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Abstract

Visual working memory (VWM) is one of the most cru-
cial parts of the human cognitive system. Research fo-
cuses on the apparent limits in the capacity of this sys-
tem and the reasons for them. But so far only a few
formal models exist that can account for the temporal
dynamics of the amount of information stored in VWM.
We propose a combination of the well established the-
ory of visual attention (TVA) with a dynamic memory
model, resulting in an iterative, probabilistic framework
for VWM. The model includes a consolidation as well as
a decay mechanism and employs the strength concept to
quantify the availability of a certain memory trace. We
evaluate the model on available change detection data.
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Introduction
One of the main components of every cognitive task is
the storage and maintenance of information in memory.
Accordingly, research on working memory has a long
tradition in both psychology and neuroscience (for an
overview see Wixted, 2004b). Most models of working
memory assume distinct systems for the preservation of
verbal and visual information (Baddeley, 2003). Change
detection tasks are frequently used to study the proper-
ties of the visual working memory (VWM). We focus on
modeling VWM in this paper.

One way to investigate VWM is to ask participants
to detect changes in subsequently presented displays.
Early change detection studies (Phillips, 1974; Pashler,
1988) provided evidence that not only the amount but
also the strength of information stored in VWM dynami-
cally changes over time. For example, for short temporal
delays between two subsequent displays change detec-
tion performance is very accurate, but it deteriorates for
longer temporal delays. Pashler (1988) also found that
change detection performance increased with longer pre-
sentation durations of the initial display. Apparently this
is due to the fact that more information can be encoded
the longer the initial display lasts. On the other hand it
is possible that the encoded information becomes more
stable for longer display durations. Seeing that VWM
and visual perception additionally appear to be highly
intertwined (Alvarez & Cavanagh, 2004; Gao, Gao, Li,
Sun, & Shen, 2011), we approximate the dynamics of
VWM in conjunction with visual perception by model-
ing encoding and memory consolidation with the same
hypothetical process.

By now, only a few quantitative models are available
that describe the process of stimulus encoding and the

preservation of the obtained information at once (but
see Johnson, Spencer, & Schöner, 2009 for a neural
model). Here, we provide a parsimonious quantitative
model that can account for changes in the amount of
stored information over time. To test the idea that mem-
ory encoding and VWM maintenance processes interact,
we introduce a memory mechanism that also operates
during the display presentation.

In the next section we give an outline of the model
and sum up the underlying assumptions. Then we give
a short description of TVA. After this we describe the
features of our memory model in detail and give an ex-
ample for the predictions of the complete model. We use
the results of Phillips (1974) to evaluate our model. A
short discussion concludes the paper.

General Assumptions

We investigate processing of visual stimuli at the stage
of “perceptual units”(Bundesen, 1990). Perceptual units
can be considered as segmented parts of the current vi-
sual input. Each unit can be described by feature dimen-
sions like color or shape. The encoded categorizations of
the feature dimensions are assumed to be the informa-
tion that is stored in VWM. The theory of visual at-
tention (TVA, Bundesen, 1990) captures this encoding
stage in a formal framework.

We assume that every encoded categorization of a cer-
tain stimulus dimension can be described with a strength
that quantifies the availability of the respective catego-
rization. This strength is not constant but changes over
time. Two processes affect the strength. First a consol-
idation process increases the strength over time. When
the strength of a certain categorization increases during
the presentation of a display, we refer to this process as
on-line consolidation. Otherwise, we refer to consolida-
tion as off-line consolidation. Seeing that consolidation
generally takes place all the time, categorizations that
are encoded earlier typically reach higher strength val-
ues than comparable types of categorizations that are
encoded later on. Additionally, consolidation depends
on memory load. Second a degradation process reduces
the strength over time. We assume the degradation to
take place at a constant rate after the offset of a certain
stimulus display. Moreover, we assume this process to
be independent of memory load. If the strength of a cer-
tain categorization falls below a threshold the respective
categorization is removed from VWM. This is similar to
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the idea of some-or-none representations proposed by
Zhang and Luck (2009).

