains, for example, how participants 
alternate between the choice options during sampling (for a 
detailed explanation of the model see Gonzalez & Dutt, 
2011).  

Although the IBL model is able to account for choices 
during sampling, the stopping point (i.e., the number of 
samples drawn during the sampling phase) was previously 
determined by a random draw from a geometric distribution 
function that was fitted to behavioral data in TPT. Here, we 
introduce a stopping mechanism in the model that is 
grounded in psychological literature related directly to 
information foraging. This mechanism is motivated from 
evidence accumulation models (for an overview see e.g., 
Ratcliff & Smith, 2004). It assumes that people accumulate 
experienced utilities until a decision criterion is reached. 
Once this criterion is reached, sampling is stopped and a 
decision is made based on the experienced utilities as in the 
original formulation of the IBL model. The revised model is 
thus identical to the model reported in Gonzalez and Dutt 
(2011), with the exception that the stopping point is now 
determined by an evidence accumulation process, rather 
than by a mathematical distribution function. 

To fit the revised model, we calibrated the decision 
criterion (which consists of an upper bound for positive and 
a lower bound for negative experienced utilities), to the 
median number of samples from the human data. All other 
parameters were left at the original values reported in 
Gonzalez and Dutt (2011). More specifically, we calibrated 
the bounds by using a Genetic Algorithm (Holland, 1975) to 
fit the model’s median sample size to the median sample 
size for half of the human data. The resulting bounds were 
randomly drawn from U(0.0001, 14.18) for positive, and 
from  U(-24.18, -0.0001) for negative values. Then, we 
generalized the model to the other half of the data. 

With the model merely calibrated to fit the median sample 
size, we then investigated whether it would reproduce the 
distribution of the number of samples, as well as the effects 
of the two task-relevant factors (identified above). As shown 
in Figure 2, the model captures human sampling behavior 
well and it reproduces a similar and heavily right-tailed 
distribution, as it was found in the human data. Figure 3 
shows the effects of experienced variability and payoff-
domain. The model correctly shows the increase in sample 
size due to the experienced variability. The effect of domain 
is less clear in the model. Whereas it correctly predicts a 
higher number of samples for losses than for gains if 

variability is experienced, it does not produce this pattern if 
no variability is experienced.  

Discussion 
How much information do people search before making a 
consequential choice? Our results suggest that at least two 
task-related factors likely affect the amount of sampled 
information: Sample size is likely to increase with the 
experienced variability of outcomes, and it will be higher if 
losses, rather than gains are experienced. Furthermore, our 
results suggest that it is possible to extend the IBL model of 
experiential decisions by incorporating an evidence-
accumulation mechanism that predicts when people stop 
sampling. While the revised model presented here presents a 
first step into this direction, there are several potent 
approaches to model the accumulation process. We are 
currently evaluating these approaches in more detail by 
exploring their ability to more accurately predict human 
information search. 
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Figure 2. Distribution of the sample size. The x-axes are truncated 
at the maximum number of samples found in the human data 

(resulting in cutting off 2% of the tail produced by the model). 
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Figure 3. Sample size as a function of experienced variability and 
domain (shown are the average medians ±1 SE.) 
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