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Abstract 

The gold standard for cognitive science is transdisciplinary 
cognitive modeling of human behavior evaluated by 
quantitative comparisons with experiments involving human 
participants. However, this restrictive standard excludes much 
work in the history of cognitive science, and we argue 
sticking to this strict definition would impede future work in 
the field. In this paper, we examine conceptions of cognitive 
science and apply them to a breakdown of different kinds of 
cognitive modeling and AI, demonstrating that many different 
kinds of AI research have contributions to make to cognitive 
science. Even when a system cannot be evaluated by direct 
quantitative comparisons, rigorous methods exist to evaluate 
even novel qualitative work’s contribution. 

Keywords: Artificial intelligence; cognitive modeling; 
cognitive science; empirical evaluation; qualitative methods; 
AI methodology; philosophy of science. 
 

Introduction 
In theory, cognitive science is a broad field, encompassing 
psychology, artificial intelligence, linguistics and many 
other disciplines. Yet in practice, we have encountered two 
significant restrictions on what kind of artificial intelligence 
(AI) research is considered a legitimate contribution to 
cognitive science: first, that the only acceptable evaluation 
of an AI model is statistical comparison with an existing 
system or with humans; and second, that the only acceptable 
AI models are those that explicitly model humans or 
animals. 

In this paper we argue that the above restrictions are 
misconceptions. These misguided standards would not only 
exclude many kinds of legitimate cognitive science work in 
the future, but also exclude some important findings from 
cognitive science’s history. As a field, we should have 
solidarity if not consensus on what are acceptable methods 
for AI research in cognitive science, and these 
misconceptions discourage important work yet to be done. 

To make this argument, we will categorize the kinds of 
artificial intelligence research relevant to cognitive science. 
AI itself is the attempt to build and understand agents that 
can behave intelligently, but it can be roughly broken into 
“Engineering AI,” which builds agents without modeling 
natural intelligences, and “Psychological AI,” which models 
processes in natural intelligent agents. Psychological AI is 

often called “cognitive modeling” when it involves 
quantitative comparisons with the data collected in 
psychological experiments. 

Engineering AI is, by a wide margin, most of AI research. 
Because Psychological AI explicitly attempts to model 
humans and animals, its role in cognitive science research is 
clear; however, we will argue that Engineering AI also has a 
role to play by providing important constraints on what 
kinds of intelligent systems are possible, and what kinds of 
knowledge or processes are necessary. Similarly, we will 
argue that Psychological AI has a role to play in cognitive 
science even when it is not a formal “cognitive model.” 

Part 1 of this document examines Psychological AI. In it, 
we argue for the legitimacy of qualitative results in 
cognitive modeling research. We begin by outlining 
opposing arguments that qualitative results are inferior to 
quantitative results, or perhaps only good for hypothesis 
generation, or are even worthless altogether. While there is 
nothing wrong with quantitative results, there are many 
worthwhile projects for which quantitative evaluations are 
inappropriate or impossible. Further, pioneering cognitive 
modeling research, which we should encourage researchers 
to pursue, often requires the use of qualitative results. 

Part 2 examines Engineering AI. In it, we argue that at 
least some Engineering AI is legitimate cognitive science 
research, in spite of it not modeling natural intelligences. To 
make this case, we examine conceptions of cognitive 
science on the axes of interdisciplinarity and inclusiveness, 
and describe a range within these axes where Engineering 
AI can make meaningful contributions to cognitive science. 

We will conclude by summarizing our categorization of 
artificial intelligence methods, and by highlighting how 
Engineering and Psychological AI are critical to the 
progress of cognitive science, both as ways of breaking new 
ground and as ways of avoiding garden paths. 

Part 1: 
Psychological AI and Cognitive Modeling 

The Fable of Car World 
 

In Car World, a group of scholars were creating faster 
and faster cars. Their students would come up with a new 



vehicle, and would show, quantitatively, that it was faster 
than previous cars. If it wasn’t the fastest car on a flat 
road, it might have better traction on ice, inclines, or 
sand. Car technology was progressing quite well, car 
speeds and traction were compared statistically, and 
nobody doubted the scientific integrity of the field.  

Then a student wanted to create a vehicle that could fly. 
At her proposal defence, she described how it might work, 
her reasons for thinking so, and even showed some 
prototype “gliders” that stayed in the air for quite a 
while, even if they were not powering themselves.  

