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Introduction 
In multimodal human computer interaction users can often 
select between specific input modalities. Modality choice is 
influenced by various factors including user attributes, 
system attributes, the task and the environment (e.g. 
Lemmelä et al., 2008). Here, we describe on-going research 
into cognitive models of input modality selection. 

The efficiency to solve a task with a multimodal user 
interface can vary widely due to modality-specific shortcuts. 
For instance, comparing touch-screen and speech input, 
items in lists such as names in a directory can be more 
efficiently found via speech. The number of list items in a 
GUI is limited due to screen size and legibility. Using a 
touch-screen, users have to browse the list for the searched 
item. With speech, each item can be directly accessed, as the 
limitations of the GUI do not necessarily affect the voice 
interface.  Thus, subjects find a list item in fewer steps by 
asking for it verbally. The benefit of speech, BS, is defined 
as the difference in interaction steps between touch-screen 
(IST) and speech inputs (ISS): BS = IST – ISS. 

Our aim is to develop models of modality selection to 
support existing tools for model-based usability evaluation 
such as MeMo (Möller et al., 2006) or CogTool (John et al., 
2004). In a classical usability experiment, a participant is 
instructed to solve a task with different user interface 
variants. Taatgen et al. (2006) presented a model where 
unimodal task knowledge was coded into instructional 
chunks of the declarative memory of ACT-R (Anderson et 
al., 2004). We extended Taatgen’s concept for multimodal 
interaction and investigate to which extent our model is able 
to reproduce the modality selection behavior of real test 
participants. 

Experiment 

The Restaurant Booking System (RBS) 
A smart phone-based RBS with touch and speech as input 
modalities was tested (for details, see Schaffer, 2011a). 
Automatic speech recognition (ASR) was simulated via a 
Wizard-of-Oz design: an unseen human operator changed 
the system state. This way, issues related to ASR errors 
could be avoided. 

In the RBS database, requests consisting of a name of a 
city, a culinary category, a desired time and the number of 
people are made. All user entries are entered via different 
lists. Each list contains 6 layers each with 4 items. The 

transition between layers is performed with touch or speech 
input. An item is selected by touch or by saying the written 
text label. However, all list items can also be accessed 
directly by using speech input. The items are ordered 
alphabetically or numerically. The benefit of speech input 
calculates to 0 steps (BS = 1 – 1) for items located at the first 
layer of a list and increases to 5 steps (BS = 6 – 1) at the last 
layer of a list. 

Task 
The participants' task was to perform database requests with 
the RBS. The benefit of the speech modality was 
systematically varied between 0 and 5 interaction steps. 

Participants 
Sixteen German-speaking participants (8 female, 8 male) 
between the age of 22 and 31 (M=26, SD=2.95) took part in 
the study. A single experiment took approximately one 
hour. Participants received a remuneration of €10. 

Procedure 
The system was explained and the usage of touch and 
speech demonstrated. Then, participants performed three 
training trials: touch usage only, speech usage only and 
multimodal with mixed modality usage. In the target phase, 
12 trials with mixed, participant-chosen modality usage 
followed. The tasks were presented in written form (e.g., 
“Please find a Chinese restaurant in Berlin at 8 pm for 12 
people”). 

Cognitive Model 
Instructional steps are represented in declarative memory as 
chunks containing pre-condition, post-condition, action and 
modality. Pre- and post-conditions are used to chain the 
instructions. A key aspect of the model is that for each 
modality, instructional chunks with the same precondition 
occur in declarative memory. An earlier study revealed that 
for the RBS, speech is perceived to be more demanding than 
touch input (Schaffer 2011b). Therefore we use an action 
slot within each instruction to describe the interaction more 
precisely. One GUI interaction consists of two instructions 
distinguished by the statement in the action slot (search and 

 

Figure 1: Procedural knowledge of the model. 
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Figure 2: Percentage of speech usage PS for each level of 
benefit BS for human and model data. 

 
press). Speech input consists of three instructions (action 
slots: search, think and speak). 

The general operation of the model is summarized in 
Figure 1. Instructions are being retrieved from declarative 
memory. Chunks with the same precondition (but differing 
modality) are chosen randomly. Retrievals are processed by 
modality specific production rules. By way of the 
production compilation mechanism, new production rules 
with integrated chunks are learned. After each finalization 
of the task a reward is propagated to the involved 
productions.  Thus, the model adapts to modality success 
via a reinforcement-learning mechanism. 

Results 
Figure 2 shows the percentage of speech usage PS in the 
human data (black) and the model data (grey). An analysis 
of variance with repeated measures showed an highly 
significant effect of BS on PS in human data 
(F(2.27,33.97)=27.503; p1-tailed<.001; part.eta2=.647). 

Modality usage of the model is comparable to human 
behaviour. The model performs fairly well at BS=0. For 
BS=1, 2 and 3 the model fit worsens, whereas for BS=3 and 
4 model performance improves again.  

Each participant (16) of the experiment executed eight 
subtasks for each level of BS. Thus the model data was 
calculated from the average of 128 particular model 
iterations. Each iteration included 150 runs. Figure 3 shows 
the learning behavior for each level of BS (colored lines). 

Conclusion 
Taken in context with our aim to design tools for model-
based usability evaluation, the model provides a useful basis 
for a modality selection mechanism. Future work will 
extend the model to enable interaction with system 
prototypes and produce actual speech output.  As is seen 
sometimes in reinforcement learning, adaptation seems 
slower than what is seen empirically. Once a better-fitting 
model is defined, further evaluation may demonstrate the 
learning behavior over repeated presentations and time, 
giving essential cues to the nature of the learning effect as a 
form of routinization or declarative memorization. One 
 

Figure 3: Development of speech usage PS during 150 
model runs for different levels of speech benefit BS. 

 
common effect of routinization is that early choices and 
experiences determine fixed, long-term strategy choices as 
routinized knowledge is less adaptive (an effect of primacy: 
first impressions matter). Showing such effects would 
critically examine the use of adaptive speech recognition 
technology in end-user applications, specifically if these 
systems start out with high error rates. 
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