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Introduction
The International Conference on Cognitive Modeling (ICCM) is the premier conference for 
research on computational models and computation-based theories of human cognition. 
ICCM is a forum for presenting and discussing the complete spectrum of cognitive modeling 
approaches, including connectionism, symbolic modeling, dynamical systems, Bayesian 
modeling, and cognitive architectures. Research topics can range from low-level perception to 
high-level reasoning. In 2015 we specifically welcomed contributions that use computational 
models to better understand neuroscientific data. The 13th ICCM was held at the University 
of Groningen in Groningen, the Netherlands, on April 9-11, 2015.

All papers and abstracts in the ICCM 2015 proceedings may be cited as follows:

Author, A., & Author, B. (2015). This is the title of the paper. In N. A. Taatgen, M. K. van Vugt, J. 
P. Borst, & K. Mehlhorn (Eds.), Proceedings of the 13th International Conference on Cognitive 
Modeling (pp. 1-6). Groningen, the Netherlands: University of Groningen.
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Keynotes

Combining Human Judgments in General Knowledge and 
Forecasting Tasks
Mark Steyvers – University of California, Irvine

When individuals retrieve facts from memory, or predict future events, how can we aggregate 
the judgments to maximize accuracy? We analyze the performance of individuals in a number 
of ranking tasks, such as reconstructing the order of historic events from memory (e.g. the 
order of US presidents) as well as forecasting tasks where individuals judge the likelihood 
of geopolitical events. Participants either independently provide judgments or share 
information in iterated learning environments where each individual in a chain combines 
their own independent judgment with the judgments from the previous individual in a 
chain.  We propose that a successful aggregation approach requires a cognitive modeling 
framework that consider a number of psychological factors, including individual differences 
in skill and expertise, systematic distortions in human judgments, and the role of information 
sharing. We develop Bayesian cognitive models that  assume that each individual’s judgment 
is based on random samples from distributions centered on a latent ground truth and that 
each individual is associated with a latent level of knowledge of the domain. The models 
demonstrate a wisdom of crowds effect, where the aggregated judgments  are closer to the 
true answer than the majority of individual judgments. The models also demonstrate that 
we can recover the degree of knowledge of each individual, in the absence of any explicit 
feedback or access to ground truth, and suggest ways in which limited information sharing 
can improve performance.

Interactions between attention and reward for the guidance 
of plasticity, learning and memory
Pieter R. Roelfsema – Netherlands Institute for Neuroscience

Many forms of learning are guided by rewards and punishments. Humans and animals 
learn complex tasks that consist of multiple epochs by the appropriate choice of reward 
contingencies. It is not well understood how association cortices learn to link sensory 
stimuli and memory representations to motor programs when we learn to map stimuli onto 
responses. I will present AuGMEnT (Attention Gated MEmory Tagging), a biologically plausible 
model that can train a neuronal network to perform a large variety of tasks while only stimuli 
and reward contingencies are varied.

The model’s aim is to learn action values in a feedforward neuronal network. It is equipped with 
mechanisms to overcome the structural and the temporal credit assignment problem. The 
temporal credit assignment problem is solved by a form of Q-learning. The structural credit 
assignment problem is solved by ‘attentional’ feedback from motor cortex to association 
cortex that “tags” synapses that should change to improve behavior. The new learning rule 
can train a simple neural network in many tasks that are in use in neurophysiology, including 

ix



(1) delayed saccade tasks; (2) memory saccade tasks; (3) saccade-antisaccade tasks; (4) 
decision making tasks; and (5) classification tasks.

Interestingly, neurons at intermediate levels of the network acquire visual responses and 
memory responses during training that resemble the tuning of neurons in association areas 
of the cerebral cortex of animals that are trained in these same tasks. I will discuss why and 
how AuGMEnT can account for learning in so many tasks.

The Sequential Structure of Thought
John R. Anderson – Carnegie Mellon University

The goal of experimental psychology from its outset has been to take the wondrous acts of 
human cognition and decompose them into their basic steps and understand how these 
steps are put together. For much of its history, psychology has been limited to observations 
of what went into the mind and what came out. Theoretical endeavors over the generations 
have built ever more complex models to account for the input-output relationships. Brain 
imaging offers the possibility of gathering signs from the processes that intervene between 
input and output. I will describe how we have combined complex models like ACT-R with 
such signs (tire tracks in the case of fMRI, a breadcrumb trail in the case of EEG) to understand 
the sequential structure of thought.
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A Connectionist Semantic Network Modeling the Influence
of Category Member Distance on Induction Strength

Michael Vinos (michael.vinos@gmail.com)
Graduate Program in Basic and Applied Cognitive Science, University of Athens

Ano Ilissia University Campus, GR-15771 Zografos, Greece

Efthymios Tsilionis (eftsilio@gmail.com)
Graduate Program in Basic and Applied Cognitive Science, University of Athens

Ano Ilissia University Campus, GR-15771 Zografos, Greece

Athanassios Protopapas (aprotopapas@phs.uoa.gr)
Department of Philosophy and History of Science, University of Athens

Ano Ilissia University Campus, GR-15771 Zografos, Greece

Abstract
We present a model for inductive inference when both the
premises and the conclusion are categorical. The phenomenon
under investigation is that less similar categories in the
premises lead to stronger conclusions. The model is based on
the Rumelhart semantic connectionist network (Rogers &
McClelland, 2004, 2008). Simulations addressed the main
phenomenon and nine additional non-trivial phenomena of
categorical induction (from Osherson, Smith, Wilkie, Lopez,
& Shafir, 1990), providing support to the majority of the
hypotheses.

Keywords: category-based induction; connectionist model;
semantic network; categorization

Inductive inference is a distinctive attribute of human
cognition and is distinguished as an important field in
cognitive science research. Induction refers to our ability of
deriving conclusions through generalization of pre-existing
knowledge into new circumstances (Hayes, Heit, &
Swendsen, 2010). For instance, we can predict that the sun
is going to rise tomorrow morning and also we know that
each new to us species of fish can swim and that it bears a
set of other fish features. A well-studied form of inductive
inference is categorical induction. Category-based induction
concerns transfer of the properties of a category or group of
categories to some other category (Hayes et al., 2010; Heit,
1997). Transfer is facilitated when the categories under
comparison belong to the same superordinate category and
therefore share a lot of common characteristics and features
(Hayes et al., 2010; Heit, 1997).

Osherson et al. (1990) studied category-based induction
presenting to participants problems like those in Box 1.
Propositions above the line are called premises and are
assumed to be valid. The task was to make judgments about
the strength of the conclusion below the line. Properties in
these examples (blood sodium concentration) are called
“blank” because participants are unlikely to have prior
knowledge about them. Use of blank properties permits
study of the net effect of the categories themselves upon the
strength of the inference, to avoid effects of other related
properties (Feeney & Heit, 2011; Osherson et al., 1990).

Osherson et al. (1990) presented thirteen phenomena of
category-based induction, which they argued should be part
of a theory of inference strength, based on findings from
two studies. They proposed the similarity-coverage model of
argument strength, suggesting that the strength of the
conclusion depends on the degree of similarity among the
premises and the conclusion and among the premises and
members of the superordinate category that includes them.

Here we focus on phenomena 2 and 6, which concern the
diversity of the premises. Specifically, the less similar the
categories of the premises are, the more they confirm the
conclusion. Phenomenon 2 concerns the general case, in
which premise categories are included in the conclusion
category, while Phenomenon 6 concerns the specific case, in
which a single category includes premises and conclusion.

Phenomenon 2 is exemplified in Box 1. Argument (1)
leads to a stronger conclusion than (2) because of the
diversity of the premises, even though hamsters are less
typical members of the category mammals than
rhinoceroses. An example of the Phenomenon 6 is shown in
Box 2. Argument (3) is stronger than (4) because lions are
more similar to tigers although giraffes are not more similar
to rabbits than tigers are (Osherson et al., 1990).

Box 1. Problems used by Osherson et al. (1990).

Hippopotamuses have a higher sodium concentration in
their blood than humans.
Hamsters have a higher sodium concentration in their
blood than humans.
All mammals have a higher sodium concentration in their
blood than humans. (1)

Hippopotamuses have a higher sodium concentration in
their blood than humans.
Rhinoceroses have a higher sodium concentration in their
blood than humans.
All mammals have a higher sodium concentration in their
blood than humans. (2)
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In addition to these two phenomena, we conducted a
preliminary investigation of the remaining nine non-trivial
phenomena in Osherson et al. (1990). All phenomena are
based on the assumption that conceptual representations are
hierarchically structured. A connectionist model that
achieves such conceptual organization is the semantic
network proposed by Rumelhart and Todd (1993; as cited in
Rogers & McClelland, 2004, 2008), henceforth termed
Rumelhart network. This network discovers similarity
structures in its training environment, resulting in similar
representations of items with common features, i.e.,
members of a category (Rogers & McClelland, 2004, 2008).
Similarities are context-dependent, so two members with
similar representations in one context may vary in another
(Rogers & McClelland, 2004, 2008).

Our aim is to show that such a semantic network can
exhibit inductive behavior with differentiated strength
depending on the premises. More specifically, we examine
whether the network will produce stronger conclusions
when premise categories are more distant.

Modeling Framework and Method
The classic Rumelhart architecture, as described by Rogers
and McClelland (2004, 2008), has been shown to form
“coherent categories” of entities, simulating human
conceptual organization and acquisition. It also exhibits
“inductive projection” of new properties, acquired after
initial training (Thibodeau, Flusberg, Glick, & Sternberg,
2013). Our implementation is a feedforward network trained
with error back-propagation, displayed in Figure 1.

There are two groups of input nodes, namely Item, with
21 nodes, and Relation, representing “context constraints”,
with 4 nodes. There are two hidden layers: Representation,
with 15 nodes, receiving connections from Item, and
Hidden, with 28 nodes, receiving connections from Relation
and Representation and sending connections to the output
layer. There are 4 groups of output nodes, each one
corresponding to one context, namely ISA, Is, Can, and Has,
with 28, 8, 6 and 12 nodes, respectively. An additional
output node was used for the blank property (termed Queem
following Rogers and McClelland). The numbers of nodes
in the hidden layers were found to be sufficient for category
learning in a reasonable number of training epochs and with
stable outcomes, that is, converging to the same category
structure in most training trials.

The Queem entity plays the role of substitute/placeholder

for every blank property in Osherson et al. (1990), for
example, “use the neurotransmitter Dihedron”, “require
titanium for normal muscle development”, “have a higher
sodium concentration in their blood than humans”, etc. As
noted by Rogers and McClelland do (2004, 2008), node
labels play no functional role but are merely descriptive tags
in the simulation. What is important for the simulation are
the structural relations.

An alternative architecture, lacking the Relation input
layer and with only one hidden layer, was used during our
initial simulations but even though it was found to form
appropriate category structures, it failed to exhibit the
phenomenon under investigation with the blank property. It
seems that this particular structure, including the
Representation, is required for the network to exhibit the
desired richness of behavior beyond simple categorization.

Box 2. Examples of Phenomenon 6.

Lions use norepinephrine as a neurotransmitter.
Giraffes use norepinephrine as a neurotransmitter.
Rabbits use norepinephrine as a neurotransmitter. (3)

Lions use norepinephrine as a neurotransmitter.
Tigers use norepinephrine as a neurotransmitter.
Rabbits use norepinephrine as a neurotransmitter. (4)

Figure 1: Network architecture used in the simulations.
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We used the extended version of the Rogers and
McClelland model (2004), with 21 input entities and one
addition to the ISA output group. Specifically, we added the
property (ISA)Mammal, activated for the training patterns
of mammal species, similarly to the other classes. The input
and output representations of the model are localist. During
initial training, the Queem property has zero activation for
all items in all four contexts.

There were 84 training patterns (21 items in 4 contexts).
Here is a coding example for Penguin in the Can context:
Input: Item=(0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0)
|PENGUIN; Relation=(0,0,1,0)|Can
Output: ISA=(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0); Is=(0,0,0,0,0,0,0,0); Can=(1,1,1,0,1,0)|Grow;
Move, Swim, Walk; Has=(0,0,0,0,0,0,0,0,0,0,0,0),
Queem=(0)

Simulations adopted the strategy of Rogers & McClelland
(2004, 2008), with 2,500 epochs of initial training, leading
to coherent categorization and modest generalization of the
new property in the different contexts after additional
training. Learning rate was set to 0.3 and momentum to
zero. After the initial training, the learned categories were
revealed in cluster analysis of the Representation layer.

Subsequently, pairs for the comparisons were chosen.
Each comparison involved the generalization of the blank
property Queem when the network learned that two
members of a category, similar versus dissimilar to each
other, possess the property. The comparison is meaningful
when it concerns the learning of the property in the same
context, Is, Can, or Has. The ISA context was excluded
because it is only relevant to item classification within the
hierarchy. The pairs were chosen in the following fashion:
A computation of euclidean distances between all Hidden
layer activation vectors was carried out for each context
(having in mind that the clustering of representations on the
Hidden layer differs in several respects from that on the
Representation layer, which is context independent.) Based
on that, the two most similar species were identified, for
instance Goat–Dog from the category Mammals, to form the
similarity condition. For the second pair, that is, the
diversity condition, we keep one of the two chosen entities
and computed the euclidean distances between it and all
other entities in the superordinate category. Keeping to the
above example, we sought the species most distant from
Goat among all animals, which turned out to be Canary. So
the pair for the diversity condition was Goat–Canary.

Subsequently, for each of the two pairs, the network was
trained for additional epochs past the initial 2,500 to learn
that the two species possess the Queem property in the
particular context but not in the other three contexts (a total
of eight training patterns). An example training pattern is:
Input: Item=(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0)
|GOAT; Relation=(0,0,0,1) |Has.
Output: ISA=(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0); Is=(0,0,0,0,0,0,0,0); Can=(0,0,0,0,0,0);
Has=(0,0,1,1,0,0,0,0,0,0,0,1)| Skin, Legs, Fur;
Queem=(1)| Queem

A criterion was established to terminate additional
training when the new property has been acquired. An
activation threshold of the Queem node for the relevant
inputs might be appropriate but this would demand a large
number of training epochs. Instead, after some
experimenting a mean error criterion of 0.002 was adopted,
which ensured activations for the members of both pairs
greater than .9 and usually greater than .95 for at least one
of them. With this termination criterion, 345–977 (M=579,
SD=176) additional epochs of training were required.

After the completion of the additional training cycles we
followed Rogers and McClelland (2004) and modified the
network weights, retaining only those from the Hidden layer
to the Queem node, and replacing the rest from the initial
training (2,500 epochs). Thus the remainder of the originally
trained network was unaffected by training the Queem node.
This network was submitted to a test with 21 input lines
containing all species/items in the current context, to obtain
activation values of the Queem node. Separate values for
some species, or mean values for a category (at any level in
the hierarch) or for all living things, as appropriate, were
compared to test the experimental hypothesis. These
activation values were used to quantify the strength of the
argument and the corresponding “confirmation score”
(comparing to Osherson et al., 1990). In this manner, the
strength of the conclusion (and hence of the whole
argument) concerning a certain species corresponds to the
activation of the Queem node for this species in this context.
When the conclusion concerns a category (e.g., fish), its
strength corresponds to the mean activation for all species
belonging to the category.

Results
Results are divided in two parts: The first part corresponds
to the main phenomenon, that is, Premise Diversity. The
second part concerns the other nine phenomena described
by Osherson et al. (1990). Due to space limitations, we
present results only for the Has context/relation (except
when examining the context effect) but the results were
similar for the other contexts. In addition, the patterns of
results do not alter even with different premises, given that
the latter obey the selection rules.

Premise Diversity Simulations
We have put together graphs in Figure 2 depicting the
results for all the types of simulations for the two forms of
the phenomenon, general and specific. Accompanying each
bar chart is the respective argument formed under the
general paradigm proposed by Osherson et al. (1990).
Indicative colors are used for the bars and their
corresponding arguments (either diverse or similar). In
general for all simulations the results supported the initial
hypothesis that the arguments with distant premises are
stronger than the arguments with close premises. Note that,
in the graph depicting the results for the specific version of
the phenomenon, the three species, which correspond to the
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premises used, are not included.
Two kinds of premises were used in the diverse condition:

one where the entities/items both belong to the same (basic)
class as the conclusion (Trees) and another where the items
belong to the same superordinate category but not to the
same class (Mammals and Birds), as shown in Figure 2.
This has to do with the limited range of distances between
the activation vectors of the Hidden layer for a single class.

The differences in activation values for the Queem node
were larger for the superordinate simulations.

We finally conducted a series of simulations to examine
the differentiating impact of context on the generalization of
blank properties. Simulations revealed the paradoxical effect
of reversal of the phenomenon. That is, the arguments of the
diversity condition that exhibited greater strength than the
ones of the similarity condition in one context may display a

Figure 2: Activation of the Queem node for the different simulations of the phenomenon of premise diversity in each
condition (diverse and similar). Inside each panel we give an example of the arguments in each condition. Above the line we

present the premises that were used for the additional training and under the line the conclusion that was used for testing.
The top two rows of panels refer to the two versions of diversity (general and specific) and the bottom row to the simulation

with the different contexts. The columns of panels refer to which category the simulation was performed.
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reversed strength pattern when examined in another context:
the corresponding arguments of the similarity condition are
now stronger than the ones of the diversity condition.

Simulations of the remaining Phenomena
For the rest of the phenomena, the results are displayed in
Figure 3, accompanied by the respective arguments and
using indicative colors for their types. Although there are in
total eleven phenomena, two of them are trivial (the
premise-conclusion identity and the one in which the
conclusion category is included in the premise category) and
hence require no investigation or validation. The majority of
hypotheses posed from these phenomena have been
consistently supported in our simulations although the
differences in activation values were not large. The only
hypotheses not supported were the two referring to non-
monotonicity. Brief descriptions derived from Osherson et
al. (1990) and clarifications are given below.

Premise Typicality: “the more typical the premises are of
the conclusion, the more they confirm it”. We selected
species for the premises from one class computing the mean
value of the activation vectors for all class members over
the Hidden layer and then choosing the one closest to it as
the typical member and the most distant one as less typical.

Conclusion Specificity: “the more specific is the
conclusion, the more it is confirmed by the premises”

Premise Monotonicity (general and specific versions):
“more inclusive sets of premises yield more strength than
less inclusive sets”

Premise-Conclusion Similarity: “the more similar the
premises are to the conclusion, the more they confirm it”

Premise-Conclusion Asymmetry: “single-premise
arguments are not symmetric, in the sense that
premise/conclusion may not have the same strength as
conclusion/premise”

Non-Monotonicity (general and specific versions):
“arguments can be made weaker by adding a premise that
converts them into mixed arguments”. Note, that these two
phenomena involve mixed arguments in the sense that they
are neither general nor specific.

Inclusion Fallacy: “a specific argument can be made
stronger by increasing the generality of its conclusion”. To
investigate the general conclusion for fish, we did not
compute the mean value for fish but instead created a new
item (Fish), for which nodes 12–15 of the Item layer had a
value of .25, and in the other layers activation values were
the same as for the other fish.

Figure 3: Activation of the Queem node for the remaining nine phenomena. As in Figure 2, inside each panel we give an
example of the arguments in each condition. On the left side of each panel the name of the specific phenomenon is

presented. The two columns of panels refer to the two types of arguments (general and specific).
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Discussion
The simulations supported both the general and specific
versions of the diversity phenomenon. The strength of the
arguments in the diversity condition was higher than in the
similarity condition, and this was observed with many
different initial parameters. The cause of this effect lies in
the distance of the representations. The greater the distance
between two items the more the blank property is
generalized across the remaining items. Thus, the distance
determines the degree of generalization. Another important
conclusion is that the distances between items in the
representational space change according to the context; as a
result, the diversity effect can be inverted. The power of the
context is that it transforms dissimilar objects into similar
ones.

Although our main goal was the investigation of diversity
we also performed a preliminary exploration of the other
phenomena described by Osherson et al. (1990). Our results
supported all phenomena except nonmonotonicity. Even
though the differences in Queem activation were small, they
were consistent. Undoubtedly, there is space for more
extensive investigation of these phenomena, including
diversity, to discover other aspects of network function.

A number of concerns emerged during our investigation.
One issue was the small number of items and subsequently
the small size of the categories. The consequence of this,
and the fact that members of a category share many
common properties, was that the euclidean distances
between members of the same class (e.g., Mammals) were
not big enough for the diversity phenomenon to appear to a
large extent. For this reason we chose to use in our
simulations mainly items from the same superordinate
category where the number of items is greater and as a result
the representational space increases. A possible
improvement might be to construct basic categories with
more objects by introducing more and appropriately selected
properties in the network. This will also lead to an increase
in the number of nodes.

Another issue concerns the method of replacing the
weights of connections to the Queem node after the
additional training. To minimize interactions with the
existing knowledge of the network, an alternative method
would be to freeze all connection weights during the
additional training except the weights to the Queem node.
Interesting questions that arise are whether learning could
be facilitated with the proposed method (fewer epochs of
training) and if the connection weights would be similar
across the two methods. The implementation of this method
would be a subject of future research.