One of the committee members cut her off. “Hold on. 
How are you going to evaluate this?” 

“Well,” she said, “if what I build actually flies, then it 
worked, and supports the theories I used to create it.” 

“But what are you going to compare it to? Will it be 
faster than the cars we have now?” 

“No. Rocket cars are faster. But my vehicle will fly—” 
“Well, will it have better traction, then?” 
“No, it will actually lose traction when it takes off. But 

speed and traction aren’t the point, it’s going to fly—” 
“So you won’t have any quantitative comparisons to 

demonstrate support for your theory?” 
“I can’t think of how,” she said, getting nervous. “All 

previous vehicles don’t fly, and their...altitude, in any 
case, was never measured.” 

The committee member, frustrated, threw up his hands. 
“If you don’t have a quantitative evaluation, I don’t see 
how you can show that you’ve made any contribution.” 

Another committee member tried to help. “Maybe if you 
could use the theories you have to make a car...” 

 
Psychological AI can make several kinds of contribution to 
cognitive science, which we will now describe and defend. 
The prototypical contribution is cognitive modeling: using a 
Psychological AI system to model experimental findings. 

1) Empirical Quantitative Cognitive Modeling 
This involves creating a cognitive model that outputs 
numbers. The evaluation of the model is done by comparing 
this output (often with correlation) to quantitative data 
collected in a psychology experiment (as we refer to human 
participants experiments in this paper). As in all AI, the 
model is an implementation of a theory—in this case a 
process explanation of the phenomenon investigated in the 
psychology experiment. The main contribution of the work 
is the theory and the model. Its evaluation is the statistical 
testing done to compare its outputs to dependent variables 
from the psychology experiment. 

We assume that nobody will object to research in the style 
of (1); however, it has drawbacks. It requires modeling of 
something that can be studied with a psychology experiment 
that produces quantitative output. This severely limits the 
cognitive phenomena this method can investigate. 

It is difficult or impossible to collect quantitative data on 
many interesting and important cognitive phenomena, such 
as dreaming, planning, consciousness, reasoning, and 

interactions between these subsystems (Langley, 2012). 
Cognitive psychology investigates them with dependent 
measures such as response times and percentages of correct 
answers. These measures can legitimately be used broadly, 
but are not without limitations. Correlations between a 
psychological experiment and model behavior only establish 
weak equivalence of the model to human cognition. Strong 
equivalence requires validating that the details of the 
implementation match the processes of human cognition, 
which requires separate experimentation (Pylyshyn 1984). 

A more important limitation on cognitive modeling is the 
source of the psychological data used for comparison. This 
data can be collected by other researchers or by the modeler.  

1.1) The Modeler Runs the Experiment 
In this type of research, a cognitive model that outputs 
numbers is evaluated against quantitative data collected in a 
psychology experiment run by the modeler. 

The benefits of (1.1) are obvious. The contribution 
becomes the experiment and the model combined. The 
modeler is not limited to only those problems that other 
people have decided are important. If there are no existing 
data, the modeler can collect them in an experiment tailored 
to tease out the theoretical features of the model. 

The drawbacks are somewhat less obvious. Experiments 
take a great deal of time to do, and not every modeler knows 
how to do them properly. Getting an experiment right is 
difficult, and necessarily uses time that could have been 
spent on model implementation, which itself is not trivial. 
This usually requires a tradeoff, because the resources of a 
research group are generally limited. 

The resources of a student are more limited, and, running 
an experiment has an opportunity cost: less time spent 
refining the model. For computationally-focused students, 
this is problematic, as computer science hiring committees 
can see psychological experiments as a waste of time. 

1.2) The Modeler Uses Someone Else’s Data 
Alternatively, modelers may use someone else’s data, which 
saves time for programming the model. However, this 
severely limits what the researcher can study. 

First, the researcher is restricted to quantitative data the 
experimenter thought to record. Experimental research is 
hypothesis-driven, and experimentalists generally don’t 
collect data not relevant to their hypotheses. It’s not just that 
extraneous measures add clutter to what would otherwise be 
elegant experimental designs; they can even work against 
the publication of a paper. For one experiment, the first 
author did not collect certain data because he would have 
been obliged to report he collected them, to run statistical 
tests on them, possibly with null results—leaving him 
unable to defend why he collected them in the first place, at 
least not to the satisfaction of typical referees. If future 
modelers need those data, they are out of luck. 