To sum up our model describes the following processes:

• Encoding of categorizations of stimulus dimensions
(e.g. color or shape) from a display.

• On-Line consolidation of the stored categorizations
during the presentation of the display.

• Off-Line consolidation of the stored categorizations af-
ter the offset of the display.

• Decay of stored categorizations after the offset of the
display.

To test the resulting model the estimated memory load
is transferred into a behavioral measure. We focus on
modeling change detection performance. In the next
sections we describe the different assumptions in more
detail and provide the necessary formalizations.

Encoding of Information

Before we can consider the properties of information
stored in VWM it is necessary to describe how infor-
mation is encoded in the first place. TVA, proposed
by Bundesen (1990), is a quantitative model of visual
attention that accounts for a broad range of phenom-
ena (Bundesen, Habekost, & Kyllingsbæk, 2005; Logan,
2002). TVA was successfully applied to model iconic
memory (Sperling, 1960), visual search (Treisman &
Gelade, 1980), switch costs (Logan, Schneider, & Bun-
desen, 2007), as well as attention deficits in clinical pop-
ulations (Duncan et al., 1999). TVA allows quantitative
predictions of the amount of information stored in VWM
at a certain time. To model visual attention TVA inte-
grates bottom-up processes (via the sensory properties
of the relevant information) and top-down processes (via
the intention to perform a task).

TVA models the encoding of visual stimuli in VWM
as the combination of a filtering and a pigeonholing pro-
cess. Filtering selects objects, whereas pigeonholing as-
signs categories to the selected objects. TVA proposes a
race model where different categorizations compete for
the incorporation in VWM. This race is formalized as
the conditional probability of a categorization to be en-
coded, given that is was not encoded earlier. The fol-
lowing rate equation describes the probability that the
categorization of item x belonging to category i enters
VWM:

ν(x, i) = η(x, i)βi
wx∑
z∈T wz

, (1)

where the categorization likelihood ν(x, i) depends on
the sensory evidence η(x, i) that object x belongs to cat-
egory i, on the perceptual decision bias βi for category i,

and on the attentional weight wx relative to all other at-
tentional weight values wz for all objects z in the visual
display T .

The attentional weights wz depend on the pertinence
of a given categorization that can be considered as the
subjective relevance of this categorization. For every ob-
ject x in the visual field, an attentional weight is obtained
by the following weight equation:

wx =
∑
j∈R

η(x, j)πj , (2)

where R denotes the set of all perceptual categories,
η(x, j) denotes the sensory evidence for element x be-
longing to category j, and πj is a pertinence value for
category j. The higher the pertinence of a certain cate-
gory, the higher the likelihood to attend to objects that
fall into the respective category.

TVA realizes filtering by attentional weights. If the
task is to select red objects the value of πred and the
resulting weights for red objects would be high. Pigeon-
holing is biased by parameter β. If a task requires the
categorization of letters rather than digits, the value of
β would be higher for letters. The consequence of com-
bined filtering and pigeonholing in this example would
be the faster encoding of red letters compared to other
stimuli.

Despite examples of successful applications, TVA can-
not account for decay in the content of VWM. Bundesen
(1990) assumed a fixed capacity VWM model that is
filled by a Bernoulli process. As the capacity is fixed, it
cannot account for any loss of stored information over
time. Therefore we propose a dynamic model for the
VWM, which also considers memory decay.

A dynamic Model of VWM

We assume a continuous mnemonic resource (Bays &
Hussain, 2008; Wilken & Ma, 2004; Verghese, 2001) that
is used to consolidate information in VWM1. Memory
limits emerge over time as it becomes more and more
difficult to maintain the stored information. To describe
the state of certain stored categorizations, we employ the
strength concept proposed by Wickelgren (Wickelgren,
1974). According to this theory the availability of a cer-
tain memory trace can be described by its strength. This
strength changes over time. Initially memory traces are
weak but their strength increases over time. Hence older
traces are more stable than younger ones (Jost’s second
law, see Wixted, 2004a). For short retention intervals
even the weak traces can be preserved. For longer inter-
vals only the strongest traces persist.2

1Please note that the idea of fixed slots (Zhang &
Luck, 2008) is a prominent alternative to this approach
(see Fukuda, Awh, & Vogel, 2010 for a comparison of both
approaches).