As Rogers and McClelland (2004) indicate, the semantic
network captures all the different kinds of human
developmental phenomena about inductive reasoning
supported by empirical findings (specificity, coalescence,
differentiation etc.). Thus, an interesting new route of
investigation could relate to these particular aspects of the
categorical phenomena examined in this study.

Finally, in our simulations the different contexts regard

the activation of specific properties for the different items.
The network discovers the similarity relations between the
items and creates the proper representations. However,
items in the real world also exhibit causal relations. Causal
relations are used very often in inductive inference and they
are even preferred over similarity relations (Feeney & Heit,
2011; Hayes et al., 2010). Hence, if the premises and the
conclusion share a causal link the argument is judged
stronger and the diversity effect almost disappears (Feeney
& Heit, 2011). Connectionist models are capable of
discovering other forms of relations in the training data
besides similarity structures. Recently, a network using the
Rumelhart architecture displayed analogical inference
(Thibodeau et al., 2013). This network generalized relations
to untrained data. Therefore, a potential improvement of our
model would be to examine whether learning causal
relations would lead to stronger induction for a blank
property in comparison to similarity relations.
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Abstract

Our  ongoing  investigations  into  biologically  plausible
syntactic  and  semantic  parsing  have  identified  a  novel
methodology for processing complex structured information.
This  approach  combines  Vector  Symbolic  Architectures  (a
method  for  representing  sentence  structures  as  distributed
vectors),  the Neural Engineering Framework (a method for
organizing  biologically  realistic  neurons  to  approximate
algorithms),  and  constraint-based  parsing  (a  method  for
creating dynamic systems that converge to correct parsings).
Here, we present some of our initial findings that show the
promise of this approach for explaining the complex, flexible,
and scalable parsing abilities found in humans.

Keywords: Neural  engineering  framework;  parsing;  localist
representation;  distributed  representation;  vector  symbolic
architectures; holographic reduced representation

Parsing with Traditional Localist Networks

Neural networks have often been explored as mechanisms

for  parsing  language.   In  many of  these  approaches  (e.g.

Cottrell,  1985),  a single connectionist  node is created not

only  for  each  term  in  the  language,  but  also  for  each

possible  usage  of  that  term,  leading  to  a  combinatorial

explosion of nodes (Figure 1).  While these sorts of models

provide  accurate  parsing  and  show  some  performance

characteristics  similar  to  humans  (e.g.  Waltz  &  Pollack,

1985),  this exponential  growth of components means that

they would require more nodes than there are neurons in the

human brain.   This makes it difficult  to see how such an

algorithm could be instantiated within the brain.

Figure 1: An example of a localist parsing network.  A node

exists for each possible combination of terms, leading to an

exponential growth in resources required.  The nodes for

S(DOG,CHASE,CAT) and the three other possible

sentences are omitted for clarity.

Figure 2: Activity level of each node in Figure 1 as the network is presented with the input DOG for the first 0.5s, CHASE

for the next 0.5s, and then CAT for the next 0.5s.  The result is the activation of NP(DOG) and VP(CHASE, CAT).  The

network can also successfully parse “DOG CHASE DOG”, “CAT CHASE DOG”, and “CAT CHASE CAT”.
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The network in Figure 1 is capable of parsing sentences

from the following toy grammar:

S → NP, VP

NP → N VP → V N

N → DOG or CAT V → CHASE

Excitatory and inhibitory connections increase and decrease

(respectively) the activity in the target node proportional to

the  activity  in  the  source  node.   The  multiplicative

excitation connection increases activity based on the product

of the activities in the two source nodes.  The four nodes for

the  four  possible  sentences  (S(DOG,  CHASE,  CAT),

S(DOG, CHASE, DOG), and so on) are not shown, but are

implemented similarly to the VP nodes, with connections to

the corresponding NP and VP nodes.

Distributed Representation

As an alternative to localist representation, other approaches

make use  of  a  distributed  representation.   The idea  is  to

represent content not as the activity of a single node, but

rather each node has an equivalent set of numbers (a vector).

For  example,  instead  of  a  single  node  being  active  to

represent DOG, this might be represented as the vector [0.1,

-0.4, 0.7, 0.3, 0.2].  CAT would be another vector, and the

presence of both terms would be represented as the sum of

those vectors.   The particular  vectors  used for  each  term

might  be  chosen  via  some learning  process  that  imposes

similarity between vectors, such as DOG being more similar

to CAT than it is to CAR.  However, for the purposes of this

paper we follow the standard process of randomly choosing

these vectors.

With  this  approach,  it  is  possible  to  re-describe  any

traditional  localist  model  in  a  distributed  manner.   For

example, we can take the nodes in Figure 1 and replace each

one with a vector.  To get the overall state of the system, we

add  together  the  vectors  for  each  node,  weighted  by  the

activity level of that node.

To  implement  the  connections,  instead  of  using  the

activity of the source node, we must compute the similarity

between the overall state vector and the ideal state vector for

the source of the connection.  Here, we use the dot product

operation  to  compute  similarity.   So  to  implement  an

excitatory connection A → B, we take the state vector x and

compute  (x∙A)B.  The  result  is  a  vector  indicating  how

much  x  should  be  changed.   This  can  also  be  written

mathematically as:

dx/dt=BATx

Importantly, the number of dimensions in the distributed

representation's vector can be much less than the number of

nodes in the localist representation, at the cost of a slight

decrease in accuracy as the vectors slightly interfere with

each  other.  This  will  work best  when only a few of the

nodes are active at any given time (i.e. when the distributed

vector  is  formed by the combination of a few basic term

vectors).   Plate (2003) shows that with vectors with 1000

dimensions one can represent states with 8 nodes active out

of a total of 50,000,000,000,000 nodes with 95% accuracy.

The distributed representation thus avoids the problem of

exponential growth.

Furthermore,  Plate's  approach  and  other  similar  Vector

Symbolic Architectures (Gayler, 2003) supply a method for

combining two vectors to generate a new vector.  That is,

instead of randomly generating a vector for N(DOG), it can

be computed based on the vector for DOG and the vector

for  NOUN.   For  this,  we  follow  Plate  and  use  the

mathematical  operation of circular  convolution (⊛).  That

is, we set N(DOG) = NOUN⊛DOG.

Figure 3: A distributed version of parsing.  The state of the system is a single vector x. The lines are the dot product of x with

the vectors for each node.  The network behaves similarly to Figure 2 without requiring an exponential growth in node count.
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Biological Recurrence

In the localist representation, the actual parsing process is

done by changing the activity level of each node based on

its  connections  and  the  activity  levels  of  the  nodes  that

connect  into  it.   This  can  be  thought  of  as  a  differential

equation  dx/dt=f(x),  where  x is  overall  state  vector  (the

activity  level  of  each  node)  and  f is  a  function  that

implements the effects of the connections.

This same idea is true for the distributed approach as well.

We take each connection and replace it with a function.  As

discussed  above,  the  connection  causing  the  DOG node's

activity to increase the activity of the N(DOG) node would

be expressed as dx/dt = (x∙DOG)(NOUN⊛DOG).  That is,

we compute the similarity (dot product) of the current state

x with DOG and multiply the result by NOUN⊛DOG.  The

result  is  the change in  x caused by this connection.   The

change caused by all of these connections can be found by

generating  a  single  function  that  is  the  sum  of  each

connection's function.

Now that we have expressed the parser as a differential

equation,  we can  go  one step  farther  and  determine how

biologically realistic neurons could implement that equation.

That is, rather than dealing with the idealized connectionist

nodes  or  simply  computing  the  math  of  the  distributed

approach, we can create a model where each component is a

spiking  neuron,  and  the  differential  equation  is

approximated by the synaptic connections between neurons.

To do  this,  we use  the Neural  Engineering  Framework

(NEF;  Eliasmith  &  Anderson,  2003).   This  provides  a

method  whereby  the  activity  in  a  group  of  neurons

represents a vector, connections between groups of neurons

implement  functions  on  those  vectors,  and  recurrent

connections  implement  differential  equations  on  those

vectors.   In  each  case,  the  neurons  only  approximate the

desired  function.   Given  a  enough  neurons,  this

approximation  can  be  made  arbitrarily  close  to  the  ideal

function.  However, given realistic biological constraints the

resulting behaviour will not be identical to the mathematic

version.   This provides a natural  competence/performance

distinction.

To implement this parsing model using the NEF, we use a

population  of  4,000  LIF  neurons.   The  activity  of  these

neurons  will  represent  a  128-dimensional  vector.   The

neurons  have  randomly  chosen  biologically  realistic

properties in terms of their background current, sensitivity

to  input,  and  their  “preferred”  input  stimulus  (much  like

how neurons in visual cortex have particular visual stimuli

to  which  they  respond  most  strongly).   This  forms  a

distributed representation of our distributed vector.

Next, we transform the desired differential equation into a

form that takes into account intrinsic neuron properties such

as  the  post-synaptic time constant  (the amount  of  time it

takes  neurotransmitters  to  be  reabsorbed).   For  common

recurrent connections in cortex, this is ~0.1s.  The NEF can

then be used to solve for an all-to-all recurrent connection

weight matrix between all 4,000 neurons that will optimally

approximate  the  given  differential  equation  (Eliasmith  &

Anderson, 2003).

Importantly,  this  allows  standard  linear  connection

weights to approximate nonlinear functions.  In this case, to

implement  multiplicative  excitatory  connections,  we need

dx/dt = (x∙V(CHASE))(x∙N(CAT))(VP(CHASE,CAT)) and

other  similar  functions.   These  functions  will  be  less

accurately  implemented  than  the  ones  for  simple  linear

Figure 4:  Parsing “DOGS CHASE CATS” in a network of 4000 leaky integrate-and-fire neurons, using distributed vectors of

128 dimensions.  The input is the vector for DOG, then CHASE, and then CAT, for 0.5 seconds each. The graph shows the

similarity of the represented vector x to the vectors for each indicated term.  The network successfully parses the sentence.
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connections.  However, the ability to approximate this sort

of complex connection allows for a wide range of new types

of constraint models that we are only beginning to explore.

Semantic Pointer Architecture

It  should  be  noted  that  the  recurrent  parsing  networks

described here use the same approach to representation as in

our previous work with building neuron models to perform

inductive  reasoning,  remember  sequences,  and  exhibit

cognitive control.  This capability formed the core of Spaun

(Eliasmith et al., 2012), the first large-scale brain simulation

capable of performing multiple tasks.  We call this general

approach  the  Semantic  Pointer  Architecture  (Eliasmith,

2013).   The  vectors  are  thought  of  as  Semantic  Pointers

because they not only form a compressed representation of

multiple  pieces  of  information  (so  that  the  original

information can be accessed by only having the compressed

vector, much like a pointer in computer science),  but also

the vector itself contains similarity information, making it

useful for making semantic decisions (so the vector value is

not arbitrary, as in a computer science pointer).

In previous work, we have used a model of the cortex-

basal  ganglia-thalamus  loop  to  control  changes  to  these

semantic  pointers  (vectors).   In  (Stewart,  Choo,  &

Eliasmith, 2014), we showed that a left-corner parser could

be  implemented  with  this  loop.   However,  the  approach

taken in this paper is to implement language processing with

a  dedicated  recurrent  network,  rather  than  relying  on  the

general-purpose (and less neurally efficient) basal ganglia.

It  is  possible  that  this  sort  of  system  is  involved  in  the

dedicated language-oriented parts of the human brain.

Constraint Satisfaction in Recurrent Networks

Instead of implementing traditional rewrite rule grammars,

as  above,  another  way  to  think  about  parsing  is  that

grammatical  knowledge  can  be  represented  by  a  set  of

interacting  constraints  that  favor  and  penalize  the  co-

occurrence of certain structural features in the representation

of a linguistic expression (Smolensky & Legendre,  2006).

This  approach  can also be directly  mapped into recurrent

biologically plausible networks via the NEF. 

To achieve this, we note that a constraint can be thought

of  as  a  bidirectional  connection  of  the  form  seen  in  the

distributed  parsing  model.   That  is,  we  can  encode  each

constraint  as  a  weighted  outer  product  of  two  vectors

(Smolensky  et  al.,  2013).  Then,  we  construct  a

transformation  matrix  that  is  sum  of  the  outer  products

corresponding  to  entire  collection  of  constraints  under

consideration.  If,  for  example,  there  was  just  a  positive

constraint  between two representations A and B, then the

function the neural network needs to approximate would be:

For  more  constraints,  more  outer  products  would  be

summed  together.   Each  of  these  outer  products  can  be

thought of as a projection matrix that  maps an input to a

scaled version of a vector used to define the outer product.

For instance, BAT maps to B scaled by the dot product of

the  input  x  and  AT,  by  virtue  of  the  linearity  of  matrix

multiplication and the fact that the column-space of BAT is

all scalar multiples of B.

To build a biologically plausible implementation of this

constraint satisfaction network, we use the NEF (Eliasmith

&  Anderson,  2003)  in  the  same  way  as  the  previous

example.  4000 neurons are configured to represent a 128

dimensional vector, and the NEF is used to find the optimal

set of recurrent synaptic connection weights on all of those

neurons that will best approximate this function.

The  result  of  defining  this  mapping  between  the  soft

constraints  and  synaptic  weights  is  that  each  pattern  of

neural  activity in the population can be assigned a single

scalar  value  (i.e.  the  value  of  a  harmony  function;

Smolensky and Legendre, 2006) that reflects the degree to

which the constraints in question are being satisfied. Over

time, the state of the system will gravitate towards a position

that maximizes this value and thereby involves a minimal

degree  of  constraint  violation.  In  the  case  that  the

constraints correspond to grammatical knowledge, one can

think of this trajectory through the model's state space as a

parallelized execution of the rules defining the grammar. 

To  test  the  scalability  of  this  approach  to  performing

constraint  optimization  in  neural  systems,  we  generate  a

vocabulary of 200 representations and generate random all-

to-all  constraints  between them, yielding a transformation

matrix  encoding  a  total  of  40,000  constraints.  We  then

generate  a  neural  population  that  computes  the  function

described by the transformation matrix through its recurrent

connections.  Figure  5  depicts  the  similarity  between  the

representational state encoded by this population and each

of  the  200  representations  over  time,  as  a  fixed  set  of

vocabulary  items  are  presented  as  constant  input.  The

stability achieved after approximately 300ms indicates that

the system is able to rapidly compute a local solution to the

problem of optimizing all 40,000 constraints.

Figure 5: A recurrent network of 4000 neurons representing

a 128-dimensional vector solving a randomly generated

constraint satisfaction problem. The similarity of the

resulting vector with the 200 basic vectors is shown.  The

network settles to a final result after ~300ms.
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Completing Parse Trees

We can further use this approach to take partial parse trees

and  complete  them.   Given  a  set  of  rewrite  rules  for  a

grammar, we can identify grammatical constituents that can

and cannot occur together.  These form a set of constraints

on  the  final  vector  representation.   Traditionally,  these

constraints  can  be  seen  as  connections  between  localist

nodes.   However,  as  noted  in  the  previous  section,  these

constraints  can  again  be  converted  into  differential

equations that act on the distributed state vector.

To demonstrate this, consider the following toy grammar:

S → NP, VP S → AUX, NP, VP

NP → DET, N VP → V

VP → V VP → V, NP

After building a network to implement these constraints,

we can present partial tree to the system and it will generate

the correct  consistent components for the parse tree.   For

example,  Figure 6 shows what happens when the input is

the  partial  tree  S(?,NP(DET,?),VP(?,V,?)).   The  network

successfully identifies the missing components, resulting in

S(AUX,NP(DET,N),VP(V)) as the final parse.

Stability Analysis of a Parser as a Dynamical

System

Given that we use a recurrently connected neural ensemble

to perform constraint satisfaction, we can treat the ensemble

as a dynamical system and do a mathematical analysis of its

behaviour.  This  behaviour  is  governed  by  the  linear

transformation matrix, T, where the computed function is

We  can  factor  T  into  three  matrices  using  eigen-

decomposition: 

where S is an matrix whose columns are the eigenvectors of

T, and Λ is a diagonal matrix containing the eigenvalues of

T.   Because  the  eigenvectors  in  S  are  orthogonal  for

symmetric matrices  (and thus form a basis  for  the vector

space), we can rewrite the starting state of the system as a

linear combination of eigenvectors: 

where  vi is  the  ith eigenvector,  and  ci is  a  weight  on this

vector. This description of the initial condition of the system

allows us to solve for the state of the system at  arbitrary

times given that the transform matrix simply scales each of

its eigenvectors by a corresponding eigenvalue. If we treat

the  transform  as  a  matrix  differential  equation  (as  is

appropriate  in  the  case  that  the  constraint  satisfaction

process is implemented in neurons), we can then solve for

the state of the system in the following manner: 

As  time grows,  eigenvectors  with  negative  eigenvalues

will  disappear  from  xt,  while  those  eigenvectors  with

positive  eigenvalues  will  exponentially  increase;

eigenvectors  with  an  eigenvalue  of  zero  will  remain

unchanged  in  terms  of  the  contribution  they  make  to  xt.

Stable  states  are  therefore  acquired  only  when  the

transformation  matrix  has  non-positive  eigenvalues.

Nonetheless,  in the case that  the eigenvalues  are positive,

Figure 6: Completing a partial tree using grammar constraints encoded as recurrent connections in 4000 LIF neurons.  Each

possible grammar structure has its own vector, and the grammatical rules create positive and negative constraints.  The input

is the sum of the vectors for S(?,NP(DET,?),?) and S(?,VP(?,V,?)).  After ~0.1 seconds, the two vectors for S(AUX,?) and

S(?,NP(?,N),?) start to be represented, resulting in a stable parse of S(AUX,NP(DET,N),VP(V)).
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the  vector  describing  the  system  state  converges  on  a

particular  direction  in  the  vector  space  even  as  it  grows

without  bound.   Of  course,  when  implemented  using

neurons with the NEF, this growth in numerical value will

be balanced by the saturation behaviour that  occurs  when

neurons reach their maximum firing limit.

The  motivation  for  adopting  this  analysis  is  that  it

illustrates  how our system might be harnessed to perform

interesting computations with linguistic applications. In the

case of parsing, the goal is to set  the system to an initial

state  that  encodes  a  set  of  words,  and  then  have  the

dynamics of the system drive it towards a state that encodes

an optimal parse of these words. The key insight offered by

our  analysis  is  that  the  representations  over  which  our

constraints  are  defined  can  all  be  represented  as  linear

combinations of eigenvectors. 

As such, we can predict which initial conditions will get

mapped states that have particular degrees of similarity to

the states that define particular representations. We could in

theory choose eigenvalues that perform certain mappings of

interest, and then reconstruct a transformation matrix with

these eigenvalues. Overall, while more needs to be done to

determine how sophisticated grammatical constraints can be

encoded  and  processed  using  our  recurrent  network

architecture, stability analysis of this sort offers a promising

starting point. 

Conclusions and Future Directions

Traditionally, grammatical knowledge has been thought of

in terms of a set of fixed production rules that that are used

to generate the sentences of a language. More recently, this

knowledge has instead been characterized in terms of soft

constraints on the well-formedness of linguistic expressions

(Smolensky and Legendre, 2006). Our work suggests that it

is possible to develop this latter approach to the study of

grammatical  knowledge  in  the  context  of  detailed

simulations of neural systems. 

In  order  to  extend  our  work  to  accommodate  more

sophisticated  forms  of  language  processing,  a  few

outstanding  problems  need  to  be  solved.  First,  it  must

demonstrated  that  the  parsing  capabilities  of  our  simple

dynamical  systems can scale to more complex grammars.

Second,  a  better  understanding  of  the  dynamic  behavior

associated  with  particular  transformation  matrices  is

required.  For  example,  it  might  be  useful  to  learn  these

matrices  from examples  of  parse  trees  in  much the same

way that  supervised  learning  techniques  are  used to  train

standard  feed-forward  networks.  More generally, it  would

be very useful to be able to map desired properties of the

system’s behavior directly onto a set of constraints in a way

that  is  consistent  with  what  is  known  about  how  these

constraints are likely organized.

Limitations  aside,  there  are  number  of  promising

directions in which to extend this work. For example, many

researchers  are  currently  very  interested  in  developing

compositional  distributional  models  of  the  meanings  of

arbitrary  linguistic  expressions  (e.g.  Socher  et  al.,  2012).

One possible approach to developing such models involves

performing constraint optimization with recurrent networks

over semantic features in addition to the syntactic features

we  are  currently  examining.  Other  interesting  extensions

involve incorporating hierarchical structure into the neural

systems that perform constraint satisfaction, along with the

incorporation of multiplicative interactions that modify the

transformation  matrix  and  allow  the  behavior  of  the

recurrent network to be controlled by an external signal. 