Second, even assuming data the modeler would find 
useful are collected, they are often not published. Many 
researchers only report measures that result in significant 



differences, even though other measures might be useful to 
a future modeler. It is important to note that the purpose of 
the model might well be different from the hypothesis of the 
experiment it is modeling. Worse, collected data themselves 
are often not published, only descriptive measures of them. 
If the original experimenter cannot (or will not) get the data 
to the modeler, the modeler is limited to the summary 
information the experimenter decided to report. Even online 
journals do not typically publish pages and pages of 
numbers. The value of large unrefereed archives of data is 
dubious, but even if one could be established, it will not be 
possible to recover data for most papers published in the 
past. If researchers want to compare the model’s results to 
some aspect of the experiment that wasn’t published, they 
are again out of luck. 

Finally, and perhaps most damning, with (1.2) the 
modeler is essentially following up on someone else’s work 
rather than pioneering his or her own. This is not a recipe 
for making breakthroughs. 

In spite of these extraordinary limitations, (1.1) and (1.2) 
are generally considered to be the highest standard for 
cognitive modeling. 

2) Psychological AI with Novel Functionality 
As an alternative to direct quantitative comparisons to 
psychological experimental data, a researcher could focus 
just on creating a computer model of a cognitive ability that 
humans have, regardless of whether someone has designed a 
psychology experiment to explore it. This model should 
generate predictions, either qualitative or quantitative, that 
could be tested with a psychology experiment, but the 
modeler need not run this experiment. Ideally, a paper using 
this methodology explores what such an experiment might 
look like, and make specific predictions. 

If the core of the scientific method is theory generation, 
hypothesis generation, and hypothesis testing, then (2) 
focuses just on theory and hypothesis generation. Although 
frowned upon in psychology, non-experimental science is 
an important part of many disciplines, including theoretical 
biology, theoretical geology, theoretical sociology, and 
especially theoretical physics. Famously, Einstein’s (1905) 
paper on special relativity contained a detailed model, 
specific predictions…but only a call for experiments to test 
his hypotheses (Isaacson, 2007). Psychology is unusual 
among the sciences in that it does not have a large 
theoretical subdivision within the discipline itself. 

Psychological AI can generate hypotheses about human 
beings. This is tricky, because the researcher is not 
evaluating the hypothesis to either AI’s or psychology’s 
highest standards. However, if the AI is interesting enough, 
and built on solid cognitive principles, it can be of value. 

For example, one might build a spatial inference system 
based on what is known of spatial inference. The model 
could behave in ways that make predictions that could be 
tested in the laboratory on people. Robert West (personal 
communication) calls this “forward engineering.” 

Rather than judge this kind of modeling on the standards 
of experimental psychology, think of it as computational 
philosophy. Philosophers doing theoretical psychology often 
do not run experiments that could test their theories, yet 
they can point experimental work in fruitful directions. 

In (2), the researcher must demonstrate that the task has 
not been done before, or that the way the task is solved is 
different in some way. If the model exhibits novel behavior 
or uses a different method, then the very fact that the model 
worked as designed is an acceptable evaluation all by itself, 
even without statistical testing. This is true because the 
model shows that the theory can work in a computational 
intelligent agent—which is not true for all proposed pen-
and-paper psychological theories. Like the plane in Car 
World, the model does something brand new. Showing that 
a model can work at all is an important step towards 
showing that cognition works that way in humans. 

Still, a system that demonstrates novel functionality might 
be hard to evaluate: the more novel the functionality, the 
fewer other works will be appropriate for comparison. We 
first examine systems that generate meaningful numbers. 

2.1) Novel Quantitative Psychological AI  
The model the researcher creates could generate quantitative 
data: the size of the system’s output, the number of steps 
taken, the percentage of correct responses, and so on. This 
does not mean, however, that there are any other data which 
would be sensible to compare it with using statistical tests. 
This is the situation we explored with the Carworld fable. 

The lack of a suitable comparison does not preclude 
comparison in the future, either with experimental results or 
the results of other models. It’s just that these comparisons 
need not happen in the modeling paper itself. 