2Please note that Wickelgren assumed an ever decaying
strength, an increase of strength that is realized by the con-
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Initially the strength of an encoded categorization is
set to 1.0. We assume three different processes that af-
fect the strength of a certain stored categorization over
time. First, a decay process applies to each stored cat-
egorization after stimulus display offset. Second, an on-
line consolidation mechanism increases the strength of a
categorization after its encoding throughout the presen-
tation of a display. This assumption is based on Jost’s
second law to give older traces the proposed advantage
in durability. Third, off-line consolidation increases the
strength after display offset. We now describe these pro-
cesses in detail.

Decay

We assume the strength of every stored categorization to
degrade at a constant pace after the offset of the stimulus
display. The decrement is denoted as ξ, it is assumed to
be a random variable and to be unaffected by the load of
VWM. If a certain strength falls below 0, the according
categorization is lost.

On-Line Consolidation

We assume the conditional encoding probability ν(x, i)
to be proportional to the amount of mnemonic resources
that are used to consolidate a certain categorization af-
ter it enters VWM. This assumption is justified as ν(x, i)
reflects top-down influences, such as the relevance of a
certain categorization (see Equation 1). Accordingly, we
assume the strength s(x, i) to increase by ν(x, i), each
time consolidation applies. We furthermore assume that
only one categorization is consolidated at a time, essen-
tially assuming a serial consolidation process similar to
the one discussed in Schneider (1999). The categoriza-
tion that is consolidated next is chosen randomly (with
replacement). Each consolidation may require several
iterations.

Off-Line Consolidation

A similar mechanism like the proposed on-line consoli-
dation is assumed to operate after the offset of the dis-
play. The difference between on-line and off-line consoli-
dation is the value of the increment of a certain strength
s(x, i). We assume that the sum of all conditional en-
coding probabilities to be proportional to the amount of
mnemonic resources, referred to as κ, that can be used
for consolidation:

κ ∝
∑
x∈T

∑
i∈R

ν(x, i) (3)

For off-line consolidation, we assume that this amount
is distributed over the currently stored categorizations.
If all categorizations are of equal relevance, the amount

solidation components of our model was never proposed by
Wickelgren. Instead he assumed the decay to slow down over
time.

of κ used to consolidate a single categorization can be ob-
tained by dividing κ by the number of currently stored
categorizations. In effect, the consolidation of a single
categorization is more effective when less categorizations
are stored in VWM. As a consequence, the assumed de-
cay mechanism bears a stronger influence if VWM load
is high.

Example
As an example, lets assume a very simple stimulus
display containing three objects with different colors.
Lets further assume that the colors of these objects are
equally relevant for the current task, whereas other pos-
sible features are irrelevant. We now want to use our
model to predict the temporal changes in VWM con-
tent. An exemplary complete time-course is displayed in
Figure 1.
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Figure 1: Example of the predicted changes in VWM
over time.

Encoding. As only color information is relevant all
the respective β(x, color) and π(x, color) would be high,
whereas all other β and π values would be 0. At ev-
ery time step each of the color categorizations is en-
coded with a certain probability (ν(x, color)) and stored
in VWM. As this is a probabilistic process, the time of
successful encoding differs for the different categoriza-
tions (see Figure 1, the time of encoding is indicated by
a filled circle).

On-Line Consolidation. As shown in Figure 1, the
strength of the stored categorizations probabilistically
increases over time during the presentation of the dis-
play. If only one categorization is stored, it is consoli-
dated every time consolidation takes place. As only one
categorization is consolidated at a time, the growth of
an individual strength value declines as more and more
categorizations are encoded.