Overall, such extensions can help provide insight into the

possible  ways  in  which  the  sophisticated  linguistic

capabilities that are the hallmark of human intelligence are

implemented in neural systems.
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Abstract
In order to formally validate cyber-physical systems, analyti-
cally tractable models of human control are desirable. While
those models can be abstracted directly from human data, lim-
itations on the amount and reliability of data can lead to over-
fitting and lack of generalization. We introduce a methodol-
ogy for deriving formal models of human control of cyber-
physical systems based on the use of cognitive models. An-
alytical models such as Markov models can be derived from
an instance-based learning model of the task built using the
ACT-R cognitive architecture. The approach is illustrated in
the context of a robotic control task involving the choice of
two options to control a robotic swarm. The cognitive model
and various forms of the analytical model are validated against
each other and against human performance data. The current
limitations of the approach are discussed as well as its implica-
tions for the automated validation of cyber-physical systems.
Keywords: Cyber-physical systems; ACT-R cognitive mod-
els; Markov models; Robotic control

Introduction
As robotic platforms become more robust, teams of au-
tonomously coordinating robots (robotic swarms) may be de-
ployed for various tasks including environmental exploration,
large-scale search and rescue, border protection, etc. One of
the most important challenges in the design and deployment
of such systems is making them amenable to effective human
control. This requirement is complicated by the nonlinear dy-
namics of robotic swarm systems, the need to make realistic
environmental assumptions, and the limitations and capabil-
ities of human cognition. There has been much recent inter-
est and research activity in control theory for formal system
verification of safe operation of automation. In such work
either the human has not been modeled at all, or the human
has been modeled as a system disturbance. Modeling mixed
human-autonomous systems where human cognition is taken
into account is in its infancy. Formal and validated models of
human-autonomous systems’ safe operation, where the hu-
man element is modeled realistically, would be beneficial not
only because these models would provide guarantees of per-
formance, but also because they may uncover parts of the
control space where human performance can deteriorate to
unacceptable levels. Human cognitive limitations, the nonlin-
earity of the state-evolution dynamics of autonomously coor-
dinating robots, and the high dimensionality of the joint state
space of such systems preclude the possibility of a human
maintaining or predicting the joint state of the whole sys-
tem. Furthermore, the human may perform a broad spectrum

of tasks ranging from reactive tasks, like manual control, to
high-level deliberative tasks, like taking go/no-go decisions
for a particular sub-mission. Cognitive modeling based on
cognitive architectures such as ACT-R (Anderson & Lebiere,
1998; Anderson, 2007) has existed for many years. However,
the resulting models are not in a mathematical form that is
amenable to the techniques of formal verification. One way
of meeting this challenge is creating an analytic model of hu-
man performance based on a cognitive model. Such an an-
alytic model is cognitively compatible by construction, and
because of its mathematical nature, is in the appropriate form
for formal verification. In the case of a human operator con-
trolling a robotic swarm, the analytic model can be integrated
with a formal model that describes the swarm dynamics so
that the overall mixed human-swarm system can be formally
verified.

This paper presents the methodology of development of
such an analytic model based on an ACT-R cognitive model.
The task for which the cognitive model and the analytic
model were constructed was the control of a robotic swarm
simulation. The analytic model development process starts
with data from human experiments. Human-in-the-loop ex-
perimentation supports the development and validation of de-
scriptive cognitive models in two stages. Initial develop-
ment and data collection from the simulation are used to
bound expected performance and familiarize experimenters
with the domain and its issues, as well as to constrain the task-
independent control model to reflect general procedures. The
data provides the experience needed to train the model using
the Instance Based Learning (IBL) methodology (Gonzalez,
Lerch, & Lebiere, 2003) in order to generate appropriate
knowledge representations in memory in the form of con-
trol instances that guide decisions, as well as to tune gen-
eral architectural parameters that modulate performance. At-
tentional routines can also be integrated to represent limita-
tions in the speed and capacity of processing information in
complex situations. Instances are grounded in specific situ-
ations, making them easy to learn through direct experience
with the system in an automated process sometimes called
chunking. Instances generalize dynamically to similar situa-
tions, providing predictions of performance in not previously
experienced or partially experienced situations and resulting
in situation-specific representations in short-term memory.
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In building a (stochastic) state space model of a human the
primary challenges are defining the relevant states and trans-
forming the human constraints in the neuroscience and psy-
chology literatures into state space constraints. We use the
cognitive model as a proxy for the human operator and run
simulations to produce the decisions made by the model as a
function of operator cognitive state and cognitive limitations.
The methodology and resulting model will be described in
detail in the rest of this paper.

Experiment Task
The human-swarm system studied followed that described
in (Bullo, Corts, & Martinez, 2009). Participants control a
swarm of twenty simulated robots in a web interface. No
control can be exerted over individual robots, only over the
swarm as a whole, and only by the choice of one of two
strategies controlling how the robots collectively move: Ren-
dezvous or Deploy. The two strategies correspond to two
different algorithms for the evolution of the robots’ motions,
Rendezvous causing the positions to largely converge, and
Deploy to largely diverge. In addition to the robots them-
selves, the simulated environment also contains a set of fixed
obstacles. Each of the sixty trials begins with a set of ini-
tial positions of the robots, and of the obstacles. These po-
sitions were sampled from bivariate Gaussian distributions, a
different pair of distributions used at each trial. The means
and variances of these distributions were themselves sam-
ples from a uniform distribution. While each participant saw
roughly the same sets of positions, in the same order, a small
amount of noise was introduced into each.

The interface presents the initial positions of the robots and
the positions of the obstacles, and solicits a choice of Ren-
dezvous or Deploy from the human. The robots then move
according to that strategy, and leave a visual trail of where
they have been (Figure 1). The interface also displays direct
feedback in the form of a number representing the percentage
of the environment’s area that the ensemble of robots has cov-
ered. The human’s goal in each trial is to select the strategy
that can be expected to result in the larger coverage, for that
set of initial robot positions and obstacles.

Figure 1: The interface to the simulated swarm experiment.

Fifty participants were recruited within Amazon Mechan-
ical Turk1, of whom forty-eight completed the experiment.

1https://www.mturk.com/mturk/welcome

Each of the forty-eight participants was presented with sixty
trials. The first ten were training trials. In these training tri-
als participants were asked to choose Rendezvous or Deploy
and observe the resulting coverage. They were then asked
to choose the forgone strategy and see its resulting cover-
age. After the training trials they were only able to select
one of the strategies, and saw only the coverage result for
the chosen strategy, with no feedback on the forgone strategy.
Each of the first thirty post-training trials were unique, but the
last twenty were alternately unique, and recapitulations of the
training trials, modified slightly by the addition of noise. The
participants were not told that there would be such recapitu-
lated trials.

Cognitive Model

The cognitive model is implemented in the neurally-inspired
cognitive architecture ACT-R and follows the instance-based
learning (IBL) methodology. In IBL decisions are made pri-
marily based on experiences of a task. In our model these
experiences are stored in the chunks of ACT-R’s declarative
memory, each such chunk corresponding to a relevant expe-
rience. Instance chunks typically contain a description of the
context in which each decision is made, the decision itself,
and the outcome of that decision. The mean initial position
of the robots (eccentricity) and its variance (dispersion) were
used to characterize the context of each trial. Other dimen-
sions were considered, especially characterizing the distribu-
tion of obstacles, but were found upon further analysis both
relatively inconsequential to the outcome and generally ig-
nored by human participants. Both possible decisions were
represented in each instance chunk, with the outcome in terms
of coverage for each action stored in dedicated slots. Each
instance chunk therefore contains four slots mapping the ec-
centricity and dispersion of the robot swarm to the coverage
percentage for the Rendezvous and Deploy actions.

Before the model proper begins executing, chunks con-
taining the ground truth values of both the Rendezvous and
Deploy values for each of the ten training trials are added
directly to declarative memory. For each of the fifty non-
training trials of the experiment the model is presented with
the eccentricity and dispersion values, and estimates, from the
chunks stored in declarative memory, expected coverage frac-
tions for Rendezvous and Deploy. These estimates are gener-
ated using ACT-R’s blending mechanism (Lebiere, 1999), us-
ing partial matching of the chunks representing instances that
are already in memory. This partial matching is done using
a linear similarity function between the eccentricity and dis-
persion values, as well as the usual ACT-R declarative mem-
ory retrieval’s activation computation, including recency and
noise. The model selects as its decision whichever of the
two actions produces the larger expected coverage percent-
age. The model then receives as feedback the ground truth
coverage for the chosen Rendezvous or Deploy action, and
registers it instead of its estimate in its representation of the
current trial. The coverage value in this chunk for the forgone
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option is, instead of the ground truth, left as the model’s esti-
mate. Upon completion of the trial the representation of the
problem is added as a new chunk in declarative memory. The
model thus starts out with ten instances, those from training,
and builds up to sixty by the conclusion of the experiment as
its experiences accumulate.

The ACT-R model is stochastic, and was run 1,000 times to
generate stable estimates, each with a distinct random num-
ber seed. Most ACT-R parameters were left at their default
values. The main deviation from standard values was to set
the activation noise parameter to a relatively high value of
0.75 to reflect the high stochasticity of decisions made by the
Mechanical Turk subjects. For each run declarative memory
is reinitialized with just the ten training trials, and the full set
of sixty instances is built up afresh, with potentially differ-
ent values in them reflecting the stochasticity of the model’s
judgment at each step, and most specifically the fact that it
receives feedback on only its chosen option and its poten-
tial implications for the dynamics of its behavior ((Lebiere,
Gonzalez, & Martin, 2007)). The results are aggregated both
for comparison to the human results and for constructing the
Markov model.

Abstraction Procedure
The knowledge state in IBL models is characterized by the set
of instance chunks and their activation. The evolution of the
cognitive state as the model accumulates experiences can be
thought of as a k-dimensional discrete-time signal, which is
the time-trajectory of activation levels of the different mem-
ory chunks through various decision cycles, in response to
particular inputs.

As stated before, an IBL memory chunk in ACT-R consists
of a representation of the context and outcome of the control
actions. In this setting, context involves the centrality and
dispersion of the robots, while the outcome involves a rep-
resentation of the percentage coverage achieved by the avail-
able decisions. Environment and system observations change
the activation levels of the existing memory chunks as well
as add new chunks to the model, thus reflecting the system
state as observed by the operator. Abstracting that distributed
state of knowledge contained in the cognitive model’s declar-
ative memory in an analytical model requires coarsening it
into discrete states, such as the degree of preference toward
one strategy or the other. To reflect the context-sensitive na-
ture of the IBL decision process, distinct sets of states are
created for each context neighborhood. The number and na-
ture of the states is left to the modeler. The changes that each
experience causes to the activations (and number) of instance
chunks in memory are reflected in a probabilistic transition in
the analytical model. The transitions in the analytical model
are trained from Monte Carlo runs of the cognitive model.

For this specific model, our approach starts with an in-
terface to the multi-robot system that explicitly represents
two actions, “Deploy” and “Rendezvous”, and the percentage
coverage obtained by the action. In this setting, the decision
context involves the centrality and dispersion of the robots.

The memory chunk also contains a representation of the ac-
tion taken as well as the action not taken, and the resulting and
expected outcome, respectively. Environment and system ob-
servations change the activation levels of the memory chunks
in the cognitive model, thus reflecting the system state as ob-
served by the operator. Previously created chunks decay with
time and are reinforced with retrieval, while new chunks are
added to reflect recent observations. The time-trajectory of
the activation levels of the memory chunks can be clustered
to produce the Markov model. States of the Markov model
are defined to correspond to a pattern of memory chunk ac-
tivation levels. In this domain, they would correspond to a
temporary preference for one action over the other. In gen-
eral there can be k events that correspond to the consistent
states of the system as observed by the operator.

Markov Model
Following the approach described in (Gray, 2002), we em-
ploy a Markov model as the analytic model for ACT-R cogni-
tive processes of human control. Let D denote the selection of
Deploy and R denote the selection of Rendezvous. Special-
ized for the human-swarm task, the overall Markov model of
the cognitive processes is decomposed into two sub-Markov
Models indicated by superscripts in the edges of the graphs
that correspond to two basic outcomes of the action chosen
(see right-hand side of Figure 2): a) Model U : the ground
truth coverage is larger than the estimation of the ACT-R
model; b) Model L: the ground truth coverage is less than or
equal to the estimation of the ACT-R model. Model U is pa-
rameterized by four probabilistic action selection transitions:
1) pU

D→R, 2) pU
D→D (where pU

D→R + pU
D→D = 1); 3) pU

R→D, and
4) pU

R→R (where pU
R→D + pU

R→R = 1). Symmetrically, Model
L is also parameterized by four probabilistic state transitions:
1) pL

D→R, 2) pL
D→D(where pL

D→R + pL
D→D = 1); 3) pL

R→D, and
4) pL

R→R (where pL
R→D + pL

R→R = 1). The switching between
these two sub-models is parameterized by the probabilities
pGrd>Est and pGrd≤Est where pGrd>Est + pGrd≤Est = 1 and
where Grd is the ground truth and Est is the ACT-R esti-
mation. As a result, we establish a Markov model of action
selection assuming that any action selection is independent
of the history given the previous action and the chosen sub-
model (either U or L).

To situate the Markov model in the human-swarm environ-
ment, we discretize the observation space (the dispersion and
eccentricity) as a grid of cells (see the left-hand side of Figure
2). Each cell in the grid is associated with an overall Markov
model as described above.

After the ACT-R model generates the data, the training and
prediction test procedure is as follows: (1) locate the cells to
which the data instances belong; (2) train a Markov model for
each cell; (3) make predictions for each instance in test data
based on the Markov transition probabilities.

Training Procedure
Situated in the grid of the environment, a Markov model
(see the right-hand side of Figure 2) is trained for each cell.
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Figure 2: The framework for the training procedure in the
Markov model.

The nodes Xa/b = D indicate the selection is Deploy and
the nodes Xa/b = R indicate the selection is Rendezvous. In
each cell, the data is represented as a sequence of selections
X = {x1, ...,xt}. During the training procedure, scanning
through the sequences of action selections X , we record the
counts of action selection transitions (xi,xi+1). Formally, the
count ck

si→s j
is the number of transitions from selection si to

s j (si,s j ∈ {D,R}) of the sub-model k (where k∈ {U,L}). For
example, when an action selection transition (D,R)∈ X is en-
countered — the current selection is Deploy and the next se-
lection is Rendezvous — and the feedback is that the ground
truth is less than the estimation (in sub-model L), then the
count is updated as: cL

D→R ← cL
D→R + 1. After counting all

the instances in the data set, these counts are normalized into
the transition probabilities following:

pk
si→s j

=
ck

si→s j

∑st∈{D,R} ck
si→st

. (1)

In addition, the switching probability pGrd>Est (pGrd≤Est =
1− pGrd>Est) between the sub-models is estimated by simply
computing the ratio of the times that the ground truth cov-
erage is larger than the estimation of ACT-R over the times
that the ground truth coverage is less than or equal to the es-
timation of ACT-R. It can be proved that the above parameter
estimation process computes the model parameters that max-
imize the posterior probability of generating the data condi-
tional on the parameters.

Prediction Procedure
After the training procedure, we obtain the overall Markov
model, which is characterized by the probabilities from De-
ploy to Deploy pD→D, from Deploy to Rendezvous pD→R,
from Rendezvous to Deploy pR→D and from Rendezvous to
Rendezvous pR→R, as a switching mixture of the two sub-
models (Model U and Model L):

pD→D = pGrd>Est ∗ pU
D→D + pGrd≤Est ∗ pL

D→D (2)

pD→R = pGrd>Est ∗ pU
D→R + pGrd≤Est ∗ pL

D→R (3)

pR→D = pGrd>Est ∗ pU
R→D + pGrd≤Est ∗ pL

R→D (4)

pR→R = pGrd>Est ∗ pU
R→R + pGrd≤Est ∗ pL

R→R. (5)

This overall model can be exploited to predict the next action
selection si+1 of the human players given the current action
selection si following the decision rule:

si+1 = argmax
x∈{D,R}

psi→x.

For example, if the overall model states that pD→D > pD→R,
and the current selection is Deploy, the predicted next action
will be Deploy; otherwise, the next prediction is Rendezvous.

Results
The resulting Markov model is evaluated by two measures:
Accuracy and MSE (Mean Square Error). The Accuracy is
defined as:

Accuracy =
|I(SELpred,SELACT-R)|

|trials|
(6)

where I(SELpred,SELACT-R) = 1 if the prediction selec-
tion is the same as the ACT-R selection; otherwise
I(SELpred,SELACT-R) = 0 . And MSE is defined as:

MSE =
1

|trials|
(PMarkov-Grd−PACT-R-Grd)

2 (7)

where PMarkov-Grd is the precision of the Markov model (i.e.
the Markov model conforms with the ground truth) and
PACT-R-Grd is the precision of the ACT-R model (i.e. the ACT-
R model conforms with the ground truth).

We evaluate our Markov model given the following dis-
cretization of the observation space: 17×17, 10×10, 5×5,
3×3 and 1×1. The model prediction performance is shown
in Table 1. From Table 1, we can see that the performance im-
proves as the granularity of the grid is increased but reaches a
plateau around a 5×5 grid, which is a plausible discretization
level. The limit on accuracy of about 75 percent fundamen-
tally reflects the variability of human decisions. The limit on
mean square error fundamentally reflects the discretization
of the problem space and other factors averaged over by the
Markov model training procedure.

Number of cells Accuracy Mean Square Error
17×17 75.07% 0.06718
10×10 74.90% 0.07671

5×5 74.48% 0.08449
3×3 69.61% 0.11254
1×1 52.99% 0.29963

Table 1: The prediction results of different numbers of cells.

Figure 3 presents the trial-by-trial performance of the hu-
man participants, the cognitive model, and three versions of
the analytical model using various degrees of state coarse-
ness. The cognitive model generally captures quite well the
pattern of fluctuations of human performance across trials.
The fluctuations reflect both the impact of previous outcomes,
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Figure 3: Fraction of decisions correct by trial number

which are captured in the cognitive model by the addition of
a new chunk for each experience as well as the recency effect
from activation decay, and the effect of each new trial context
on the decision. The analytical models show occasional de-
viations from that pattern, which reflects the coarse nature of
their state space and other simplifying factors. A learning ef-
fect can be observed in the increasing consensus across runs
for each action choice, whether correct or incorrect.

Figure 4 graphs the fraction of choice of a specific option
(Rendezvous) as a function of the difference in coverage be-
tween that option and the alternative (Deploy) in the ground
truth data. The sharp sigmoid curve centered around the ori-
gin fit to the data indicates that both human participants and
cognitive model learn to perform the task quite well, and
nearly identically. Their errors primarily reflect contexts in
which the two actions provide very similar performance. The
analytical models are also sensitive to differences in cover-
age, but not nearly as sharply as their sigmoid fits are much
flattened. This presumably reflects the coarse state represen-
tation that aggregates nearby contexts in identical bins as op-
posed to the more graded similarity-based partial matching of
the cognitive model. In addition, when limited to 3x3 cells,
the analytical model shows an inability to converge to the
same certainty as the cognitive model for large differences
in coverage.

Figure 5 graphs the pattern of choices in the two-
dimensional context space of robot dispersion (x-axis) and
eccentricity (y-axis). Green circles are associated with a cor-
rect choice of Rendezvous, and are typically associated with
large dispersion values, while yellow circles are associated
with a correct choice of Deploy, and are typically associated
with small dispersion values. The size of the circle represents
the probability of choosing the correct action. Larger choice
probabilities are typically seen for extreme dispersion values,
while smaller probabilities are seen for mid-range dispersion
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Figure 4: Fraction choice of the Rendezvous action as a
function of the difference in percent coverage between Ren-
dezvous and Deploy

values that correspond to the boundary between the two do-
mains where the difference between the two actions is small.
For each trial, circles centered on the same point are plotted
for both human and cognitive model choices. Most pairs of
circles overlap perfectly but specific discrepancies between
human and model choice are visible, corresponding to trials
18, 20, 23, 30, 41, 45 and 59 (see corresponding data on Fig-
ure 3). All those trials are located in the boundary region
where small differences in perception or experience might
easily make the difference between choosing one action over
the other.

Conclusion and Future Work
This approach can be understood as one of incremental ab-
straction in model development. We start with the full detail
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Figure 5: Performance of human participants and cognitive
model (circles) graphed in the two-dimensional context space
for Rendezvous (Green) and Deploy (yellow) trials. Crosses
indicate training trials.

of the human data. In this case, it included only the choice be-
tween two competing actions. However, it could also include
latency to make the decisions, individual variations, or any
other observable relevant aspect of human performance. A
process model of human control of the cyber-physical system
is then developed using a cognitive architecture. The bene-
fit of using a cognitive architecture is that it already includes
many constraints on performance that do not need to be red-
erived from data. A further advantage of using the IBL mod-
eling methodology is to further limit modeler choices and
improve the automated nature of this approach by limiting
modeler decisions to the representation of the context. Fur-
ther abstraction can then be achieved by specifying the struc-
ture of a formal analytical model, such as the cells and states
of the Markov model used here. Unlike limited and noisy
human data, the cognitive model can then be run as many
times as needed and the resulting data used to train the formal
model to the needed accuracy. The models can be validated
against each other and against the human performance data
at each level of development: (a) the initial cognitive model
can be compared to the human data that it is meant to capture,
(b) the formal analytical model can be compared to the cog-
nitive model from which it is abstracted, and finally (c) the
formal analytical model can be validated against the human
performance data.

One important question is which aspects of the cognitive
model performance can be readily captured by this approach?
We saw that in this domain the model’s Markovian assump-
tion was quite accurate at capturing the impact of experi-
ence on decisions. Coarsening the high-dimensional nature
of declarative memory representation into a limited number
of states can lead to some distortions but seems fairly accurate

if the state space is above some minimum threshold. Another
limitation is the need to restrict contextual generalization to
an all-or-none division into independent cells. Another im-
portant question is how to generalize the Markov model for
more realistic applications which have 1) larger action space
(more than 2 actions), 2) higher dimension of the observa-
tion space (more than 2 observed parameters), and 3) more
sophisticated performance dependency over action selections
and environment observations.