The lack of a suitable comparison also does not mean that 
the system cannot be evaluated. For example, theoretically 
significant subcomponents can be ablated (removed) to 
identify the system’s sources of power. The second author’s 
model of contextual spreading activation (Francis 2000) was 
tested in this fashion by ablating its contextual features. 
Similar approaches are detailed in many books, papers and 
symposia (e.g., Cohen, 1995; Walsh, 1998; 2000). 

2.2) Novel Qualitative Psychological AI 
Not all systems can be measured quantitatively, or when 
they can, the available measures may not be interesting or 
meaningful. Of course, to determine that a system has 
exhibited a behavior, its behavior must be measurable; when 
that measurement is not numerical, we call it qualitative. 

For example, suppose a model generated pictures that 
looked like Picasso paintings. The images of course can be 
described with numbers, but those numbers are not 
explicitly generated by the model. One could run 
participants to judge how much the images looked like 
Picasso’s, but this would require running an experiment, and 
the work would be subject to the same trade-off as (1.1). 
Even if one argued that a graduate student’s dissertation 
should require such an experiment, both the model and the 



experiment testing the model are distinct contributions, and 
reporting each one adequately could fill an average 
conference paper. 

There is an analogous problem in computer graphics, 
which is why we chose the Picasso example. A researcher 
might, for instance, create a model that generates graphics 
that appear as a brick wall does when hit with a wrecking 
ball. How does the researcher evaluate how realistic it is? Or 
even how realistic it looks? Even though books have been 
written on the principles of perceptual realism (Thompson, 
Fleming, Creem-Regehr & Stefanucci 2011) justifying 
claims about a specific model still would require 
experimental evaluation. Yet texts on graphics such as 
Parent’s (2008) have no experimental evaluations and refer 
to psychological research largely in the facial and 
behavioral animation chapters. Graphics progresses largely 
without human participant experiments because ultimately 
the quality of graphics depends on subjective experience. 
The graphics benefits from the work of excellent modelers, 
even those who have poor skills at running psychology 
experiments.  

So does cognitive science. 

Part 2: Engineering AI 
Engineering AI may appear irrelevant to cognitive science. 
Whether it is depends on one’s conception of what cognitive 
science research is and should be. 

For our purposes, there are two aspects to a conception of 
what cognitive science should be: its proper research 
methodologies (the tools it uses for investigation) and its 
proper subject matter (the phenomena it investigates.) 

Cognitive Science Methodology 
One aspect of cognitive science methodology is its 
multidisciplinarity: how interdisciplinary does research need 
to be to qualify as cognitive science? An inclusive approach 
includes any research (on the proper subject matter) in any 
of cognitive science’s component disciplines. 

There are varying degrees of the exclusive approach, but 
all require some amount of multidisciplinarity. A weakly  
exclusive approach might merely require comparing 
findings with problems and theories in another participating 
discipline. We will call this simply “interdisciplinarity.” 
However, this would exclude from cognitive science many 
historically interesting findings. For example, this would 
likely exclude Quillian’s (1968) work on semantic memory, 
even though Collins and Loftus (1975) cite it as the direct 
inspiration of their seminal cognitive science work on 
spreading activation—and both are included in Readings in 
Cognitive Science (Collins & Smith, 1988), a required text 
at the author’s alma mater. 

A strictly exclusive approach might require that each 
piece of research involve methodologies from more than 
one discipline. For example, doing a psychology experiment 
and some cognitive modeling in the same work. We will 
call this stricter conception “transdisciplinarity.” Requiring 
transdisciplinarity would exclude enormous amounts of 

research, including much of that published in the Cognitive 
Science journal and conference proceedings, and is thus too 
restrictive. For example, Schank’s (1977) work on scripts 
and Hayes’s (1978) work on naïve physics would be 
excluded—cutting more out of Collins and Smith (1988). 

Another aspect of cognitive science methodology is its 
“level of analysis:” at what level of granularity do theories 
need to be to qualify as cognitive science? An essential 
aspect of cognitive science is that it operates at the cognitive 
level—it views the mind as an information processor. This 
is why behaviorist psychology studies are often not 
considered cognitive science, except in the most inclusive 
sense of the term. The level of analysis issue is potentially a 
problem for psychology and philosophy theories, but 
because all AI happens at an information-processing level, it 
qualifies as cognitive science with respect to the levels of 
analysis question, and we will not discuss it further. 