Decay. After the offset of the display, the strengths
of the stored categorizations decay. Here, we assume
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a uniformly-distributed, noisy amount of decay per it-
eration. As exemplary shown in Figure 1, two catego-
rizations are lost after about 300 ms due to the decay
process.

Off-Line Consolidation. After the offset of the dis-
play, the decay in strength is encountered by an consol-
idation mechanism. The higher the memory load, the
less effective is the consolidation mechanism. As more
and more categorizations are lost, consolidation becomes
more effective in protecting the remaining categoriza-
tions from further decay (see Figure 1, at around 1300
ms). In the current model, we do not consider an upper
bound for memory strength.

Results

In this section we apply our model to the data from the
first experiment reported by Phillips (1974). This study
investigated change detection performance for lighted
pixels in a square matrix. Each pixel in the matrix had
a chance of 50% to be lit. The matrix was presented for
one second. The matrix size varied between 4× 4, 6× 6
and 8× 8 pixels. After an inter stimulus interval (ISI)
of either 20, 1000, 3000 or 9000 ms, a probe display ap-
peared. In 50% of the trials, the probe display was equal
to the initial display, in the other trials it differed with
respect to one pixel. The participants had to indicate if
the probe display differed from the initial one. Phillips
(1974) collected the percentage of correct responses as
a dependent measure. The results suggested two differ-
ent types of storage systems. First, a high-capacity but
short lasting iconic storage system. Second, a more per-
sistent but capacity limited short term storage system.
The data basis for the evaluation is quite small compris-
ing only 12 mean detection probabilities. Nevertheless,
the data pattern is challenging because of the broad vari-
ation in the length of ISIs, covering sensory memory as
well as short term memory. This is the main reason for
which we decide to use this data set instead of more con-
temporary studies like the one reported by Vogel, Wood-
man, and Luck (2001).

To obtain predictions of the percentage of correct re-
sponses, we transfer the estimated VWM load after the
ISI into a probability. We set the predicted probability
of success equal to the number of available traces for the
relevant feature dimensions:

pdetect =
Epreserved

T
(4)

where T refers to the number of relevant categoriza-
tions and Epreserved denotes the number of stored cat-
egorizations in the relevant dimension. As the partic-
ipants had to perform a same / different judgment, a
correction for guessing is assumed. Usually the guess-
ing probability should be 0.5:

ppredicted = pdetect + (1− pdetect)
1

2
(5)

This is similar to the formula proposed by Pashler
(1988), except for the fact that we assume a constant
guessing probability for all participants.

We used four different versions of our model to inves-
tigate if the different mechanisms improved the predic-
tions. The first version modeled encoding with TVA and
assumed constant decay during the ISI. Neither on-line
consolidation nor off-line consolidation were used. The
second version included the off-line consolidation process
during the ISI. The third version included the on-line
consolidation mechanism. The fourth version applied
both off-line and on-line consolidation.

All η, β and π values were set to 1.0. Hence the ν
values only differed between matrix sizes. The equality
of the TVA parameters is plausible because the catego-
rization of every pixel as either lit or not lit was equally
relevant for the task. Due to our assumption of propor-
tionality between κ and ν, only the decay parameter ξ
was treated as a free parameter. We applied uniformly
distributed noise to ξ, so that the actual decay rate could
vary between 0 and ξ in each time step. Additionally,
all models that applied on-line or off-line consolidation
or both had an additional free parameter, referred to as
lag, which determined how much iterations have to pass
between two successive consolidation events. All free pa-
rameters were constant over matrix sizes. As encoding,
consolidation, and decay were modeled as probabilistic
processes, we averaged 50 independent runs for every
iteration of the parameter estimation.

The predictions of the different versions are displayed
in Figure 2. The results are the average of 50 indepen-
dent runs, obtained with the best parameter sets with
respect to RMSE.

Table 1: Parameter estimates, RMSEs and r2 values for
the different setups.