Finally, the analytical model is trained on the entire data
set generated by the cognitive model, including the model’s
initial learning curve. As it is, the analytical model is akin to
a representation of average or asymptotic performance. More
contextual elements would have to be added to enable a rep-
resentation of cognitive learning processes in the analytical
model.

Our future work involves two parallel thrusts. We want to
generalize our approach to modeling human control of other
cyber-physical processes to test its breadth of applicability.
Also, we need to incorporate the resulting analytical models
into formal verification frameworks, e.g. (Oishi, Mitchell,
Bayen, & Tomlin, 2008), that can be used to derive formal
guarantees on the human control of cyber-physical systems.
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Abstract 
We discuss a method for creating models of expert cognition 
and behavior in naturalistic environments.  The method 
consists of video annotation and iterative model tracing, as 
well as a commitment to making all data and components of 
the model available for independent validation.  

Keywords: Cognitive modeling; macro-cognition; expertise; 
expert cognition; methodology.  

Introduction 
Cognitive modeling draws largely upon theories and 
methods from psychology and artificial intelligence. While 
the insights and approaches developed in these fields are 
leveraged to great positive effect by cognitive modelers, 
there are limitations that arise from an overly strict 
adherence to the practices of these sister fields. Among 
these is the difficulty of modeling behavior and cognition in 
naturalistic environments by using laboratory-based 
methods. The reasons for this issue, and the approach we are 
using to address it are discussed below.  

Laboratory Methods and Macro-cognition 
Studying behavior and cognition in real-life scenarios is 

difficult. Environments can be chaotic, behavior can be 
inconsistent, and there can be an overwhelming number of 
variables involved. Laboratory experimentation is largely 
aimed at limiting this complexity and helping researchers to 
isolate and examine more precisely the factors they are 
interested in. This is achieved through simplification of the 
task environment, repetition of tasks, and the averaging of 
data across trials and participants.  

This methodology has proven powerful and generative, 
but questions have been raised about the difficulties of 
“scaling up” findings from laboratory experimentation to 
explain cognition as it occurs in the real world (Klein et al., 
2003). These limitations are particularly relevant in the 
study of expert behavior and cognition. In natural 
environments, expert behavior is dynamic, adaptive, and 
often idiosyncratic. These are important elements that are 
often obscured by traditional laboratory paradigms.  

As an example, consider the difference between the study 
of chess players as it traditionally occurs in laboratory 
paradigms and the observation of a chess master playing a 
game at home. In lab studies, players may be presented with 
chess positions and asked to recall as many pieces as 

possible, after which reaction times and error rates can be 
measured. Alternatively, they may be shown a position and 
asked to make a single move, then asked how many 
candidate moves were considered, or to speak aloud while 
deciding what move to play. This is a form of protocol 
analysis commonly used to supplement experimental work 
(Ericsson, 2006).  

Using the above methods, the motivation is often to 
examine how many elements can be “chunked” into a single 
memory representation, or to examine how deeply or 
broadly a player searches in choosing their next move. This 
is a reductive approach that splits the task performance into 
pieces in order to isolate and better understand those pieces, 
with the (possible) intention of later combining the 
components into a more holistic picture of the underlying 
cognition. This subsequent recombination can be directed in 
two ways: either to form a more complete picture of chess 
cognition per se, or to inform a broader theory of cognitive 
functions, such as memory encoding or pattern recognition, 
which in the general case are not specifically tethered to 
chess. Part of our motivation in creating the method 
described here is skepticism about whether this process of 
division and subsequent recombination can lead to an 
understanding of the cognitive system as a whole, 
particularly as it applies to understanding situated, real 
world, expert cognition.  

The tension between the power of laboratory methods and 
the complexity of situated expertise has been addressed in a 
number of ways (Kieras & Meyer, 2000; Klein et al., 2003; 
Williams, 2006; West & Nagy, 2007). One approach that is 
useful in the context of cognitive modeling is to distinguish 
between micro-cognition and macro-cognition. Micro-
cognition refers to those mental operations that are typically 
studied in cognitive psychology experiments and which are 
thought to be invariant and underlie all of cognition (Klein 
et al., 2003). These include such functions as memory 
encoding and retrieval, and serial versus parallel attentional 
mechanisms (Klein et al, 2003). Macro-cognition, on the 
other hand, refers to cognition as it occurs in naturalistic 
environments, and includes such high-level operations as 
complex decision making, resource allocation, team co-
ordination, and responding to non-routine circumstances 
(Schraagen, Militello, Ormerod, & Lipshitz, 2008; West & 
Nagy, 2007).   
The method we are using is aimed at elucidating macro- 
cognitive processes and therefore eschews the siloing of the 
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component functions, as is common in studies of micro 
cognition.   Instead, we observe the expert performing the 
task as they naturally would, with minimal coaching or 
restrictions, and attempt to identify the components of the 
task afterward, in collaboration with the experts.  We wish 
to point out that we are not creating this as an alternative to 
lab based micro-cognition research. Instead, our approach is 
intended for use in conjunction with traditional micro-
cognitive research methods.  

Method 

Motivation, Philosophy and Scope 
There are two guiding motivations for this methodology. 
The first is the belief in the value of unification in modeling, 
and the second is what we perceive as the importance of 
integrating and making explicit the relations between 
experimental design, data analysis, and theory construction. 
Concerning the first motivation, we agree with Newell’s  
(1973) argument that, if we are ever to understand cognitive 
systems, the research community must attempt to integrate 
its efforts and avoid an unbounded proliferation of 
unconnected models.   

As for the second point, we want to encourage explicit 
attention to the relations between theory and method in 
cognitive modeling and experimental work. In particular, for 
this discussion it is important to distinguish between (1) 
systems for building computational models (e.g., ACT-R, 
GOMS, SOAR); (2) methods for creating models using 
these systems (e.g., task analysis, cognitive walkthroughs, 
ethnology); and (3) methods for evaluating the resulting 
models (e.g., hypothesis testing, model fitting). What we are 
proposing is a method for evaluating models. It can be used 
with any computational modeling system and any 
methodology for generating models within these systems. 

The intended scope of this methodology is the study of 
real world expertise, specifically in those domains for which 
some, but not all, behavior and cognition is routine. In the 
case of novices, behavior is generally too variable to be 
modeled using this approach. As practitioners develop 
proficiency in their domain, they generally converge upon 
optimal solutions (Shanteau & Hall, 2001), and thus we 
observe more consistency at higher levels of expertise than 
at lower levels (note: this methodology is not intended for 
“creative” expert domains such as music composition or 
fiction writing, where no convergence on an optimal process 
is expected).  Due to factors such as chaotic environments, 
individual differences, the actions of co-workers, 
unexpected events, and/or the need to multi-task, experts in 
the same field do not always behave in the same way.  We 
are interested in the middle ground between behavior that is 
fully routine and repetitive on the one hand, and that which 
seems entirely unsystematic on the other.  We argue that this 
is the zone in which most real-world experts operate.  

Our methodology is more akin to systems engineering 
practice than it is to experimentation. We are not attempting 
to generate and test hypotheses as we would in lab-based 

experiments. Rather, we are attempting to develop and 
refine models until they adequately capture the range of 
relevant behaviors and cognitive operations. This approach 
is more consistent with a Lakatosian scientific framework 
(Lakatos, 1970) than with a Popperian one (Popper, 1963). 
In short, the process of evaluating our models rests upon 
iteration rather than falsification.  

While we respect the importance of falsifiability in 
theorizing, we must also be clear about when it is 
appropriate or possible. For example, it is problematic to use 
falsification to evaluate the validity of cognitive 
architectures, such as ACT-R, GOMS, or SOAR (Cooper, 
2007; Newell, 1973). Although some models built in these 
systems can be falsified, the architectures generally cannot 
be falsified because there are usually multiple ways to 
model the same task within a single architecture. In other 
words, the model can be adjusted to fit the data. 

Likewise, we argue that falsification is problematic for 
evaluating models of real world expert behaviour, but for 
different reasons. Specifically, although we are concerned 
with evaluating specific models, and not the architectures in 
which they are built, the naturalistic behaviour of experts 
across time is different each time they are observed, even 
for the same individual. Of course, many of the component 
behaviours, or unit tasks, are the same from scenario to 
scenario, and these can be isolated and studied in the lab, 
but this is not what we are evaluating. Our interest is in 
evaluating whether a model can realistically account for the 
sequence of decisions and behaviours as each different 
scenario unfolds. Lab-based hypothesis testing is 
inappropriate here because it is based on averaging across 
the same sequence of behaviours repeated within and/or 
across individuals, with no variations in the environment.  

Lakatos (1970) defines a program of research as scientific 
if it is making progress over time, where progress may be 
demonstrated in multiple ways. For example, progress may 
include the discovery of new phenomena, falsification, 
hypothesis confirmation, increased parsimony, theory 
unification, counterfactual predictions, etc. Our method is 
based on two criteria for progress: (1) an increase in the 
amount of data accounted for by the model, and an increase 
in the percentage of times the model correctly predicts the 
next action of the human expert, and (2) an increase in the 
scope of the model, i.e., as we collect more and more 
samples of expert behaviours, the same model must cover 
all of them without any parameter changes. 

Overview 
The method we have been developing is an iterative, 

collaborative approach to creating macro-cognitive models. 
The process involves recording video footage of experts 
performing in naturalistic environments then using this 
information to construct a model of the task. Using this 
model as a base, we use an iterative model-tracing 
procedure to improve it until it is sufficiently robust to 
predict all or most of the high-level behavior observed. We 
do this using freely available tools and make our data and 
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models available to other interested parties. The process is 
laid out in more detail below. 

Procedure 
1 - Video capture  The first step is to collect video footage 
of experts performing in a naturalistic environment, as well 
as documentation about the task and interviews with 
experts. Rather than constructing a simplified task 
environment and attempting to isolate components of the 
task performance, we aim to have the experts demonstrate 
their skills in the messiness and complexity to which they 
are accustomed and which forms the necessary background 
against which their training and expertise are normally 
expressed. This step is similar to techniques used in 
cognitive task analysis (Kieras & Meyer, 2000) and 
cognitive ethnography (Williams, 2006).  
 
2 - Task Model Construction  Once video footage has 
been collected, we review it with the experts and attempt to 
determine patterns and regularities in task performance. We 
ask the experts to tell us what their goals and sub-goals were 
at each given point, what their strategies for accomplishing 
these goals were, and to identify which elements of the 
environment were relevant in their decision making (note 
that this process can be begun before video data is 
collected).  
 
3 - Cognitive Model Construction  Once we have created a 
task model, we construct two separate but inter-related 
models: a cognitive process model capable of completing 
the tasks, and a perceptual model, which we have termed the 
situational awareness (SA) model, that describes what the 
agent pays attention to in the environment and how these 
environmental cues are combined into a meaningful 
interpretation. These two models are linked in that the 
process model relies on the SA model for a meaningful 
interpretation of the environment and the SA model relies 
on the process model to provide context (e.g., in terms of 
the current goals of the agent), which is used to interpret 
raw environmental cues to create situational awareness. 

The framework we are using to inform this step is called 
Sociotechnical GOMS, or SGOMS (MacDougall, West, & 
Hancock, 2012; West & Nagy, 2007), which is an extension 
of the GOMS modeling framework (John & Kieras, 1996). 
However, our method is not necessarily tied to any 
particular theory of cognition and therefore we will not 
discuss SGOMS in detail. 
 
4 – Video Annotation and Model Tracing  Once we have 
constructed the two models, we use them to annotate the 
video footage we have collected.  We identify which actions 
are being undertaken at each point in the video, what the 
current goals and constraints driving behavior are, and 
which elements of the context are relevant in decision 
making.  As these are determined, we note on the video 
which actions are being undertaken and specify their time 
course.  To create these annotations we are using the 

ANVIL Video Annotation software (Kipp, 2010).  See 
Figure 1 in for a screenshot of video that has been annotated 
in ANVIL.   

 

 

 
 

Figure 1: ANVIL-annotated video frame of gameplay. 
 

The annotation procedure is accomplished through an 
iterative process of model tracing.  To do this, we first 
annotate the video by noting when behavioural elements 
related to the cognitive model appear on the video. Then we 
annotate the video with regard to the SA model. This 
process occurs in multiple cycles or iterations. We 
repeatedly make additions and deletions to the models in 
order to more accurately capture the range of behaviors and 
relevant contextual elements demonstrated in the dataset.    

In the refining process, we use an adapted form of model 
tracing, a practice that has been used to positive effect by 
designers of intelligent tutoring systems (Koedinger & 
Anderson, 1997; VanLehn, Freedman, & Jordan, 2000).  In 
effect, we try to determine at each point in the task 
performance whether the observed human behavior is 
consistent with predictions made by the model.  We do this 
by assessing whether the model could have reasonably (see 
the discussion section for more on this term) chosen the 
same action as the human agent did, given the states of both 
the SA and cognitive models’ allowable responses to that 
state. If the models cannot account for the observed 
behavior, we attempt to modify them.  This is one of the 
ways in which this method differs significantly from 
hypothesis-based experimentation: we do not conduct the 
annotation process in order to test whether the current build 
of our model is correct or incorrect, but rather with the 
intention of improving the existing model so that it more 
accurately and parsimoniously predicts the observed 
behavior.  In a sense then, the model informing the 
annotation can be viewed as a “rolling hypothesis” which is 
updated and refined with each iteration over the video. 

When making modifications to the model, we create a 
second “branch” of the model (as in software engineering), 
and test the new configuration against the previous one.  If 
the new additions or deletions improve the accuracy of the 
model, they are maintained, otherwise they are rejected and 
the initial model is retained.  We determine whether an 
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iteration is an improvement upon the previous model by 
noting the number of times each version fails to predict 
what the expert did.  We consider the model construction 
process complete when further iterations cease improving 
the accuracy of the model.  Some potential difficulties with 
this part of the method, such as the risk of over-fitting the 
model or of having an unbounded number of possible 
actions within the model, are examined in the discussion 
section. 

 
5 – Model and Data Release  Once we have finished 

developing a model and have used it to annotate video 
footage, we release online both the model and the annotated 
data (video footage) to other interested parties.  This is, we 
think, a crucial component of cognitive modeling at the 
communal level.  It encourages transparency and allows for 
more rigorous peer evaluation of research claims, and it 
facilitates collaboration between investigators. It also 
encourages data and model re-use.  

None of the various elements that we have combined are 
new. Our contribution lies, we hope, in demonstrating the  
scientific potential of embedding iterative model building  
in a systematic, explicit methodology for evaluating models 
of real world expertise. 

Example: Video Game Playing 
We have used the method described here to construct 

models of video game playing, professional mediation, 
chess playing, and professional cooking.  We will describe 
one of these cases, namely a model of playing Gears of War 
3 (Activision), a third-person shooter game for the 
Microsoft XBOX 360. 

In order to construct the model, we had several expert 
players play the game while we recorded the screen.  
Afterwards, we asked the individuals to discuss their 
strategies and thought processes while playing, and began to 
construct the task model.  Once we had an idea of what they 
were paying attention to in the environment, and how they 
were making decisions, we began constructing the SA 
model and the cognitive model. 

Figure 2, below, represents the process schematically.  On 
the top is the video frame from Figure 1; this depicts what 
players would see on screen, and was the video data that 
formed the basis for the annotations.  On the bottom left is a 
representation of the cognitive model.  This contains 
cognitive and behavioral actions, such as “find cover”, 
“engage enemy”, or “assess threat” along with the 
conditions under which they can occur.  The SGOMS model 
also covers high level planning and dealing with unexpected 
interruptions. The visualization of the cognitive model 
depicted in Figure 2 is output from software that we have 
developed in-house for visualizing these models; the 
software can be downloaded at 
https://github.com/mattmartin256/SGOMS_GUI.  On the 
bottom right is a representation of the SA model, which lists 
the important elements of the environment that are attended 
to.  Examples of these elements include the number of 

enemies on the screen, whether ammunition is running low, 
and the state of the character’s health. The blue arrows 
between components represent the fact that the construction 
process is iterative and that each component is used to 
modify and refine the others. 

 

 
 

Figure 2:  Schematic of Model Construction Process. 

Discussion 
The methodology presented here is a work in progress.  We 
are attempting to develop a systematic way of modeling 
expert behavior in complex, real-life scenarios. Such a 
methodology would be valuable, we argue, both for basic 
cognition research and to inform the design of socio-
technical systems. There are a number of potential 
difficulties, however, with such a method and we anticipate 
a number of criticisms here.   

The principle difficulty, and the one which this 
methodology is most explicitly attempting to address, is that 
there can be an overwhelming amount of complexity in 
naturalistic environments, and determining what is 
important or relevant is not straightforward.  Laboratory 
methods are aimed at carving out a tractable section of 
cognition or behavior, to save the investigators from being 
forced to address everything all at once: some sub-set of 
phenomena is selected as important.  Determining what is to 
be included in a cognitive model or experimental design is 
not atheoretical or pre-theoretical though.  Each 
experimental design or modeling framework necessarily 
includes certain elements and excludes others.  Any chosen 
methodology thus “smuggles in” theoretical assumptions 
about what ought to be paid attention to and what we can 
safely ignore. This is the problem of deciding on one’s “unit 
of analysis”, which is a common problem in all scientific 
disciplines (Hutchins, 2010). 

The various approaches for studying expertise define the 
unit of analysis in many different ways according to the 
methods and theories being employed.  These may include 
error rates and reaction times (Burkhardt, Détienne, & 
Wiedenbeck, 1997), memory recall tasks (Vicente & Wang, 
1998), eye movement patterns (Reingold, Charness, 
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Pomplun, & Stampe, 2001), and verbal protocols 
(Greenwood & King, 1995), among others.  The unit of 
analysis we wish to use is the interaction of an expert (or 
group thereof) with a complex socio-technical system. We 
are trying to accommodate this complex unit by bridging the 
methodologies of experimental psychology approaches that 
use rich environmental and behavioral descriptions, such as 
cognitive ecology and anthropology (Bender, Hutchins, & 
Medin, 2010; D’Andrade, 1995). In essence, we are trying 
to combine the rigor and predictiveness of process modeling 
with the richness of ecological studies.   

The second difficulty is that individuals are often unable 
to vocalize what they know (Clark, Yates, Early, & 
Merriënboer, 2008). We accept that much of the cognitive 
activity occurring “under the hood” will be invisible and 
may be unavailable for reporting by the expert. We thus do 
not assume that the input from our participant experts is the 
final word on what they are doing mentally. At the same 
time, however, we believe that this feedback from experts is 
a desirable component in modeling expertise, and a useful 
starting point for developing models of expert cognition. 
Also, it is important to note that the modeling approach used 
will affect the interactions with the experts. For example, we 
used SGOMS so our interactions with the experts were 
naturally geared toward eliciting the information and 
structures needed to build this type of model. 

A third challenge with this method is the degree to which 
human judgment is required in the construction and 
evaluation of these models.  When deciding whether to add 
or remove an element from a model, or in judging whether 
the model has accurately predicted a sequence of behavior, 
we must rely on the modellers’ knowledge and 
discrimination, and these cannot be perfectly formalized.  In 
other words, the evaluators must decide whether the model 
could have “reasonably” predicted each decision and action, 
given the elements in the cognitive and perceptual models.  
Because we are specifically interested in complex 
environments in which there is significant behavioral 
variability between participants and trials, we must use 
judgment in determining whether two instances of action are 
equivalent according the model.  For example: in the game 
play scenario presented above, no two instances of the 
action “take cover” will be exactly the same on the screen, 
so we must be capable of abstracting from the data to equate 
the two instances.   

Our stance on this issue is informed by Herb Simon’s 
(1969) “ant on the beach metaphor”.  This states that the 
observed behavioral complexity and variability of an agent 
is often the result of the environment in which the agent 
acts, and does not originate within the agent itself.  In the 
case of the ant, the insect is a rudimentary cognitive-
behavioral system.  Watching an ant navigate a sandy beach, 
it may seem that the ant is moving in complex patterns, 
when, in reality, it may only be obeying the simple heuristic 
of “do not climb hills”. The point that we take from this is 
that superficially distinct behaviors may reflect the same 
underlying cognitive processes.  It is in determining whether 

such equivalence exists between instances of behavior that 
the role of judgment comes into play in this methodology. 
Here, the public availability of the cognitive and perceptual 
models along with the annotated videos plays a crucial role. 
The claim that a judgment was reasonable must stand up to 
public scrutiny. 

Another consideration in the use of this methodology is 
the difficulty of choosing which elements to include in a 
given model.  We need to negotiate between two extremes: 
over-fitting and unbounded growth.  In the former case, we 
want models to be capable of accurately predicting behavior 
by the collection of experts studied, and a model tied too 
specifically to a single instance or agent will fail to meet this 
goal. In the latter case, we want to avoid the temptation of 
endlessly adding elements to the model whenever something 
unexpected occurs.  This is connected to Simon’s ant 
metaphor: we need to determine when superficially 
dissimilar behaviors represent the same underlying 
mechanism, because without such abstraction and equating, 
the models will quickly become bloated and unwieldy.  The 
final goal is to develop models that are informative, 
predictive, and lean, and this requires a balance between 
specificity and generality.  