Cognitive Science Subject Matter 
The part of the subject matter question relevant to the 
current discussion involves what kind of intelligent systems 
are under the purview of cognitive science. 

The narrowest view we have encountered is that only 
projects relating to symbolic human cognition are part of 
cognitive science. A slightly more typical view is that only 
those projects relating to human cognition are acceptable. A 
slightly broader conception includes all animal cognition. 
The broadest includes non-human intelligences, potentially 
including intelligent computer systems, alien intelligences 
(if we ever find any) and distributed cognitive systems (such 
as companies, anthills, human-machine interfaces, immune 
systems, etc.)   

Is Engineering AI Cognitive Science? 
Engineering AI does not model natural minds. Its findings 
are about intelligence and cognition in the abstract. Both the 
exclusive methodology and the restrictive subject matter 
conceptions of cognitive science exclude Engineering AI. 
For example, many researchers in AI work on planning 
algorithms. They do not try to make their planners think the 
way people or animals do, nor do they compare their results 
with results from other fields. Their focus is developing 
better planners with respect to planning performance 
metrics. Under the most restrictive definitions, this work 
would be excluded from cognitive science. 

AI is a component field of cognitive science, and planning 
is a cognitive process (in humans, other animals, machines, 
and distributed cognitive systems). An inclusive, broad 
conception of cognitive science as the study, by whatever 
means necessary, of all minds, and not just natural minds, 
would include all AI work in cognitive science. 

We believe it is a stretch to call all AI work cognitive 
science, but the most restrictive subject matter conceptions 
are misguided. Engineering AI can shed light on the nature 
of cognition itself, informing the wider community about 
possibilities and limits through implementation. For 
example, a certain planning method might intuitively not 



appear to work for a given task, but Engineering AI, just 
like (2), can provide existence proofs showing that a given 
method is even possible. 

Engineering AI research can also establish limits. It is 
harder to show that a particular kind of process cannot 
accomplish a particular task, but failure provides a weak 
form of disproof: after many failed attempts, the community 
is legitimately entitled to some doubt. For example, many 
but not all AI researchers believe reactive agents cannot 
solve planning problems (see the discussions in Chapters 2 
and 25 of Russell and Norvig, 2003). Theorems provide a 
stronger form of disproof, constraining all possible 
cognitive systems. For example, the theory of inductive bias 
in machine learning rules out pure blank slate learning 
systems (see section 2.7.3 of Mitchell, 1997), and Minsky 
and Papert’s (1988) work on perceptrons showed that a 
learning system can only learn what it can represent. 

Minsky and Papert’s work also provides an example of 
how Engineering AI can connect to cognitive science: they 
explicitly made arguments connecting their mathematical 
discoveries to general intelligent systems. All Engineering 
AI is acceptable under the inclusive methodology and broad 
subject matter views of cognitive science, but under more 
exclusive views, AI work must either relate its findings to 
other fields (interdisciplinarity) or use methodologies from 
other disciplines (transdisciplinarity) to be considered a 
contribution to cognitive science. We believe that 
transdisciplinarity is too restrictive, but that work must 
make interdisciplinary arguments to be cognitive science. 
Although we might give a pass to early work, contemporary 
cognitive scientists have no excuse not to address other 
subdisciplines. 

Yet, even if one were to argue that an Engineering AI 
system that focused purely on an engineering problem was 
not cognitive science, that does not mean that the work has 
no contribution to make to cognitive science. For example, 
an Engineering AI algorithm could show how a particular 
problem could be solved, leading to the development of (2) 
style cognitive science model, or even a (1) style cognitive 
science model quantitatively compared with data collected 
from an experiment with human participants. Clearly, the 
Engineering AI system that made the Psychological AI 
system possible should be cited in the related work section 
of any paper describing the cognitive modeling work, and 
therefore counts as a contribution. 

In conclusion, Engineering AI, which we will number (3) 
in this paper, should always be regarded as a legitimate 
cognitive science contribution if it situates itself within the 
other cognitive science subdisciplines. But because 
Engineering AI is not cognitive modeling, it must be 
evaluated in its own way—and again we begin by 
examining quantitative comparisons with existing systems. 

