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Schema-based Analogy Mapping
In the last 20 years, analogy derivation has come to be at
the forefront of cognitive science (Gentner, 2010). Under
Structure Mapping Theory (Gentner, 1983), an analogy
“T is (like) a B”, where B and T are predicate-structures, is
a mapping from a portion of B to a portion of T that satisfies
various conditions (see Figure 1). This yields the following
computational problem:

ANALOGY MAPPING
Input: Two predicate-structures B and T .
Output: The most systematic analogy mapping M
between B and T .

One popular heuristic for making this problem simpler is to
use schemas. While there is no formal definition, a schema is
described in Gentner et al. (2009) as “. . . the relational struc-
ture engendered by an analogical comparison . . . [which] will
be a fairly concentrated relational representation, with many
of the initial item-specific features stripped away” (p. 1345).
It has been claimed that schema-based analogy derivation is
efficient in practice, i.e.

. . . aligning a target with [a schema] should be compu-
tationally less costly than aligning a target with the cor-
responding literal base concept [because schemas] will
contain fewer predicates than the literal concepts they
were derived from, and a higher proportion of these
predicates can be mapped to relevant target concepts.
(Bowdle & Gentner, 2005, p. 199)

The common thread in such claims is that schemas make
analogy derivation easier because schemas are small and will
generally be fully or almost-fully mapped to a comparison
predicate-structure. However, these claims have never been
formally proven. In this poster, we give preliminary results
of a complexity-theoretic investigation of these claims.

Methodology
First, we establish the complexity of ANALOGY MAPPING.
Then, we analyze a simplified version of this problem deal-
ing specifically with schemas in order to find efficient algo-
rithms. Following convention in Computer (Garey & John-
son, 1979) and Cognitive (van Rooij, 2008) Science, an algo-
rithm is considered efficient if it runs in polynomial time, i.e,
in time upper-bounded by nc where n is the input size and c
is a constant. It is widely held that no such algorithm exists
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Figure 1: Analogy Derivation in Structure-Mapping Theory.
(a) Two graph representations of predicate structures encod-
ing descriptions of the solar system (left) and the Rutherford
model of the atom (right). (b) An analogy between the struc-
tures in (a), where dotted arrows indicate the mappings be-
tween corresponding pairs of predicates and objects.

for a problem if that problem is NP-hard. In such cases, we
consider two ways of restricting the problem input to allow
for a practical solution:

• Restricting the values of a set K of one or more problem-
aspects (parameters) such that there are algorithms that
are fp-tractable for those parameters, i.e., algorithms that
run in time f (K)nc for some function f , and hence are ef-
fectively polynomial-time when those parameters are re-
stricted (Downey & Fellows, 1999).

• Limiting the inputs to certain classes of graphs. The
classes considered here are directed trees (DT), polytrees
(PT) (directed acyclic graphs which remain acyclic even
if the direction of their arcs is removed), polyforests (PF),
and directed acyclic graphs (DAG).

Complexity Results
For reasons of space, all proofs are omitted; they can be
found in Hamilton (2012). It is known that ANALOGY MAP-
PING is NP-hard (van Rooij et al., 2008) and hence, modulo
the widely-believed conjecture that P 6= NP (Fortnow, 2009),
cannot be solved efficiently in general. Let |T | be the size of
the target graph T and d be the difference in size between T
and the optimal analogy mapping.
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Lemma 1 ANALOGY MAPPING is fp-intractable
for {d, |T |}.

This shows that the properties of size and closeness that
schemas possess are not sufficient on their own to guarantee
efficiency. For this reason, we examine inclusion, a special
case where d must be zero.

(i, j)C-ANALOGY INCLUSION [(i, j)C-AI]
Input: Two ordered predicate-structures B and T of class
C with i and j roots, respectively.
Output: An analogy mapping M between B and T such
that T is completely mapped onto B, or ⊥ if no such
mapping exists.

Note that we also restrict predicate-structures to consist of
predicates who arguments are ordered, e.g., GREATER(X,Y).
The number of roots is of special interest, as the only optimal-
solution algorithm known for ANALOGY MAPPING (Falken-
hainer et al., 1989) exhibits improved performance when the
number of roots is restricted.

Relative to the various classes of predicate-structure graphs
mentioned previously, we have the following results:

Lemma 2 (1, 1)DT-AI can be solved in O(|T |) time.

Lemma 3 (i, j)PT-AI can be solved in O(|T |1.5|B|2) time.

Lemma 4 (i, j)PF-AI is NP-Hard.

The frontier of general practicality for ANALOGY INCLU-
SION is thus polyforests. At this point, we must examine pos-
sible parameters to make this case solvable efficiently. Recall
that j is the number of roots in T and let f be the maximum
number of occurrence of any root predicate-type in B or T .

Lemma 5 (i, j)PF-AI is fp-tractable for { f , j}.

As polyforests are special cases of DAGs, this result also
holds for (i, j)DAG-AI. Moreover, as ANALOGY INCLUSION
is a special case of ANALOGY MAPPING, all fp-tractability
results and most of the fp-intractability results for ANALOGY
MAPPING given in van Rooij et al. (2008) and Wareham et
al. (2011) hold for (i, j)DAG-AI as well.

Discussion
In this poster, we have shown that the frontier of polynomial-
time tractability for schema-based analogy mapping is in fact
lower than general DAGs and given a rough assessment of
the fp-tractability options for such mapping relative to poly-
forests and DAGs. Much work remains to be done, both to es-
tablish the complexity of ANALOGY INCLUSION relative to
all combinations of the considered parameters and to extend
these results back to general schema-based analogy mapping.

There are also closely-related problems of interest. For ex-
ample, it has been conjectured that ANALOGY MAPPING is
easier when both B and T (rather than only T to B) are close
(Gentner, 2010). The limiting case analogous to ANALOGY
INCLUSION is determining the mapping between analogi-
cally identical predicate-structures. While we do not know

the complexity of this problem, we do have results for a re-
lated problem, namely IDENTICAL ANALOGY, which returns
“yes” if predicate-structures B and T are isomorphic, i.e. is
there an analogy mapping between all of B and all of T ?

Lemma 6 IDENTICAL ANALOGY is polynomial-time equiv-
alent to GRAPH ISOMORPHISM.

As GRAPH ISOMORPHISM is widely believed to be
polynomial-time intractable, this result provides circumstan-
tial evidence that mutual predicate-structure closeness is not
a sufficient restriction to make ANALOGY MAPPING effi-
ciently solvable, and hence motivates the application of the
methodology described here to this problem.
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