One way of evaluating progress on this path arises from 
our goal to create one unified model that applies across all 
instances of a field of expertise. Following from our use of 
branching and the comparison of new models with old, we 
would expect our current model to be backwards compatible 
across all the videos used up to that point. If the model has 
been over-fit it will not show a consistent advantage across 
all of the videos. With each iteration the demands on the 
model are actually increased. Eventually, diminishing 
returns on adjusting the model would signal that it is about 
as good as it will get. At this point the model and the 
annotated videos can be used as a benchmark to evaluate 
alternative models against.  

In terms of quantitative evaluation, we are currently using 
as our metric the percentage of correct predictions the model 
makes of the expert’s next action (this measure was also 
used in West & Nagy, 2007). However, we are working on 
other, more detailed ways of quantifying how good the 
models are. For example, in some cases the model makes a 
single prediction of what is likely to come come next, but in 
other cases the model allows for more than one possible 
next action. Currently, we are experimenting with 
incorporating the number of predicted next actions at each 
point into our quantitative measure. For example: if two 
models are equally predictive in terms of the percentage of 
actions accurately predicted, but one model regularly 
predicts a greater number of next possible actions, that 
model ought to score lower, as it is a less lean (more 
bloated) model of the expert behavior.  

 
Conclusion 

We have presented a methodology for modeling expert 
behavior and cognition in complex, naturalistic 
environments.  Such a technique will, we hope, be valuable 
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in furthering our understanding of expertise and situated 
cognition, and may also be useful in improving the design 
of socio-technical systems, such as emergency operations 
centers or aircraft cockpits.  We support an open-source 
approach to scientific research, and hope that explicit 
attention to methodology, along with the open sharing of 
tools, data, and models will facilitate collaboration among 
researchers and the development of more unified, 
comprehensive cognitive models.  
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Abstract

The performance of cognitive models often depends on the set-
tings of specific model parameters, such as the rate of memory
decay or the speed of motor responses. The systematic explo-
ration of a model’s parameter space can yield relevant insights
into model behavior and can also be used to improve the fit
of a model to human data. However, exhaustive parameter
space searches quickly run into a combinatorial explosion as
the number of parameters investigated increases. Taking an
established instance-based learning task as example, we show
how simulation using parallel computing and derivative-free
optimization methods can be applied to investigate the effects
of different parameter settings. We find that both global opti-
mization methods involving genetic algorithms as well as local
methods yield satisfactory results in this case. Furthermore, we
show how a model implemented in a specific cognitive archi-
tecture (ACT-R) can be mathematically reformulated to pre-
pare the application of derivative-based optimization methods
which promise further efficiency gains for quantitative analy-
sis.

Keywords: cognitive modeling; ACT-R; instance-based learn-
ing; discrete-time systems; derivative-free optimization; pa-
rameter identification

Introduction
Most formal models of cognitive processes contain adjustable
parameters which moderate model behavior. Exploring the
effects of different parameter settings in a cognitive model is
important to fully understand its behavior, to identify param-
eter combinations providing the best fit to human data, and to
analyze sensitivity towards parameter variations (see Roberts
& Pashler, 2000). In practice, this exploration is still often
conducted manually, guided by researcher intuition or some-
times just by trial-and-error. The systematic exploration of
a given parameter space is often desirable, but quickly runs
into difficulties, as processing time increases exponentially
with the number of parameters and the resolution of anal-
ysis (the curse of dimensionality). Compounding the prob-
lem, the computational performance of cognitive models is
often comparatively poor as cognitive plausibility usually has
priority over computational performance. The development
of more efficient methods for parameter space exploration
has therefore become an emergent topic in cognitive mod-
eling research (e.g., Best et al., 2009; Gluck, Scheutz, Gun-
zelmann, Harris, & Kershner, 2007; Lane & Gobet, 2013;
Moore, 2011). Complementing existing approaches, we will

illustrate how optimization-methods from the field of scien-
tific computing can be applied to parameter search problems.
As example we use a model of an implicit learning task,
originally implemented in the ACT-R cognitive architecture
(Taatgen & Wallach, 2002).
While parallel high-performance computing can improve the
speed of parameter space searches, the combinatorial explo-
sion inherent in this task easily exceeds the capacity even
of large computing resources (Gluck et al., 2007). An-
other possibility is to optimize the efficiency of search al-
gorithms. In the current literature, two approaches of this
kind can be found. One is to sample the search space se-
lectively, e.g., by Adaptive Mesh Refinement or Regression
Trees (Best et al., 2009; Moore, 2011). Areas of the search
space with high-information content (e.g., containing discon-
tinuities or non-linear gradients) are sampled more densely,
areas with low-information content only sparsely. This strat-
egy allows to preserve most information relevant for model-
ing purposes while reducing the amount of sampling required.
However, instead of approximating the full parameter space,
it its sometimes sufficient to find particular points or areas
with certain characteristics, e.g., parameter combinations pro-
viding the best model fit to empirical data. To reach this
goal, derivative-free optimization methods such as genetic
algorithms have been employed, which use an evolutionary
generate-and-select-strategy to find optimal parameter com-
binations (e.g., Kase, Ritter, & Schoelles, 2008; Lane & Go-
bet, 2013). Here, we will illustrate how a cognitive model
implemented in a specific cognitive architecture (ACT-R) can
be mathematically reformulated towards applying a third gen-
eral approach, derivative-based optimization, which promises
further efficiency gains and additional analytic insights com-
pared to derivative-free optimization.

The Sugar Factory Paradigm
The task used to illustrate this approach is the Sugar Fac-
tory, a computer-simulated scenario developed by Berry and
Broadbent (1984) in order to study how people interact with
dynamic systems. In behavorial studies participants are often
able to control the Sugar Factory system above chance level
yet can not verbalize how the system works (Berry & Broad-
bent, 1984, 1988). This can be explained by assuming that
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participants learn to associate particular states of the simula-
tion with specific actions (instance-based learning) instead of
inducing generalized rules about system behavior (Dienes &
Fahey, 1995; Taatgen & Wallach, 2002). The Sugar Factory
has repeatedly been used in experimental research and the
underlying principles of instance-based learning have been
shown to apply to more complex situations, ranging from
playing backgammon (Sanner, Anderson, Lebiere, & Lovett,
2000) to economic decision making (Gonzalez & Lebiere,
2005) or air-traffic control (Lebiere, Anderson, & Bothell,
2001).

In the Sugar Factory, participants are asked to reach a spe-
cific sugar production p∗ by choosing the number of workers
x in each round j ∈ [1,N]. The equation below describes the
behavior of the Sugar Factory:

p j+1 = 2 · x j− p j +ur, (1a)

ur ∈
{
−1,0,1

}
, (1b)

p ∈
{

1, ...,12
}
, (1c)

x ∈
{

1, ...,12
}
, (1d)

where ur is a random component. If the resulting produc-
tion is less than 1 or greater than 12, then p is set to 1 or 12
respectively. The goal is to produce 9000 tons of sugar which
corresponds to p= 9 on each of a number of trials. The initial
production value is p1 = 6 and the task is run for 40 rounds.
Participants are not informed about the system structure. A
sugar output of p ∈ [8,10] is scored as being on target, mak-
ing it possible to be on target 100 % of the time, despite the
random component.

ACT-R Model of the Sugar Factory
Instanced-based learning can be modeled using the declara-
tive memory module of the ACT-R architecture (Anderson
et al., 2004). We used an adapted version of the Taatgen
and Wallach (2002) model of the Sugar Factory, in which
instances are represented as memory chunks encoding task
state, participant action, and outcome (i.e., current produc-
tion p j, number of workers x j, and new production p j+1).

Each chunk i has an activation value Ai which is computed
from three components: the base-level activation Bi, a context
component Ci and a noise component un,i j ,

Ai := Bi +Ci +un,i j. (2)

To retrieve a chunk from memory a retrieval request is made
to the declarative module. Only chunks with an activation
level above threshold τ are eligible for retrieval.

The base-level activation Bi is calculated from the number
ni of presentations of a chunk i, its the time since its creation
Li and the decay parameter d1,

Bi := ln
(

ni

1−d

)
−d · ln(Li) . (3)

1Note that we used the ACT-R optimized learning equation.

In this model the context component Ci is determined by the
similarity between the numerical values for workers and pro-
ductions in the retrieval request and corresponding values of
the chunks in declarative memory:

Ci := P ·∑
k

Mik, (4)

with Mik as similarity values 2. The parameter P reflects the
amount of weighting given to the similarities.

As the Sugar Factory model is very simple, only few pro-
duction rules are necessary. The steps our model runs through
are described below.

1. Start with a number of workers x =
{

7,8,9
}

.

2. Request to retrieve a chunk from memory which matches
the current task state and results in a production of p = 9.

3. (a) If there is such a chunk and the activation of this chunk
is above the threshold τ: perform the action stored in
the retrieved chunk, i.e., change the workforce.

(b) If no chunk reaches the activation threshold τ, perform
a random action. If the sugar production is below or
above target, then

{
− 2, ...,2

}
is added to the current

workforce. If the sugar production is on target, then{
−1,0,1

}
is added to the current workforce.

4. Create or update a chunk with the information from this
round.

The model actions described in rule 1 and rule 3 (b) are
based on empirical observations reported in Dienes and Fahey
(1995).

Mathematical Reformulation
We start by rewriting the logical relations in the ACT-R model
as a recurrence relations system, which is then reformulated
using only numerical formulas.

Let Nr be the number of rounds. The general outline of the
cognitive process is as follows.

In every round

1. compute the activations of chunks,
2. select the chunk with the highest activation,
3. retrieve information stored in this chunk,
4. perform action,
5. update memory.

2The formula for the similarities of numbers was taken from the
ACT-R 6.0 Tutorial (2012):

Mik :=− |a−b|
max(a,b)

,
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For the Sugar Factory each chunk represents an instance
with i three slots: current production p j, action (i.e., number
of workers x j), and the new production p j+1. The maximum
total number Nc of chunks present in the model can be cal-
culated from the number of values possible for its slots cik,
k ∈
{

1,2,3
}

, slot k of chunk i. Feasible values for new work-
force (ci1), the current production (ci2) and the new produc-
tion (ci3) are {1, . . . ,12} each. Thus,

Nc = 12 ·12 ·12 = 1728. (6)

We allocate every possible chunk and set its initial activity to
−M where M is sufficiently large.

The lifetime of a chunk consists of the round of its genera-
tion ti, the current round j and a time constant T = 0.05s.

The model contains different types of variables:

• states including the activation of the chunks and process
specific states as the current number of workers and the
current production,

• parameters τ, d, P and s describing the cognitive proper-
ties of the individual participant (the default values in this
model are: τ = 0, d = 0.5, P = 10 and s = 0.2)

• inputs, containing the cognitive noise un, random decisions
by the participants uw + uon resp. uw + uoff and system in-
puts ur. The sequences of random values are generated a
priori as reproducible pseudo-random numbers.

Feasible values for the inputs are: uon, ∈
{
− 1,0,1

}Nr

if the production is on target and uoff, ∈
{

7,8,9
}
×
{
−

2, ...,2
}(Nr−1) if the production is off target as well as ur,

∈
{
− 1,0,1

}Nr for the random vector. All inputs are vec-
tors of length Nr, except un,i j, which is of length Nr ·Nc. If
the target has been reached in round j, i.e. the new produc-
tion p j+1 equals 8, 9, or 10, an indicator R j+1 is set to 1. The
overall score is computed by summation of R j+1.

This modeling approach leads to a nonlinear recurrence re-
lation system, see Algorithm 1.

In our approach, the logical phrases from the ACT-R for-
malism are modeled by argmax, |.|, max and if-then state-
ments. We formulate them using the Heaviside and Delta
functions and write the if-then statements

x =
{

a, if s≥ 0
b, if s < 0 , x =

{
c, if t = 0
d, if t 6= 0

as

x = H(s) ·a+(1−H(s)) ·b, x = δ(t) · c+(1−δ(t)) ·d.

So we substitute max(x,y) and |x−y|
max(x,y) . To calculate

i∗ = argmaxAi, x j =

{
ci∗1, Ai∗ ≥ τ

uw, j, Ai∗ < τ
,

for j = 1, . . . ,Nr do
(1) for i = 1, . . . ,Nc do

Li := ( j− ti)+T ;
Bi := ln(ni/(1−d))−d · ln(Li) ;

Mi1 :=−
∣∣p j− ci2

∣∣/max
(

p j,ci2
)
;

Mi2 :=−|9− ci3|/max(9,ci3);
Ai := Bi +P · (Mi1 +Mi2)+ un,i j;

end
(2) i∗ := argmaxiAi;

(3) Ai∗ ≥ τ?
(i) Ai∗ ≥ τ: x j := ci∗1;

(ii) Ai∗ < τ: x j := uw, j;

(4) p j+1 := 2 · x j− p j +ur, j;
(i) p j+1 > 12: p j+1 = 12;

(ii) p j+1 < 1: p j+1 = 1;
(iii) p j+1 = 9?

(a) p j+1 = 9: uw, j+1 := uw, j +uon, j;
(b) p j+1 6= 9: uw, j+1 := uw, j +uoff, j;

(5) uw, j+1 > 12: uw, j+1 = 12;

(6) uw, j+1 < 1: uw, j+1 = 1;

(7) p j+1 ∈
{

8, ...,10
}

?

(i) p j+1 ∈
{

8, ...,10
}

: R j+1 := 1;
(ii) p j+1 /∈

{
8, ...,10

}
: R j+1 := 0;

(8) ∃ i = 1, . . . ,Nc : ci =
(
x j, p j, p j+1

)
?

(i) ∃ i : ni := ni +1
(ii) @ i : Nc := Nc +1;

cNc :=
(
x j, p j, p j+1

)
;

nNc := 1;
tNc := j;end

Algorithm 1: ACT-R algorithm of Sugar Factory

we firstly compute A∗ = maxi Ai and then

x j =
Nc

∑
i=1

H(Ai−A∗) · (H(A∗− τ) · ci∗1 +(1− (A∗− τ)) ·uw, j).

In order to compute sensitivities and use derivative-based op-
timization algorithms at a later stage, we aim for a continuous
model formulation. We replace Heaviside and Delta func-
tions by continuous approximate redefinitions

H(x) :=
1
π

arctan
(
h · x
)
+

1
2
, δ(x) := exp

(
− x2

a2

)
,

with h = 1000, a = 0.01.
The limits on the production in the Sugar Factory are im-

plemented by if-then statements. Those rules appear as fol-
lows in our mathematical description:

p j+1 > 12 : p j+1 = 12,
p j+1 < 1 : p j+1 = 1.

In our reformulation those if-then statements are smoothened
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using the Heaviside function H():

p̃ j+1 =2 · x j+1− p j +ur j

p j+1 =H(p̃ j+1−12) ·12+
(
1−H(p̃ j+1−12)

)
·
(

H(1− p̃ j+1) ·1+
(
1−H(1− p̃ j+1)

)
· p̃ j+1

)
.

Simulation
We implemented the reformulation of the model in the Python
programming language. Simulations were run on a 48-core
high-performance server (4 · 12-core AMD Opteron 6176,
non-dedicated) with 256 GB RAM. The maximum runtime
per simulation run did not exceed one day. We focused on pa-
rameters P and τ, as they have considerable effect on model
performance yet no strong empirically based recommenda-
tions for default values exist. All other parameters where left
at the recommended default values.

For each grid point the simulation was run 100 times with
different input vectors, see Figure 1. The activation noise
un,i j was set to zero, as it does not lead to a notable change in
mean performance. In a second step, only instances in which
a chunk was retrieved were counted as being on target and
compared to our previous results (see Figure 1 (b)). Figure 2
shows the sensitivity of results with regard to different initial
production values.

In general, all simulation results show a similar pattern in
response to parameter variation. Figure 1 (a) shows a char-
acteristic interaction of parameters τ and P, with the high-
est performing parameter combinations located in a wedge-
shaped area at the center of the plot and lower performance in
both lower left and upper right corners. Considering whether
model responses where based on memory retrieval as op-
posed to random behavior (see 1 (b)) shows that learning oc-
curs in the lower left corner. In contrast, in the upper right
corner behavior is almost exclusively driven by random be-
havior.

Furthermore, Figure 2 shows that the initial starting val-
ues of the Sugar Factory problem have a notable influence on
overall performance, but do not interact in an unpredictable
way with parameter settings. The pattern is cognitively plau-
sible, as starting values closer to the actual best control values
make system control easier.

Optimization
In order to determine the parameter combination with the
highest performance and the best model fit, we applied a num-
ber of derivative-free optimization algorithms: Nelder-Mead
Simplex (Nelder & Mead, 1965) with explicit support for
bound constraints (Box, 1965) and BOBYQA (Powell, 2009)
which are both local derivative-free optimization solvers.
BOBYQA uses an iteratively constructed quadratic approxi-
mation for the objective function. Additionally, we applied
ESCH, a modified genetic algorithm (Beyer & Schwefel,
2002) and Controlled Random Search (CRS) with local mu-
tation (Kaelo & Ali, 2006). ESCH and CRS are both heuris-

tic global solvers. CRS starts with a population of random
points, and evolves these heuristically, a method comparable
to genetic algorithms. All optimization algorithms were ap-
plied using the Python interface of NLopt (Johnson, 2014).
The stopping criterion for the local solvers was a relative tol-
erance on the optimization parameters of 0.1. For the heuris-
tic global solvers the stopping criterion was set to a maximum
runtime of 960s.

The objective function for the highest performance was a
weighted sum consisting of the mean of the results on target
and the standard deviation,

a · 1
n

n

∑
i=1

Ri +b ·

√√√√ 1
n−1

n

∑
i=1

(
Ri− 1

n

n

∑
i=1

Ri

)2

,

where Ri = ∑ j Ri
j+1. Ri

j+1 is the indicator on target in round
j = 1, . . . ,Nr for input i = 1, . . . ,n, n = 100.

Table 1 shows the results for a = 1 and b = 0 and 100 in-
puts using multiple start values (see Figure 1 (a)). The lo-
cal solvers Nelder-Mead and BOBYQA both found the same
local maximum (τ = −4, P = 27 with objective = 20.15),
for ESCH and CRS we successively increased the time limit
from 120 to 960 seconds. Table 1 shows the maxima found
by the heuristic global solvers after 960 seconds. For a = 1
and b = −1, all solvers found the same point as a maxi-
mum (τ≈−6.5, P≈ 30 with objective≈ 13.87), except CRS
which found a slightly better point (τ≈−8.15, P≈ 34.9 with
objective ≈ 14.04).

For optimizing the model fit, the objective function was
the root mean square deviation (RMSD) of the model perfor-
mance and a human reference value Rref = 7.9 taken from the
literature (Dienes & Fahey, 1995),√

1
n

n

∑
i=1

(Ri−Rref)
2.

Table 2 shows the results for the different solvers again using
multiple start values. All solvers found the same point as a
maximum (τ≈ 0.5, P≈ 30 with objective = 4.05). The time
limit for ESCH and CRS was set to 5 seconds.

Table 1: Solver comparison, highest performance

Solver τ P Maximum #Evaluations
Nelder-Mead -4 27 20.15 36
BOBYQA -4 27 20.15 43
ESCH -3.13 22.36 20.13 863
CRS -4.21 28.52 20.2 860

The parameter combinations that provide the best fit to av-
erage human performance are located at about τ = 0.5 and
P ≈ 30, as indicated by Figure 1 (a) and the results of op-
timization routines. Interestingly, this combination is far re-
moved from the possible optimal performance, located at pa-
rameter values τ=−4.21 and P= 28.52. Apparently, consid-
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Figure 1: Rounds on target for 100 inputs over 40 rounds, initial production p0 = 6, medium grid (8256 grid points)
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(c) Initial production p0 = 9

Figure 2: Rounds on target for 100 inputs over 40 rounds with different initial production values, medium grid (8256 grid
points)

Table 2: Solver comparison, best model fit

Solver τ P Maximum #Evaluations
Nelder-Mead 0.5 28.13 4.05 67
BOBYQA 0.5 27.80 4.05 54
ESCH 0.45 27.88 4.05 6374
CRS 0.48 32.94 4.05 4500

ering even weak memories of previous instances (i.e., a low
retrieval threshold τ) is an advantage in this task.

Conclusions
In this work we derive a mathematical formalization of an
ACT-R cognitive model to enhance its numerical tractability.
The formulation contains both specific parts describing the
instances and rules of a particular task and generic parts mod-
eling the declarative memory module of the ACT-R frame-
work. This enables us to apply the approach to a broader
range of scenarios. Our formulation transfers the logic-based
ACT-R rules to a recurrence relation, which after smooth-
ing represents a differentiable mapping from model param-
eters and model inputs to the model outputs. In this work

we used this formulation for a simulation-based study of the
Sugar Factory paradigm where we explored the parameter
space by parallel computing and computed optima by search-
methods and derivative-free approaches. Our next step will be
the evaluation of the derivatives of the recurrence relation by
using techniques of algorithmic differentiation (Griewank &
Walther, 2008) and to apply them in derivative based numer-
ical approaches for sensitivity analysis, parameter estimation
and optimum experimental design for efficient model calibra-
tion (Körkel, Kostina, Bock, & Schlöder, 2004). Using these
methods promises a considerable reduction of computational
costs for the quantitative analysis of suitable cognitive pro-
cess models.
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Abstract

Computational cognitive models can embody the structures
and processes proposed in a cognitive theory. However, they
do not necessarily reveal the theory’s underlying assumptions
and specifications. This study aims to bridge the gap between
cognitive theory and its computational implementation, focus-
ing on a case of mental model theory on human reasoning.
Using a mathematics-based and statically-typed programming
language (Haskell), we provide a specification-aware compu-
tational implementation of syllogistic reasoning with mental
models.

keywords: Mental model theory, Type system, Specification,
Cognitive modeling, Logical reasoning.