Setup ξ lag RMSE r2

Decay only 0.020 - 0.154 .54

Off-Line consolidation 0.031 5 0.048 .92

On-Line consolidation 0.021 0 0.151 .58

Full model 0.030 5 0.046 .93

Results with respect to RMSE and declared variance
(r2) are displayed in Table 1. Additionally, the param-
eter estimates are included. The best results were ob-
tained with models assuming decay and off-line consol-
idation. The addition of the on-line consolidation im-
proved the fit only marginally. At least for this data
pattern it seems not necessary to assume an on-line con-
solidation mechanism. This can also be concluded from
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Figure 2: Results obtained with the different versions
of our model. Different markers indicate the different
matrix sizes. The predicted probabilities are indicated
by dashed lines, the predictions for the measured ISIs
are indicated by empty markers.

the parameter estimates. There are nearly no differences
between the estimate of ξ between the model that only
applied off-line consolidation and the full model, apply-
ing both on-line and off-line consolidation.

Discussion

We proposed a model that accounts for the temporal
dynamics of the information stored in VWM. Therefore,
we combined TVA with a dynamic memory model that
assumes the concurrent operation of a consolidation and
a decay mechanism. Our model combines the encoding
mechanism proposed by TVA with the strength concept
developed by Wickelgren. The assumed on-line consol-
idation was included to account for the age of differ-
ent memory traces. It is in line with Josts second law
(cf. Wixted, 2004a). However, the obtained results when
modeling the data reported by Phillips (1974) indicate
that this mechanism is not necessary. Only off-line con-
solidation was mandatory to achieve a reasonable data
fit. Possibly it becomes more relevant for longer dis-
play durations. This would be plausible as Josts law
was based on observations concerning long-term mem-
ory recall. Nonetheless, the data fit achieved only with
the assumption that memory consolidation counteracts
memory decay during display offset did yield a good data
fit. Despite this success, certainly several aspects of the
model ask for enhancements and further verifications.

First, our model is neutral about the source of mem-
ory degradation. The original strength theory proposed
by Wickelgren assumed interference between successive
stimuli to be the main source of memory degradation.
The decay mechanism assumed in our model is more in
line with trace decay, due to prolonged retention inter-
vals. To account for interference, it would be necessary
to account for the effect of successive stimulus onset.
As it is displayed in Figure 1, currently the presenta-
tion of subsequent displays is not supposed to affect the
VWM content. In the future, we will attempt to also ac-
count for findings that highlight the role of interference
for VWM contents (Makovski, Sussman, & Jiang, 2008)
with our model.

Second, the proposed on-line consolidation mechanism
seems not to be necessary at least to account for the data
reported by Phillips (1974). Possibly the display dura-
tion of 1000 ms applied by Phillips (1974) is to short to
require the assumption of on-line consolidation. There-
fore the model should be applied to change detection
data that was obtained with longer display durations
to further investigate the validity of the proposed on-
line consolidation mechanism. Possible data for evalu-
ation could be obtained from the experiments reported
by Hollingworth and Henderson (2002).

Even with the mentioned shortcomings the results ob-
tained with the model are promising. As the number of
free parameters is very small, it is highly unlikely that
this is due to the flexibility of the model. But especially
the necessity of the assumed on-line consolidation mech-
anism remains unclear and has to investigated in more
detail in the future. Further extensions of the model
could include a more detailed account for early visual
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processing, for instance by a layered battery of gabor-
filters as it was proposed by Serre, Wolf, Bileschi, Riesen-
huber, and Poggio (2007). In this way, visual saliency
effects may be modeled as well. Furthermore, the mech-
anisms by which the top-down control variables (β and
π) are assignment could be modeled in more detail, pos-
sibly similar to the Bayesian feature- and location-based
approach described in Chikkerur, Serre, Tan, and Poggio
(2010). We expect that the further integration of such
neural models will provide another bridge between cog-
nitive psychology and neuroscience, combining the desir-
able features of both approaches: A detailed description
of the involved processes and an output format that al-
lows direct model evaluation based on observed data.
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