3.1) Empirical Quantitative Engineering AI 
In this approach, the researcher’s AI generates quantitative 
output that can be compared statistically to the output of a 
previous AI implementation—ideally, showing an 

improvement. Just like (1), it has the benefit of rigor and 
suffers the drawback of requiring the researcher to do 
what’s been done before, just a little better.  Langley (2011) 
says that this kind of research “...has encouraged 
incremental progress on standardized problems.” 

Just as quantitative comparison of models to psychology 
experiment findings is the highest standard for cognitive 
modeling, quantitative comparison of one AI to another is 
the highest standard for AI modeling, deserving or not.  

3.2) Novel Quantitative Engineering AI 
A researcher could create an AI that both demonstrates 
novel functionality and generates quantitative output, but 
this output would not be comparable to the output of any 
other AI. Like the plane in Carworld, there are no other AIs 
to which a truly new system can profitably be compared. 

However, there still might be some performance metric 
that is usable, such as computational complexity, real-time 
performance, percentage of correct answers with respect to a 
real-world task, and so on. For example, the first computer 
vision system that recognized faces could not be compared 
to any existing system, nor was it an attempt to model 
human performance at the task. It was actually evaluated by 
showing that the facial recognition features operated at 
better than human level (Bledsoe, 1966).  

3.3) Novel Qualitative Engineering AI 
A less rigorous, but still acceptable method (in some circles) 
is to demonstrate a capability of an AI that no other AI has. 
This has overlap with qualitative cognitive modeling (2), 
but with less emphasis on what natural intelligences can do. 

Minksy (1968) argues AI essentially began with three 
cybernetic systems that demonstrated novel human-like 
capabilities: achieving goals (Rosenblueth, Weiner, & 
Bigelow, 1943), representing concepts (McCulloch & Pitts, 
1943), and using analogies (Craik, 1943). 

These seminal works of AI, while inspired by human 
behaviors, were neither what we would consider cognitive 
models, nor were they comparable to other AI results. 
Indeed, as they broke new ground, how could they be?  

Conclusion 
Many of these issues exist on a continuum, and we expect 
that different readers will respond to them with different 
intuitions. In spite of this, we hope that our analysis will 
provide a structured way to think about these issues.  

We have sketched out an ontology of cognitive modeling 
and AI contributions with the potential to contribute to 
cognitive science research, and outlined how each of these 
areas can be rigorously evaluated, even when direct 
comparisons are impossible: 

 
1) Empirical Quantitative Cognitive Modeling 

1.1) The Modeler Runs the Experiment 
1.2) The Modeler Uses Someone Else’s Data 

2) Novel Psychological AI 
 2.1) Novel Quantitative Psychological AI 



 2.2) Novel Qualitative Psychological AI 
3) Engineering AI 
 3.1) Empirical Quantitative Engineering AI 
 3.2) Novel Quantitative Engineering AI 
 3.3) Novel Qualitative Engineering AI 
 
We have also presented conceptions of cognitive science 

according to subject matter (from a narrow focus on humans 
to a broad focus on all intelligences) and methodology 
(from exclusive transdisciplinarity through intermediate 
interdisciplinary to broadly inclusive approaches). We 
argued that interdisciplinarity is what should be required of 
a modern cognitive science contribution.  Some older 
unidisciplinary works are either grandfathered into cognitive 
science, or acceptable as non-cognitive science that 
nonetheless influenced cognitive science. 

Even though quantitative comparison is thought to be the 
highest standard in science, legitimate cognitive modeling 
and AI findings do not require quantitative comparisons, nor 
even quantitative output.  

In terms of subject matter, which AIs count as cognitive 
contributions depends on where one stands with respect to 
the relevance insight into artificial minds in their own right. 
Several examples of Engineering AI of the past have made 
important contributions. We do not take a strong stance on 
this particular issue.  

Our community’s misguided “high” standards for science 
would exclude the great results of the past, as well as 
potentially inhibit important discoveries of the future, 
because pioneering, seminal work often involves novel 
approaches that are quantitatively incomparable to past 
projects.  As such we encourage a broader conception of the 
role of computer modeling in cognitive science—one that 
will lead to more of the groundbreaking work that makes AI  
a thriving, innovative field. 
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