Introduction
The specification problem in cognitive modeling
In cognitive science research, mental representations and pro-
cesses underlying human cognition have been treated in anal-
ogy with computer programs consisting of data structures and
algorithms.However, it is not always easy to understand the
relationship between the two in cognitive theories employ-
ing natural language for description. This occasionally leads
to ambiguous formulations of cognitive theories. To remove
these ambiguities, researchers have developed computer im-
plementations of these theories.This type of modeling has re-
vealed more detailed structures and processes than the exist-
ing formulations using natural language.

Recently, some researchers have questioned whether or not
cognitive models should actually reveal theory specifications.
McClelland (2009) pointed out that computational cognitive
modelings are not full accounts of cognitive theories; imple-
mentations are not intended to embody the aspects of a the-
ory’s assumptions or specifications that are loosely defined
in a cognitive theory. However, Cooper and Guest (2014) ar-
gue that McClelland (2009) downplays the role of modeling
in theory specification, and in particular the possibility that
a model might embody a set of assumptions (p. 43). To rem-
edy this, they suggest that it is necessary to improve the cur-
rent situation whereby modeling approaches are not suitable
for theory specification, by bridging the gap between com-
putational implementation and cognitive theory. The present
study was conceived in a similar vein. We introduce a mod-
eling method consisting of full-fledged descriptions of theory
specifications: “type system based modeling.”

A case of mental model reasoning
Cognitive studies involving the mental model theory, which
was introduced by Johnson-Laird (1983; 1984), are appropri-
ate examples with which to discuss the specification problem
in cognitive modeling. The mental model theory is a cognitive

[a] b c −b
[a] b c −b

b
b

1st premise model 2nd premise model

All A are B Some C are not B

[a] b [a] b c
[a] b [a] b c

−b c −b c
−b c −b c

Integrated model Alternative model

Fig 1: Syllogistic reasoning with mental models

theory of sentence interpretation and inference. The theory
was first formulated for categorical syllogisms, but has now
been extended to various domains of reasoning (for a review,
see Khemlani & Johnson-Laird, 2013). Syllogism with quan-
tificational sentences is one of the most elementary forms of
natural language inference, and is important in the analysis of
human reasoning (cf. Moss, 2008). The present study consid-
ers the domain of syllogisms only, focussing on the recent
version (Bucciarelli & Johnson-Laird, 1999) and its corre-
sponding computer implementation (Mental Models & Rea-
soning Lab, abbreviated as MMRLab.1).

Natural language description Syllogistic reasoning pro-
cesses in mental model theory as described with natural lan-
guage are briefly illustrated below. The basic idea underlying
the theory is that people interpret sentences by constructing
mental models corresponding to possibilities and make in-
ferences by constructing counter-models. (1) Mental models
consist of a finite number of tokens, denoting the properties of
individuals. All A are B has a model illustrated on the leftmost
side of Fig.1, where each row represents an individual. A row
consisting of two tokens, a and b, refers to an individual that
is A and B. The tokens with square brackets, [a], express that
the set containing them is exhaustively represented by these
tokens and that no new tokens can be added to it. A sequence
of tokens without square brackets can be extended with new
tokens so that an alternative model is constructed. (2) Some C
are not B has a model illustrated on the second from the left
of Fig.1. A row with a single token, b, refers to an individ-
ual that is B but not C. A row consisting of two tokens, c and
–b, refers to an individual that is C but not B, by using “–” to
denote negation. (3) These two models for premises are inte-
grated into a single model, as shown in the second from the
right in Fig.1. Two tentative conclusions, Some A are not C
and Some C are not A, are extracted. (4) To search counterex-
ample for them, an alternative model is constructed by adding
new tokens (token c), as shown in the rightmost side of Fig.1.
Since each token of A is corresponding to tokens of C, Some

1As described on p.14 of Khemlani and Johnson-Laird (2013),
the major part of the program code for syllogistic fragments (MM-
RLab) still lives on in another implementation of the mental model
theory, what is called mReasoner, which can cope with various do-
mains beyond categorical syllogisms.
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A are not C is refuted. Instead, Some C are not A survives.

Modeling implementations Following the theory infor-
mally described above, Johnson-Laird and his colleagues
have developed several computational cognitive models,
some of which have been published (p. 443 of Khemlani &
Johnson-Laird, 2012). Their implementation of syllogisms is
found in MMRLab. It is written in Common Lisp and a men-
tal model is represented as a list, which is the most basic data
structure in Lisp. For example, the 1st and 2nd premises mod-
els in Fig. 1 are represented as lists:

(((* A) (B)) ((* A) (B)))

(((C) (- B)) ((C) (- B)) ((B)) ((B)))

Their implementation of mental model theory was successful
in embodying structures and processes proposed in the theory
but it was unable to fully account for its specification. More
concretely, it lacked a mathematical formalization of the con-
cept of a “mental model.” This ambiguity has resulted in var-
ious misunderstandings of the theory, and most of the con-
troversy around the theory in cognitive science and logic has
focused on this point (Braine, 1994; Hintikka, 1987; Stenning
& Van Lambalgen, 2008). It is therefore important to under-
stand the nature of the theory by addressing the specification
problem.

Beyond the specification problem
Formal modeling A possible method to bridge the gap be-
tween implementation and theory is to convert natural lan-
guage description theories to formal systems. This method
is called formal cognitive modeling: structures and processes
described in a theory are decomposed at a more abstract
(mathematical) level than existing implementations (e.g.,
Arkoudas & Bringsjord, 2008; Bosse, Jonker, & Treur, 2006).
Koralus and Mascarenhas’s (2013) modeling is an example
of this approach. They constructed a formal (propositional)
inference system, called “the erotetic theory of reasoning”,
which essentially corresponds to mental model reasoning. (i)
They started by converting from mental models to algebraic
structures such as ptq, consisting of representational units (p
and q standing for propositions) and operations (t standing
for conjunction), which can be translated to logical formu-
las such as p∧ q. Here non-standard semantics, not model-
theoretic semantics, were given for the interpretations of sen-
tences. (ii) Update (erotetic) rules for adding the new premise,
which is treated as an answer to the question in discourse, and
operation rules for making inference as refutation were given.
(iii) In this system, soundness and completeness for classical
propositional semantics were shown via translation.

To our knowledge, Koralus & Mascarenhas’s work is the
first major formalization of mental model reasoning.2 This

2Recently, Clark (submitted) straightforwardly provided a spec-
ification of mental model theory using total and partial truth func-
tions, which correspond to exhaustive and non-exhaustive models.

approach has at least an advantage in analyzing computa-
tional complexities of solving tasks rather than predicting hu-
man performance data of them (for more details see e.g. Ver-
brugge, 2009; Isaac, Szymanik, & Verbrugge, 2014). How-
ever, this modeling is abstract in that it can be implementa-
tion-independent. Therefore it may not address problems
caused by a particular representation in a cognitive theory.
Thus, certain specifications, such as the mental models defi-
nition may not be provided at an appropriate level.

Specification-aware modeling An alternative way to
bridge the gap between implementation and theory is to use
a programming language suitable for specification descrip-
tions, which we call specification-aware cognitive modeling.
This approach was manifested in the seminal study of Cooper
et al. (1996). According to them, (i) ordinary (Lisp and C)
implementations themselves do not include the specifications
of cognitive theories; (ii) formal theories of specifications,
including mathematical descriptions, are not appropriate for
bridging the gap between implementation and theory since
they are implementation-independent. In our view, Johnson-
Laird’s mental model implementation in Common Lisp corre-
sponds to case (i) and the formal modeling approaches of Ko-
ralus and Mascarenhas (2013) correspond to case (ii). Alter-
natively, Cooper et al. (1996) have provided some cognitive
modeling implementations written by an executable specifi-
cation language Sceptic, consisting of the declarative (logic
programming) language Prolog, with the additional device of
control structures. Their implementations include the mental
model theory for syllogistic reasoning (for more details, see
Cooper, 1992)3. Here, rewrite rules obey certain mathemati-
cal manipulations, such as rewriting from one term to another,
as is the case in lambda calculus. This rewriting can be re-
garded as a specification in itself. Furthermore, an advantage
of declarative language is that one can check the logical re-
lationships between input and output representations without
specifying a strategy of computation. (cf. sec.3 of Cooper &
Guest, 2014).

This study put forward the line of specification-aware mod-
eling. We try to give a “computational” (i.e. executable) se-
mantics for the mental model theory. For the purpose of this
research, we consider a reconstruction based on type system
(cf. Mitchell, 2003). We refer to this approach as type system
based modeling. Importantly, we chose a purely-functional
programming language Haskell that has strong static typing
and lazy evaluation strategy (Jones, 2003; Marlow, 2010). In
contrast to the Common Lisp language used in Johnson-Laird
and his colleagues’ implementation (MMRLab), Haskell is a
purely functional programming language with strong static
typing. Explicit type annotations are useful for defining men-
tal models within the system, and Haskell encourages to pro-

3Based on Sceptic, the COGENT environment for cognitive
modeling has subsequently been developed. An application to men-
tal model theory is found in chap.5 of Cooper (2002). It is intended
to provide theory specifications by reconstructing information-
processing models such as box-and-arrow diagrams.
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gram in a declarative style. This property can contribute to
reasoning about the program itself (e.g. to give a denotational
semantics for it Haftmann, 2010; Vytiniotis et al., 2013). It
is important not only to guarantee the fact that a program is
executable (there is no syntactical error), but also to verify
whether a program works as intended by theorists (the aspect
of semantics.) Note that this brief paper focuses on a part of
the long-term study. Just a relatively weak formal verification
(static type-checking based on explicit typing) is available
here. To provide a formal verification by a theorem prover
or other semantic verifications leave for future work.

An Implementation of the Mental Model
Reasoning System

An outline of the reasoning system is given in Sugimoto,
Sato, and Nakayama (2013). The system is portrayed as a
conceptual diagram Fig. 2 that shows translations from one
model to another by the following steps: 1. constructing men-
tal models of premises, 2. integrating these premise mod-
els into an initial (integrated) model, 3. drawing a tentative
conclusion from the initial model, 4. constructing alternative
models by falsification, 5. producing a final conclusion.

Mental 
Model

P1

INPUT 
P1

Mental 
Model

P2

INPUT
P2

Integrated
Model

1.construction

1.construction

2.integration

OUTPUT
C

5.drawing conclusion

(falsification fail)

Alternative

Model

4. alternative 

model search

(falsification success)

5.drawing 

conclusion

(falsification fail)

3. drawing

tentative

conclusion

4. alternative 

model search

(falsification success) 3.drawing

tentative

conclusion

Fig 2: Diagram for syllogistic reasoning system

Steps 1 and 5 involve IO actions. Steps 2, 3 and 4 consist of
stateless (no side effects) functions only.

Mental model construction
The syllogistic language (input) is considered as a kind of
controlled natural language, and its grammar can be defined
by BNF+. We define a combinator parser to parse this lan-
guage instead of using a standard bottom-up parser (MMR-
Lab.) An implementation of the language and the parser is
given in Code 1:
pS,pNp,pNegNp :: Parser String String
pPred,pNegPred :: Parser String String
pTerm,pQuant,pNegQuant :: Parser String String
pNeg,pCop :: Parser String String
pS = pNp <*> pPred <|> pNp <*> pNegPred <|> pNegNp <*> pPred
pNp = pQuant <*> pTerm
pNegNp = pNegQuant <*> pTerm
pPred = pCop <*> pTerm
pNegPred = pCop <*> pNeg <*> pTerm
pTerm = symbol "A" <|> symbol "B" <|> symbol "C"
pQuant = symbol "All" <|> symbol "Some"
pNegQuant = symbol "No"
pNeg = symbol "not"
pCop = symbol "are"

type Parser a b = [a] -> [(b,[a])]
symbol :: Eq a => a -> Parser a a
symbol c [] = []
symbol c (x:xs) | c == x = [(x,xs)]

| otherwise = []
succeed :: b -> Parser a b
succeed r xs = [(r,xs)]
failp :: Parser a b
failp xs = []
token :: Eq a => [a] -> Parser a [a]
token cs xs | cs == take n xs = [(cs,drop n xs)]

| otherwise = []
where n = length cs

satisfy :: (a -> Bool) -> Parser a a
satisfy p [] = []
satisfy p (x:xs) | p x = [(x,xs)]

| otherwise = []

Code 1: The definition for syllogistic language and its parser

data MToken = AToken Atom |
FToken Exh Atom | NToken Neg Atom | Nil

data Atom = ASymbol | BSymbol | CSymbol
type Symbol = Char

type Exh = Symbol
type Neg = Symbol
type Nil = Symbol
type ASymbol = Symbol
type BSymbol = Symbol
type CSymbol = Symbol

type MModel = [Indiv]
type Indiv = [Token]
type Token = [Symbol]

exh :: Symbol
exh = ’*’
asymbol :: Symbol
asymbol = ’a’
bsymbol :: Symbol
bsymbol = ’b’
csymbol :: Symbol
csymbol = ’c’
neg :: Symbol
neg = ’-’

Code 2: The definition for mental model components

The mental models for syllogistic reasoning are defined in
Code 24. A mental model is a class of models5 s.t. m×n ma-
trix (multi-list) of tokens. A row or an individual of a men-
tal model is a finite sequence of tokens (model) where each
atom occurs at most once. A column or a (property) of a men-
tal model is a finite sequence of tokens where tokens con-
taining different atoms cannot occur. If square bracketed to-
kens occur in a column, only negative tokens can be added.
The translation from the syllogistic language to mental model
representations is performed by monadic parsing (a recursive
descent parsing technique well known in functional program-
ming community. See, e.g. Van Eijck and Unger 2010). The
parser for syllogistic language constructs abstract syntax trees
and then converts mental model representations by the fol-
lowing compositional semantics (Fig. 2). As an example, let
X,Y denote terms A,B,C, the four types of syllogistic sen-
tences can be translated to mental models as follows:

All X are Y

⇒ [x] y
[x] y

Some X are Y

⇒
x y
x

y

No X are Y
⇒

[x] −y
[x] −y

[y]
[y]

Some X are not Y

⇒
x −y
x −y

y
y

4In Bucciarelli and Johnson-Laird (1999) “exhaustive model” is
represented in square brackets, here we use the “*” symbol as used
elsewhere (MMRLab.)

5For a treatment of a mental model as a class of models, see
Barwise (1993).
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M

combine :: MModel → MModel → MModel

find middle atom :: MModel → MModel → Atom

match :: MModel → MModel → Atom → MModel

join :: Atom → Indiv → Indiv → Indiv

—————————————————————–

(b) conclude

negative individual 
: False

negative individual 
: True

all_isa : True

sm_isa : True

otherwise

no_isa & exh : True

sm_not_isa : True

otherwise

"NVC"

"NVC"

"All X 
    are Y"

"Some X
  are Y"

"No X 
   are Y"

"Some X 
    are not Y"

conclude :: Symbol → MAtom → Symbol → MModel → Ans

all isa :: MModel → Symbol

sm isa :: MModel → Symbol

no isa :: MModel → Symbol

sm not isa :: MModel → Symbol

—————————————————————–

(c) falsify

negative_individual : 
False

negative_individual : 
True

breaks : True

add_affirmative : True

otherwise

moves : True

add_negative : True

otherwise

Failed

Failed

Broken 

Model

Added

Model

Moved

Model

Add-

Neg-ed 

Model

falsify :: [Symbol] → MModel → MModel

breaks :: MModel → MModel

add affirmative :: MModel → MModel

moves :: MModel → MModel

add negative :: MModel → MModel

Fig 3: Process diagrams and their type information: (a) Inte-
gration, (b) Drawing a conclusion, (c) Falsification

Integrating Premises into Initial Model

We give a description of the integration process of premises
into an initial model via mid term tokens (Fig. 3-a.) The
integration function combine takes two models (premises)
P1, P2 and returns an integrated model M with the help of
find a middle atom. The type signature for this function is
integration :: MModel → MModel → MModel. This is im-
plemented as follows:

combine :: MModel -> MModel -> MModel
combine mod1 mod2 =

match mid_atom mod1 mod2
where mid_atom = find_middle_atom mod1 mod2

Reordering and Switching Since syllogisms have several
“figures” according to the order of their premises and term ar-
rangements, the actual integration should occur after the pre-
processes of reordering terms and switching premises. This
preprocessing consists of the following four patterns: (1) If
the term order of P1 is AB and P2 is BC, nothing happens. (2)
If the term order of P1 is BA and P2 is CB, integration starts
with P2. (3) If the term order of P1 is AB and P2 is CB, the
second model is swapped round and added. (4) If the term
order of P1 is BA and P2 is BC, the first model is swapped
round and the second model added.
Finding a middle atom The function find middle atom
has a type signature find middle atom :: MModel →
MModel → Symbol . The implementation of this is similar
to a set intersection operation for the affirmative tokens (to-
kens that do not contain negatives.) An example is when two
premises are presented as in Fig.1, {a,a,b,b}∩{c,c,b,b} =
b. The following is an implementation:
find_middle_atom :: MModel -> MModel -> Symbol
find_middle_atom mod1 mod2

| null mod1 = []
| not (null mid) = mid
| otherwise = find_middle_atom (tail mod1) mod2
where mid = find_middle_from_ind (head mod1) mod2

Match The function for matching premises P1, P2, and mid-
dle atom a has the type signature match :: MModel →
MModel → Symbol → MModel . This function recursively
calls join to join the premises to an integrated model.
match :: Symbol -> MModel -> MModel -> MModel
match mid_atom mod1 mod2

| null mod1 = mod2
| not (null (find_poslis_in_indiv mid_atom $ head mod1)) =

joining mid_atom (head mod1) mod2 :
(match mid_atom

(tail mod1)
(remove_indiv (find_poslis_in_mod mid_atom mod2) mod2))

| otherwise = head mod1 : (match mid_atom (tail mod1) mod2)

Join The recursive function join takes a mid atom and
two individuals, and joins two individuals together setting the
new mid to exhausted if either the first individual or second
individual were exhausted. The type signature of join is:
join :: Symbol → Indiv → Indiv → Indiv
join_ :: Symbol -> Indiv -> Indiv -> Indiv
join_ mid_atom indiv1 indiv2 =

if exhausted $ find_poslis_in_indiv mid_atom indiv1
then indiv1 ++ remove_lis (find_poslis_in_indiv mid_atom indiv2) indiv2
else remove_lis (find_poslis_in_indiv mid_atom indiv1) indiv2

Drawing a Conclusion from a Model
Drawing a conclusion (Fig.3-b) is a function that takes an
integrated (initial) model and dispatches whether it con-
tains negative token or not. Based on the predicates (all isa,
some isa, no isa, and sm not isa) it then dispatches fur-
ther and returns corresponding answers (action). conclude
has type signature: conclude :: Symbol → Symbol →
Symbol → MModel → [Symbol] 6. If the predicates re-
turn False , then it returns "no valid conclusion" . The
below is an implementation:

6Note: since possible conclusions have term order: Subj-Obj and
Obj-Subj, conclude is executed twice. For simplicity, we omit the
second execution of conclude .
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conclude :: Symbol -> Symbol -> Symbol -> MModel -> [Symbol]
conclude subj mid_atom obj model =

if not (negative_individual model)
then if all_isa subj obj model

then "all " ++ [subj] ++ " are " ++ [obj]
else if sm_isa subj obj model

then "some " ++ [subj] ++ " are " ++ [obj]
else "no valid conclusion"

else if no_isa subj obj model &&
((exh_ subj model && exh_ obj model) ||
(exh_ mid_atom model && exh_ subj model) || (exh_ obj model))

then "no " ++ [subj] ++ " are " ++ [obj]
else if sm_not_isa subj obj model

then "some " ++ [subj] ++ " are " ++ "not " ++ [obj]
else "no valid conclusion"

The following are sub functions called by conclude:
all isa takes a model M that has the end terms X, Y and
returns True iff all subjects are objects in individuals in a
model, then conclude returns the answer All X are Y. This
has a type signature: all isa :: Symbol → Symbol →
MModel → Bool . For example, if a model M: [a] b c

[a] b c
is given, where the end terms are A and C, it returns the an-
swer ”All A are C.” This is implemented as follows:
all_isa :: Symbol -> Symbol -> MModel -> Bool
all_isa subj obj model =

sm_isa subj obj model && not (sm_not_isa subj obj model)

sm isa takes a model M that has end terms X, Y and returns
True iff at least one individual in the model contains posi-
tive occurrences of both subject and object atoms. Then con-
clude returns the answer ”Some X are Y”. This has the type
signature: sm isa :: Symbol → Symbol → MModel →
Bool . For example, if a model:

[a] [b] c
[a] [b]

c
is given where

the end terms are A and C, it returns the answer ”Some A are
C”.
sm_isa :: Symbol -> Symbol -> MModel -> Bool
sm_isa subj obj model

| null model = False
| not (null $ find_poslis_in_indiv subj $ head model) &&
not (null $ find_poslis_in_indiv obj $ head model) = True

| otherwise = sm_isa subj obj $ tail model

no isa takes a model M that has the end terms X, Y and
returns True iff no subject end term is object end term in any
individuals in the model, conclude returns ”No X are Y”. This
has a functional type: no-isa : M →A. For example, if a model

M:
[a] −b
[a] −b

[b] [c]
[b] [c]

is given where the end terms are A and C,

it then returns the answer ”No A are C”.

no_isa :: Symbol -> Symbol -> MModel -> Bool
no_isa subj obj model =

sm_not_isa subj obj model && not (sm_isa subj obj model)

sm not isa takes a model M that has the end terms X, Y
and returns True iff at least one subject occurs in individuals
without an object, then conclude returns “Some X are not Y”.
This has a functional type: sm not isa: M →A. For example,

if a model M:
[a] b c
[a] b c

−b c
−b c

is given where the end terms are

A and C, it returns the answer ”Some A are not C”.
sm_not_isa subj obj model

| null model = False
| not (null $ find_poslis_in_indiv subj $ head model) &&
not (null $ find_poslis_in_indiv obj $ head model) = True

| otherwise = sm_not_isa subj obj $ tail model

Falsification
Once the mental model theory constructs an initial model
and draws a tentative conclusion, the theory, according to its
rules, tries to construct an alternative model to refute the con-
clusion (the default assumption). The falsification function
(Fig. 3-c) takes a model and dispatches whether or not it con-
tains a negative token. Then, based on the predicates (breaks,
add affirmative, moves, and add negative), it tries to mod-
ify the model. If successful, it returns an alternative model
and calls conclude recursively. If it fails, this function termi-
nates and conclude outputs a final conclusion. The below is
an implementation of falsify:
falsify :: [Symbol] -> MModel -> MModel
falsify concl model =

if not (negative_individual model)
then if not (null br_model) then br_model

else if not (null ad_model) then ad_model
else []

else if not (null mv_model) then mv_model
else if not (null an_model) then an_model

else []
where

br_model = breaks concl model
ad_model = add_affirmative concl model
mv_model = moves concl (neg_breaking concl model)
an_model = add_negative concl model

Here are the main constructs of falsify:
breaks finds an individual containing two end terms with
non-exhaustive mid terms, divides it into two, and then ei-
ther returns new (broken) model or returns nil. Its type signa-
ture is: breaks : MModel → MModel . For example: when a
model M is a b c , then breaks M ; a b

b c . This
is implemented as follows:
breaks :: [Symbol] -> MModel -> MModel
breaks concl model =

if falseif model newmod
then newmod
else []

where newmod = breaking concl model

add affirmative has the type signature: add affirmative
:: MModel → MModel. If add affirmative succeeds, then it
returns a new model with added item (added model), else it
returns nil if the conclusion is not A-type (“All X are Y”)
or if there is no addable subject item. For example, if a
given model M is [a] [b] c

[a] [b] c , then add affirmative M ;

[a] [b] c
[a] [b] c

c
.

add_affirmative :: [Symbol] -> MModel -> MModel
add_affirmative concl model =

if not (a_conclusion concl) then []
else if not (null subj)

then if subj == first then [[first]] : model
else if subj == last then model ++ [[[last]]] else []

else []
where
subj = addable (subject concl) model
end_terms = find_ends concl model
first = head end_terms
last = head $ tail end_terms

moves has the type signature: moves :: MModel → MModel.
If there are exhausted end items not connected to other end
items or their negatives (i.e E-type (”No X are Y”) conclu-
sions), and if the other end items are exhausted, or O-type
(”Some X are not Y”) conclusions, then it joins them. Other-
wise it joins one of each and returns nil if the first end item
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cannot be moved, regardless of whether or not a second one
can be. E.g., if a given model M is

[a] −b
[a] −b

[b] −c
[b] −c

[c]
[c]

, then moves M ;

[a] −b [c]
[a] −b [c]

[b] −c
[b] −c .

When this function is called by falsify, neg breaking (similar
procedure to breaks) is also called as an argument.
moves :: [Symbol] -> MModel -> MModel
moves concl model =

if falseif model newmod
then newmod
else []
where newmod = moving concl model

add negative has the type the signature: add negative ::
MModel → MModel. It returns a new model with the added
item (add neged model), or returns nil if the conclusion is
not O-type or if there is no addable subject item.
E.g., if a given model M is
[a] b
[a] b

−b c
−b c

, then add negative M ;
[a] b c
[a] b c

−b c
−b c

.

add_negative :: [Symbol] -> MModel -> MModel
add_negative concl model =

if falseif model newmod
then newmod
else []
where newmod = adding_neg concl model

Concluding Remarks
We have proposed type system based modeling as a novel ap-
proach in (specification-aware) cognitive modeling. To show
the advantages of this approach, we have implemented the
syllogistic reasoning system with mental models in Haskell
(a popular pure functional statically typed programming lan-
guage). Compared with other approaches, our implementa-
tion includes some aspects of theory specification such as
mental model definitions and type information for each pro-
cess. Our type system based modeling sheds light on the am-
biguity problem of mental model theory, which has been dis-
cussed at the crossroad between cognitive science and logic.
In the modeling work done so far, we have analyzed men-
tal model reasoning for syllogistic fragments. However, our
work is not limited to this. There is plenty of scope for further
work in several kinds of mental model reasoning (Khemlani
& Johnson-Laird, 2013; Johnson-Laird, Byrne, & Tabossi,
1989; Johnson-Laird & Byrne, 1989); more generally, var-
ious cognitive activities involving propositions taking some
semantic values.

Acknowledgements
This study was supported by MEXT-Supported Program for the
Strategic Research Foundation at Private Universities and Grant-in-
Aid for JSPS Fellows (25·2291). The authors are grateful to Sangeet
Khemlani for helpful comment and Micah Clark for opportunity to
read his paper under submission.

References
Arkoudas, K., & Bringsjord, S. (2008). Toward formalizing

common-sense psychology: An analysis of the false-belief task.
In PRICAI 2008 (pp. 17–29). Springer.

Barwise, J. (1993). Everyday reasoning and logical inference. Be-
havioral and Brain Sciences, 16(2), 337–338.

Bosse, T., Jonker, C. M., & Treur, J. (2006). Formalization and
analysis of reasoning by assumption. Cognitive Science, 30(1),
147–180.

Braine, M. D. (1994). Mental logic and how to discover it. In The
logical foundation of cognition (pp. 241–263). Oxford Univ Pr.

Bucciarelli, M., & Johnson-Laird, P. N. (1999). Strategies in syllo-
gistic reasoning. Cognitive Science, 23(3), 247–303.

Clark, M. H. (submitted). Mathematical description of senten-
tial mental models theory: Reconstructing Johnson-Laird’s mental
models.

Cooper, R. (1992). A sceptic specification of Johnson-Laird’s “men-
tal models” theory of syllogistic reasoning (Tech. Rept. UCL-
PSY-ADREM-TR4 (2nd ed.)). Department of Psychology, Uni-
versity College London.

Cooper, R. (2002). Modelling high-level cognitive processes. Psy-
chology Press.

Cooper, R., Fox, J., Farringdon, J., & Shallice, T. (1996). A system-
atic methodology for cognitive modelling. Artificial Intelligence,
85(1), 3–44.

Cooper, R., & Guest, O. (2014). Implementations are not speci-
fications: Specification, replication and experimentation in com-
putational cognitive modeling. Cognitive Systems Research, 27,
42–49.

Haftmann, F. (2010). From higher-order logic to haskell: there and
back again. In Proceedings of the 2010 ACM SIGPLAN workshop
on partial evaluation and program manipulation (pp. 155–158).

Hintikka, J. (1987). Mental models, semantical games and vari-
eties of intelligence. In Matters of intelligence (pp. 197–215).
Springer.

Isaac, A. M., Szymanik, J., & Verbrugge, R. (2014). Logic and
complexity in cognitive science. In Johan van Benthem on logic
and information dynamics (pp. 787–824). Springer.

Johnson-Laird, P. N. (1983). Mental models. Harvard Univ Press.
Johnson-Laird, P. N., & Bara, B. G. (1984). Syllogistic inference.

Cognition, 16(1), 1–61.
Johnson-Laird, P. N., & Byrne, R. M. (1989). Only reasoning. Jour-

nal of Memory and Language, 28(3), 313–330.
Johnson-Laird, P. N., Byrne, R. M., & Tabossi, P. (1989). Reason-

ing by model: The case of multiple quantification. Psychological
Review, 96(4), 658–673.

Jones, S. L. P. (2003). Haskell 98 language and libraries: the revised
report. Cambridge University Press.

Khemlani, S., & Johnson-Laird, P. N. (2012). Theories of the syllo-
gism: A meta-analysis. Psychological Bulletin, 138(3), 427-457.

Khemlani, S., & Johnson-Laird, P. N. (2013). The processes of
inference. Argument & Computation, 4(1), 4–20.

Koralus, P., & Mascarenhas, S. (2013). The erotetic theory of rea-
soning: Bridges between formal semantics and the psychology of
deductive inference. Philosophical Perspectives, 27(1), 312–365.

Marlow, S. (2010). Haskell 2010 language report. Retrieved from
http://www.haskell.org/onlinereport/haskell2010

McClelland, J. L. (2009). The place of modeling in cognitive sci-
ence. Topics in Cognitive Science, 1(1), 11–38.

Mental Models & Reasoning Lab. (n.d.). Syllogistic reasoning code
[computer program]. Retrieved from http://mentalmodels
.princeton.edu/programs/Syllog-Public.lisp

Mitchell, J. C. (2003). Concepts in programming languages. Cam-
bridge University Press.

Moss, L. S. (2008). Completeness theorems for syllogistic frag-
ments. Logics for linguistic structures, 29, 143–173.

Stenning, K., & Van Lambalgen, M. (2008). Human reasoning and
cognitive science. MIT Press.

Sugimoto, Y., Sato, Y., & Nakayama, S. (2013). Towards a formal-
ization of mental model reasoning for syllogistic fragments. In
Proceedings of the 1st International Workshop on Artificial Intel-
ligence and Cognition, CEUR Vol.1100, 140–145.

Van Eijck, J., & Unger, C. (2010). Computational semantics with
functional programming. Cambridge University Press.

Verbrugge, R. (2009). Logic and social cognition. Journal of Philo-
sophical Logic, 38(6), 649–680.

Vytiniotis, D., Peyton Jones, S., Claessen, K., & Rosén, D. (2013).
Halo: Haskell to logic through denotational semantics. ACM SIG-
PLAN Notices, 48(1), 431–442.

36



Modeling the Workload Capacity of Visual Multitasking
Leslie M. Blaha (leslie.blaha@us.af.mil) and James Cline (james.cline.ctr@us.af.mil)

711th Human Performance Wing, Air Force Research Laboratory
Wright-Patterson AFB, OH 45433 USA

Tim Halverson (thalverson@gmail.com)
Oregon Research in Cognitive Applications, LLC

Oregon City, OR 97045 USA

Abstract

We utilize the capacity coefficient to characterize the work-
load capacity of visual multitasking. The capacity coeffi-
cient compares cognitive work completed on multiple infor-
mation sources against a baseline parallel model prediction.
Capacity coefficient results subsume standard mean response
time (RT) dual-task findings while providing a description of
workload effects on the whole RT distribution. This yields a
theoretically-grounded characterization that can inform com-
putational and process models of multitasking.
Keywords: Workload Capacity; Multitasking; Multi-Attribute
Task Battery; Human Information Processing; Dual-Task

Introduction
We seek to provide a better mathematical characterization
of cognitive performance during multitasking, the simulta-
neous execution of more than one task within the same ex-
perimental environment. Often, characterizations of multi-
tasking performance are limited to assessments of dual task
decrements, wherein mean response time (RT) or accuracy
are compared across only two tasks. Increased workload is
inferred when an RT increase and/or accuracy decrease is ob-
served when switching from a single task to the dual-task en-
vironment. These performance metrics may be further corre-
lated with subjective workload ratings. While these measures
do give some indication of participants’ experiences of work-
load, they do not provide strong insight into the cognitive
mechanisms supporting multitasking behaviors or the mech-
anistic reasons for changes in performance under changing
workload demands.

We report on an effort to utilize human information pro-
cessing modeling to provide qualitative and quantitative char-
acterization of the cognitive mechanisms engaged in multi-
tasking. In particular, we focus on changes in workload ca-
pacity, the efficiency with which the system responds to the
changing number of tasks in a dynamic environment.

Modified Multi-Attribute Task Battery
To study multitasking, we utilize a web-browser implementa-
tion of the modified Multi-Attribute Task Battery (mMATB;
Cline, Arendt, Geiselman, & Blaha, 2014), developed in the
JavaScript D3 library (Bostock, Ogievetsky, & Heer, 2011).
The mMATB consists of four possible visual decision mak-
ing tasks: Tracking, Monitoring, Communication, Resource
Management. In our implementation, all aspects of the work-
load can be manipulated: entire tasks (quadrants) can be
turned on or off, the rate of alerting events can be varied as

Figure 1: The browser-based modified Multi-Attribute Task
Battery (mMATB) used in the present study. The four visual
tasks are (clockwise from upper left): Monitoring, Tracking,
Resource Management, Communications.

can the probability of simultaneous alerting events, and the
speeds at which the moving parts of the displays move can be
adjusted. We will focus herein on manipulations of the total
number of tasks to be performed simultaneously.

Figure 1 shows the mMATB environment. The Tracking
Task, contained in the upper right, entails physically tracking
three colored circles moving continuously along individual
ellipsoid trajectories. High performance on this task requires
continual mouse motion and attention to switching targets.

Both the Monitoring Task (upper left) and the Communi-
cations Tasks (lower left) require keypress responses to alert
events. In the Monitoring Task, the participant’s task is to
provide the appropriate response if a parameter is out of its
normal state. In the Communications Task, participants must
adjust a channel to a new value upon target cuing.

The lower right quadrant contains a Resource Manage-
ment Task which requires only strategic attention to gates
(switched by keypress) in order to maintain fuel levels within
a predetermined range for two schematic resource tanks.

The mMATB, thus, demands a division of visual attention
and motor activity across the four tasks. During multitask-
ing, participants are instructed to emphasize accuracy in the
Tracking Task as their primary task, and to respond to all
other alerts appropriately. RTs are collected to cued events;
response choices are collected for all interactions.
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The Capacity Coefficient
Workload capacity is defined as the ability of the cognitive
information processing mechanisms to respond to changes in
cognitive load. This is usually interpreted as changes in the
number of items that need to be processed within a task. Ca-
pacity is assessed with RT data, in order to make inferences
about information processing speeds. Qualitatively, the pos-
sible capacity classes are unlimited, super, and limited ca-
pacity, corresponding to processing speeds remaining steady,
increasing, or decreasing, respectively.

Our primary measure of workload capacity is the capac-
ity coefficient (Houpt, Blaha, McIntire, Havig, & Townsend,
2014). This is a ratio measure which compares the observed
participant’s RTs during multitasking to a model-based pre-
diction about multitasking speed. The baseline RT model is
an unlimited capacity independent parallel model (UCIP). We
utilize the capacity coefficient for ST-ST responses (Blaha,
2010):

C(t) =
Kk(t)

Kk,C (t)
. (1)

In Equation 1, the numerator gives the cumulative reversed
hazard function for individual target channel k when pro-
cessed alone; this is the UCIP model prediction. The denom-
inator is the cumulative reversed hazard function for target
channel k when additional tasks (set C ) are performed.

Figure 2 illustrates C(t) results for one typical partici-
pant in both dual-task multitasking (upper plot) and four-
task multitasking (lower plot). Relative to the UCIP base-
line at C(t) = 1, the data indicate that while while all condi-
tions showed mean RT dual-task decrements, the functional
data are more nuanced. Under dual-task conditions, perfor-
mance in the tracking task improved, showing super capac-
ity C(t) > 1 for most times, but falling to limited capacity
C(t) < 1 when the number of tasks increased to four. Thus,
additional task demands have the potential to improve track-
ing performance.

Detection performance in the monitoring task, on the other
hand, was limited capacity in both the dual task and four-
task multitasking conditions. Communication task detection
was also limited capacity in the four-task condition. This in-
dicates that division of attention across multiple tasks slows
alert detection responses.

Discussion
The present work is the first to apply the capacity coefficient
to a multitasking situation, where the number of tasks is ma-
nipulated while the features within each task (when present)
remain unchanged. Current results indicate that some tasks
benefit from additional workload demands, while others are
slowed. The capacity coefficient can capture both types of
effects. This more nuanced characterization can then be used
to inform computational and process models of multitasking
(e.g., Salvucci & Taatgen, 2008), and to study task switching
and divided attention strategies.
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Figure 2: Capacity coefficient results for a typical participant
in the dual task (upper) and multitask (lower) conditions.
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Abstract

A continuing hurdle in the cognitive modeling of human-
computer interaction is the difficulty with allowing models
to interact with the same interfaces as the user. Multiple at-
tempts have been made to add this functionality (e.g., Hope,
Schoelles, & Gray, 2014) in limited domains. This paper
presents a solution allowing models to interact with web
browser-based software, while requiring little modification to
the task code. Simplified Interfacing for Modeling Cognition
- JavaScript (SIMCog-JS) allows the modeler to specify how
elements in the interface are translated into ACT-R chunks,
allows keyboard and mouse interaction with JavaScript code,
and allows sending ACT-R commands from the external soft-
ware (e.g., to add instructions). The benefits, drawbacks, and
future functionality of SIMCog-JS are discussed.
Keywords: Cognitive Architectures; Task Interface; ACT-R;
WebSockets; JSON; HTML; JavaScript; D3

Introduction
A substantial challenge with modeling human cognition is the
presentation of task environments to the simulated human.
Software re-implementation provides little scientific reward,
yet modelers face this burden every time they utilize a new
or modified task. The situation is further complicated if a
modeler is studying human-computer interaction (HCI) with
complex software in which users are engaging in ongoing, dy-
namic, and interleaved or multi-tasking behaviors. Because
the focus of cognitive modeling in HCI is often either explain-
ing or predicting performance differences between alternative
interfaces, substantial research time is spent re-implementing
multiple, complex interfaces; this effort is further multiplied
if multiple cognitive architectures are used.

Although re-implementation within a modeling architec-
ture framework can allow maximum control by the modeler,
it introduces additional challenges: (a) Re-implementation
increases the likelihood that the fidelity of the simulation is
degraded by an imperfect porting of the user interface or task
dynamics. (b) Iterative changes to the original software/task
require additional efforts to integrate these changes into the
model’s task environment. (c) Task-simulation environments
for cognitive architectures are sometimes written in program-
ming languages not commonly used for building HCI inter-
faces (e.g., ACT-R uses Lisp; Anderson et al., 2004) and of-
ten provide limited facilities for building the task simulations.

Thus, the process of re-implementation forces a trade-off be-
tween task fidelity and time savings. An alternative to re-
implementation is to allow a model to communicate directly
with a user interface that is external to the cognitive architec-
ture. Previous research has attempted to solve this challenge,
although in limited domains. Computer vision (CV) has been
used to automatically extract relevant visual features from an
existing computer interface (e.g., Halbrügge, 2013; St Amant,
Riedl, Ritter, & Reifers, 2005). While CV solutions remove
the burden of “translating” the interface to symbols under-
stood by the architecture, they also reduce the control the
modeler has on how the visual interfaces are specified. Ad-
ditional control requires the modeler to customize the CV al-
gorithms or specify screen element “templates” at the pixel
level. Other solutions provide the ability for models to act
within specialized environments, like games (e.g., Veksler,
2009) or robotics (e.g., Kennedy, Bugajska, Adams, Schultz,
& Trafton, 2008). These solutions are incredibly useful but
are limited to their specialized environments. Still other solu-
tions provide a more general framework for interfacing mod-
els with external software by using interprocess communi-
cation protocols available in many programming languages
(e.g., Büttner, 2010; Hope et al., 2014). The solution pre-
sented herein falls into this final category.

We present a solution to the challenge of communica-
tion between external task environments and cognitive ar-
chitectures: Simplified Interfacing for Modeling Cognition
- JavaScript (SIMCog-JS). Our approach supports commu-
nication between Java ACT-R (Salvucci, 2013) and HTML-
/JavaScript-based software in a user-friendly manner. In the
remainder of this article, we specify some design require-
ments, describe the functionality provided by SIMCog-JS,
and provide an example of SIMCog-JS applied to a dynamic,
multitasking experiment environment.

SIMCog-JS Design Requirements
SIMCog-JS is a technology that allows cognitive modelers
to specify how visual information is extracted from external
software, passes that information to ACT-R, and passes key-
board and mouse events back to the external software. The
primary motivation for SIMCog-JS is rooted in a desire to
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Modified MATB ACT-R Representation

Figure 1: The browser-based modified Multi-Attribute Task
Battery (mMATB) as it would appear to a human participant
(left) and a representation of the ACT-R visicon (right).

apply cognitive architectures to dynamic, multitasking ex-
periments, such as training simulations or naturalistic web-
browsing. We desire a flexible system allowing interaction
between multiple cognitive modeling formalisms and exist-
ing software/HCI environments.

SIMCog-JS attempts to minimize the modeler’s burden in
multiple ways. First, SIMCog-JS requires minimal modi-
fication of existing task code, although it does require that
the modeler have access to the JavaScript task code. Sec-
ond, SIMCog-JS includes an extension to Java ACT-R that
replaces Java ACT-R task code and requires no modifications
for a wide variety of tasks. Third, SIMCog-JS provides a
user-friendly, flexible syntax for specifying which visual el-
ements should be passed to ACT-R, when those elements
should be updated in ACT-R, and how they should be per-
ceived (i.e., slot values).

In order to provide this functionality, SIMCog-JS had three
critical design requirements:

1. SIMCog-JS must use standard software protocols for com-
munication between models and experimental software.

2. Integrating model interactions with the task makes minimal
modifications to the experimental code, minimizing inter-
ference with human data collection or natural behaviors.

3. Model execution occurs in real time.1

We note that as our initial target task environment, the
modified Multi-Attribute Task Battery (mMATB), executes in
a web-browser and the modeling formalism, Java ACT-R, is
written in Java, we were required to implement a new solution
to facilitate interaction between cognitive models and a task
environment. Hope et al. (2014) introduced a similar solution
for interfacing Lisp ACT-R with stand-alone software. How-
ever, that published solution does not support either Java or
JavaScript. Our solution took motivation from Hope et al.’s
work.

The mMATB Task Environment
We apply SIMCog-JS to a dynamic, multitasking environ-
ment, mMATB (Cline, Arendt, Geiselman, & Blaha, 2014).

1As our target software does not support synchronized execution
with external software. This is not a constraint unique to our target
software, as web browsers (and most software) do not allow external
synchronization.

This is a generalized version of the MATB developed to
assess multitasking in pilot-like environments (Arnegard &
Comstock, 1991); the modifications in this environment make
similar cognitive demands on the participants, but the tasks
are less pilot-specific in nature. Our browser-based imple-
mentation is written with the D3 JavaScript library (Bostock,
Ogievetsky, & Heer, 2011) integrated with a Python django
database. Participants interact with the environment through
keyboard button presses and mouse clicks and movements.

The mMATB, shown in the left panel of Figure 1, entails
four separate tasks, which we summarize clockwise from the
upper left. The upper left quadrant is a Monitoring Task, con-
sisting of a set of sliders and two color indicator blocks. The
participant’s task is to provide the appropriate button press
(F1-F6, labeled on each indicator/slider) if a parameter is out
of its normal state. For the sliders, this means moving above
or below ±1 notch from the center. For the indicators, the
normally green (black) might turn black (red).

A Tracking Task is contained in the upper right quadrant,
wherein three colored circles move continuously along indi-
vidual ellipsoid trajectories. At any time, one of the circles
may turn red, indicating it is the object to be tracked by the
participant. The participant tracks the target by mousing to
the target, clicking on it, and then following it with the mouse,
until the next target object is indicated with a color change.

The lower right quadrant contains a Resource Management
Task. Two resource tanks are schematically illustrated, to-
gether with representations of fuel sources, reserve tanks, and
gated connections (each numbered 1-8) between all tanks.
The participant’s task is to maintain the resource levels within
a range specified by bars on the sides of the tanks. The on/off
states of the gates are controlled with number pad key presses.
The participant can control the gates with any strategy of
choice to maintain the resource levels.

Finally, the lower left quadrant contains a Communications
Task. The display shows four channels (Int1, Int2, Ops1,
Ops2) together with the current channel values; the topmost
line gives a target channel and value. If a red cued target
appears in the top box, the participant uses the up/down ar-
row keys to select the cued channel and the right/left arrow
keys to adjust the channel value to the new cued value. The
enter key submits the corrected channel, which changes the
topmost cue box to white until the next channel cue appears.

Cognitive modeling of mMATB performance aims to cap-
ture behavioral impacts of changes in workload, operator
stress levels, or fatigue levels and to characterize the high-
level strategies engaged during continuous multitasking.

SIMCog-JS Software Architecture
SIMCog-JS uses a client-server software architecture. The
server exists within Java ACT-R (Salvucci, 2013) as a
“generic task.” This generic task is populated with
environment-specific information as the server receives mes-
sages from a client describing the current state of a task in-
terface. The server dynamically changes the ACT-R envi-
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ronment based on the messages received from the client and
sends messages to the client describing ACT-R’s actions.

The client is built in JavaScript, allowing it to run within all
modern web browsers. The client runs alongside the browser-
based task translating the task interface for the server and pro-
cessing interactions from ACT-R. The client is integrated into
existing code by referencing the client script in the task’s pri-
mary web page (e.g., index.hmtl). Further, the modeler spec-
ifies three things within the client: (a) a list of visual chunks
to be represented in ACT-R, (b) a list of ACT-R commands
for the model, and (c) handlers for interactions received from
the task.2 Once these are in place, the system is ready for use.

The client and server communicate via WebSockets and
JavaScript Object Notation-Remote Procedure Call (JSON-
RPC). WebSockets (Fette & Melnikov, 2011) allow reliable,
simultaneous connections between the client and server.3

Once connected, the client and server use JSON-RPC (JSON-
RPC Working Group, 2010) to send information. JSON-RPC
is a standardized protocol for sending messages based on the
JSON standard. Both the WebSocket and JSON-RPC proto-
cols are standards that have been implemented in many pro-
gramming languages, allowing SIMCog to be easily extended
to task interfaces and cognitive modeling formalisms in other
programming languages through the use of these standard
protocols and reuse of the SIMCog-JS’s messaging specifi-
cation. WebSockets and JSON are native to JavaScript, but
requires additional libraries for Java.

Figure 2 shows the flow of information between the
browser task environment (i.e., client), the server, and ACT-
R. After Java ACT-R and the client are configured and run-
ning, the client sends all information about the interface to
the server at the start of the task, along with any initial ACT-R
commands. As keyboard and mouse events are generated by
ACT-R, these actions are passed to the client to affect the in-
terface. Details on how to configure the client and server can
be found with the SIMCog-JS Software Design Document
included in SIMCog-JS distribution.4 The following section
provides details on how this communication takes place be-
tween the client and ACT-R.

Communicating through SIMCog-JS

SIMCog-JS allows the modeler to specify how interface el-
ements in software will be represented in ACT-R, to send
ACT-R commands from the task client to Java ACT-R, and
to determine how the task client will respond to keypresses
and cursor movements made by the model. The following
sections describe how these three facilities are used.

2As discussed in Keypress and Mouse Events section below, de-
fault keypress and mouse click handlers are provided for the mod-
eler’s convenience.

3The client and server may be run on separate computers and
over the internet. However, doing so may introduce additional lag
that could reduce the fidelity of the simulation.

4The SIMCog-JS distribution can be downloaded from:
http://sai.mindmodeling.org/simcog/

Browser 
Task Server ACT-R

Launch task

Model set up;
server running

Send visicon updates

Send visual object 
updates (polling and 
events)

Send initial visual objects
Add initial objects
to ACT-R visicon

Interaction by modelSend interaction 
informationUpdate task environment

Confirm all initial objects 
added to visicon

for each item sent } 

Screen 
updates

 { 

Model 
interaction 
with Task

} Screen 
initialization

Figure 2: Information flow through SIMCog-JS. The in-
formation events start with the modeler initiating the Java
ACT-R model and then launching the browser-based task.
SIMCog-JS then connects the two environments. The vertical
dimension captures time flowing from top to bottom.

Specifying Visual Chunks
The left side of Figure 1 shows the visual interface for
mMATB task as presented to the human participant in the
web browser. The right side of Figure 1 shows a visual rep-
resentation of ACT-R’s visicon, as specified by the modeler
and displayed by the SIMCog-JS server. The modeler spec-
ifies which web-browser elements become visual chunks in
ACT-R, how those elements will be represented in ACT-R,
and when those elements will be updated. SIMCog-JS does
not send all interface elements to ACT-R; doing so could un-
necessarily complicate the modeling. The modeler may have
observational data or theoretical reasons for hypothesizing
that some interface elements are completely ignored by users.
For example, a uniform background frame may have no im-
pact on performance, assuming adequate contrast between the
background and foreground elements. Therefore, the modeler
must specify the set of interface elements that become visual
chunks in ACT-R.

The modeler must specify the interface element id and the
element’s shape type. The object’s coordinates, width, height,
color, and text (if applicable) are automatically extracted from
the task interface using JavaScript DOM function calls and
jQuery-dependent CSS specificity computations.5 The syntax
for specifying visual objects is:6

5All attributes can be specified manually. See the Design Doc-
ument at http://sai.mindmodeling.org/simcog/ for more information
and useful links to the libraries utilized.

6All syntax descriptions follow the same convention. Angle
brackets are used to indicate a value that must be specified by
the modeler. Values enclosed in quotation marks indicate that the
value is a string. For example, id:”<unique name>” indicates that
unique name should be replaced by a string that is the value of the
id, like id :”foo”. Alternative values are separated by ”|”.
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{ i d :”< unique name >” , t y p e :”< v a l i d t y p e >”}

The id uniquely identifies the object. If the interface el-
ement has an explicitly labeled id in the document-object
model (DOM; e.g., <div id=”top nav”>), that string can be
used as the SIMCog-JS id. If an object does not have a
unique ID, the id can be specified with two attributes, name
and domLocation. The name value is a string that must be
unique to the object. It is helpful to make the name mean-
ingful. A domLocation value is the node of the object located
within the DOM tree. This node can be found in multiple
ways. One way is to identify the relation to another named
object within the DOM tree. Another is to locate the object in
the DOM tree relative to the root (i.e., document). Syntax for
these methods are:

{ i d :{ domLocat ion : document . ge tE lemen tById (
”<e l e m e n t i d >”) . n e x t E l e m e n t S i b l i n g ,

name:”< unique name >”} , . . . }

{ i d :{ domLocat ion : document . body .
l a s t E l e m e n t C h i l d ,

name:”< unique name >”} , . . . }

The type is a string that determines how the ob-
ject will be represented within ACT-R. A screen ob-
ject must be one of nine types: ”Line”, ”Cross”,
”Label”, ”Oval”, ”OvalOutline”, ” OvalOutlineFill ”, ”Rectangle”,
”RectangleOutline”, or ” RectangleOutlineFill ”. The first three
types are “native” to Java ACT-R;7 the remaining items are
custom task components added by the authors. The type
of an object is represented in the visual chunk’s ” isa” at-
tribute (e.g., ” OvalOutlineFill ” has an attribute of ” isa oval”).
Additionally, if the shape is specified with two colors (e.g.,
” OvalOutlineFill ” has a fill and outline color), then SIMCog-
JS adds a borderColor chunk slot that contains the value of the
border’s color and the standard ACT-R color slot contains the
value of the fill color. The coordinates, dimensions, and col-
ors of objects are determined differently for different object
types. If an object is declared with the wrong type, it is likely
that the object will be misrepresented in ACT-R.

The modeler may also specify when changes to interface
elements are sent to ACT-R. The default is to update when-
ever the element changes using DOM Mutation Observers.
This event-based functionality is most useful when one or
more attributes of the interface element changes infrequently.
The modeler may also specify that updates occur at a config-
urable, regular interval (e.g., polling). This polling function-
ality is most useful when the attributes of objects are rapidly
changing. In such cases, the polling method can substantially
decrease the number of messages to the server, decreasing
computational demands. Specifying polling-based changes
is done by adding a change attribute with the value ”poll ” to
the element declaration. Finally, an object can be declared as
static. Static elements are never updated. The modeler may
specify an object as static by adding a change attribute with the

7Note that ”Button”s are not supported. As discussed later, any
type of object can be clickable.

value ” static ” to the element declaration. Syntax for change
declarations is:

{ . . . , change : ” e v t ” | ” p o l l ” | ” s t a t i c ”}

In addition to specifying when updates for an object are
sent, the modeler may specify which visual properties are up-
dated. By default, all properties are updated. Listing only
those properties that will change can improve software per-
formance. For example, a light may only change color but
not move, or tracking reticles may only change coordinates
but not colors. The list of properties that will be updated
are appended to the value given to the change attribute. If no
such list is given, all properties are updated. Valid attributes
are ”x”, ”y”, ”height”, ”width”, ”color”, ”secondaryColor”, and
” stringVal ”. Only labels have ” stringVal ” attributes. Syntax
of these expanded change declarations are:

{ . . . , change :[”< a t t r i b u t e n a m e >” ,
” a d d i t i o n a l a t t r i b u t e n a m e > , . . . ] }

{ . . . , change : [ ” p o l l ” , ”< a t t r i b u t e n a m e >” ,
” a d d i t i o n a l a t t r i b u t e n a m e > , . . . ] }

It is also possible to add objects to the ACT-R task envi-
ronment that are not relevant to the model but are useful for
the modeler (i.e., for debugging the visual interface). This is
done using “task-irrelevant” objects. Task-irrelevant objects
never appear in the model’s visicon. For example, a task-
irrelevant object may be used as a background to make ob-
jects easier to see for the modeler. There are four possible
task-irrelevant objects: Cross, Label, Line, and Rectangle.
Task-irrelevant objects are not updated throughout the task.
All objects default to being task-relevant. To declare an ob-
ject as task-irrelevant, the attribute taskRelevant is added to an
object declaration with a value of false . The syntax for this
option is:

{ . . . , t a s k R e l e v a n t : t r u e | f a l s e }

Example Specifications from mMATB This section pro-
vides examples of how interface elements in the mMATB
task, shown in Figure 1, are specified. The examples start
with simple specifications and progress to the more complex.

Perhaps the simplest interface elements in mMATB are the
background color panels underlying all four quadrants. They
never change (i.e., are static ), are filled with a single color
(” steel blue”), and are rectangular. If one hypothesizes that
these background colors are ignored by the users, these el-
ements can be declared as task-irrelevant. Alternatively, the
cognitive model could simply ignore these elements, or the
modeler could choose to exclude these elements. Making
them task-irrelevant will improve software performance ever
so slightly. Including them in the interface specification will
make the interface in ACT-R more readable. Although the in-
terface element is simple, it is not uncommon for HTML ids
to be missing from background elements, which complicates
the id for these elements. In this example, the domLocation
value is used to determine the id based on the modeler’s
knowledge of the location of these elements in the DOM tree.
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{ t y p e : ” R e c t a n g l e ” ,
i d :{ name : ” svg0 ” ,

domLocat ion : d3 .
s e l e c t A l l ( ” svg ” ) [ 0 ] [ 0 ] . f i r s t C h i l d } ,

change : ” s t a t i c ” ,
t a s k R e l e v a n t : f a l s e }

The Monitoring Task color indicator blocks (upper left
quadrant) provide a straightforward example for displaying
event-based task elements. The following example is the
specification of the green color indicator block; the specifi-
cation of the red block is similar. The id of this rectangular
element is known, monitor button 0 . The only property that
changes is the color and so the only value assigned to the
change attribute is color . The changes are infrequent, nor-
mally changing only a few times per second, so the change
attribute is given the value of ”evt”. Note that ”evt” is the
default and is not required in the declaration.

{ t y p e : ” R e c t a n g l e ” ,
i d : ” m o n i t o r b u t t o n 0 ” ,
change : [ ” e v t ” , ” c o l o r ” ]}

Label interface elements are unique in that they con-
tain text that can be updated. The mMATB Communica-
tions Task’s channel values provide examples of changing la-
bels. As with the indicator blocks, the ids are known, like
”comm channel 1 frequency” in the example below. However
the text of the label changes. In the example below, the change
attribute is labeled as event-based (e.g., ”evt”) because the
values rarely change, and only the text of the label is marked
for change with ” stringval ”.

{ t y p e : ” Labe l ” ,
i d : ” c o m m c h a n n e l 1 f r e q u e n c y ” ,
change : [ ” e v t ” , ” s t r i n g V a l ” ]}

The most dynamic elements in the mMATB interface are
the colored circles in the Tracking Task. Each oval moves
continuously along a path using the D3 animation library. The
constant motion produces a lot of events; this could generate
a lot of network traffic and decrease software performance.
Therefore, these elements are specified with the ”poll ” value
for the change attribute. The location (”x” and ”y”) and ”color”
change, and so all three values are listed in the change at-
tribute. The final attribute of the example specification given
below is clickable ; this attribute will be described in the next
section.

{ t y p e : ” O v a l O u t l i n e F i l l ” ,
i d : ” t r a c k c i r c l e 0 ” ,
change : [ ” p o l l ” , ” x ” , ” y ” , ” c o l o r ” ] ,
c l i c k A b l e : t r u e }

Keypress and Mouse Events
To complete the interaction loop, actions taken by the model
are transmitted to the task environment. There are three types
of interaction currently supported by SIMCog-JS: key press,
cursor move, and mouse click. The server sends all inter-
actions to the client; the modeler has full control of how to
handle (or ignore) events.

The simplest of the three interactions is key press. Key
press interactions are handled automatically by the system.
This is done by mapping ACT-R keycodes to JavaScript key-
codes and dispatching a keydown event to the task. Currently
only keydown events are supported; the modeler may modify
the client code to support keyup and keypress events.

When a click is performed, a message is sent to the client
containing the location of the mouse and the event type
(mouseClick). While mouse coordinates may be enough for
many tasks, more information is provided, for example, to
deal with the asynchronous nature of the system or facili-
tate a deeper analysis. An example from the mMATB task
is when the model clicks on circles in the tracking task that
are moving quickly; the circle could move a couple of pixels
out from under the cursor before the click event reaches the
client. To handle such circumstances, objects can be declared
as clickable . Anytime a click is performed by the model, the
server determines if the click was performed within any of the
clickable objects. If it is determined that one or more objects
were clicked, the message to the client will also include the
unique IDs of the items clicked, along with the location, type,
and ID of every clickable object. This information allows for
cases where the unique identifier is needed to click an object
within the task and even more complex cases where specific
information and computation is desired.

To declare a visual chunk as clickable, add the clickable
attribute to an object’s specification and set it to true.
{ . . . , c l i c k a b l e : t r u e }

The client automatically handles clicks by dispatching a
JavaScript mouse click event. If a clickable object was
clicked, the client dispatches a click event for that element.
Otherwise, the client finds the element at the location of the
click and simulates the click there.

For mouse movements, JavaScript does not allow control
of the cursor in web browsers. Such control is not allowed by
code in web browsers for security and usability reasons. To
simulate a model’s mouse movements in the task, SIMCog-
JS generates mouse movement messages for the client. This
approach offers both reliability and speed without introducing
external software systems.

When the model moves its simulated mouse, a mouseMove
message is sent to the client that contains the location of the
model’s simulated cursor. With this information, the mod-
eler can record the simulated mouse movements similarly to
how human mouse movement data are recorded. To do so,
the modeler will likely need to modify the client code. For
example, in mMATB the cursor-recording code looks like:
ws . onmessage = f u n c t i o n ( e v t ) {

/ / C a l l e d when s e r v e r message r e c e i v e d
v a r s e r v e r M e s s a g e = JSON . p a r s e ( e v t . d a t a ) ;

. . .
e l s e i f ( s e r v e r M e s s a g e . Command == ”mouseMove ” ){

t r a c k c h a r t . mouseLoca t ion (
{x : m o d e l I n t e r a c t i o n . mouseX ,
y : m o d e l I n t e r a c t i o n . mouseY } ) ;

}}
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Sending ACT-R Commands
SIMCog-JS supports sending model commands from the task
to the model. Doing so is straightforward and takes advantage
of existing Java ACT-R methods for executing ACT-R com-
mands. The modeler adds commands to a list in the client
code that is sent to the server at the start of execution. For ex-
ample, to represent the Resource Management Task instruc-
tions to maintain the resource level within a target range, the
modeler may specify:

[ ” ( add−dm ( r e s o u r c e T a s k i s a g o a l
minLevel 2000 maxLevel 3 0 0 0 ) ) ” ,

” ( goa l−f o c u s r e s o u r c e T a s k ) ” ]

Conclusion and Future Work
SIMCog-JS is a system that allows cognitive models to
interact with external software, minimizing the task re-
implementation burden on the modeler. The system currently
facilitates communication between Java ACT-R and HTM-
L/JavaScript. In addition to describing the architecture of
SIMCog-JS, this paper reported on using SIMCog-JS to (a)
specify visual interface elements for use by ACT-R and how
those interface specifications can be customized, (b) integrate
ACT-R responses into JavaScript software, and (c) execute
ACT-R commands from the task interface. The strengths
of SIMCog-JS are the easy specification of visual objects
and interactions with minimal task-code modifications and
the seamless interaction between models and browser-based
tasks. The modeler need only specify the identity and shape
for visual objects to reach ACT-R.

Development is ongoing to improve and extend the func-
tionality of SIMCog-JS. A mid-term goal is to add syn-
chronous execution modes, where the task and model use
the same simulation clock, relaxing design requirement 3
without negatively impacting real-time execution. Additional
planned features include audio event specification and sup-
port for multiple cognitive modeling formalisms, like EPIC
architecture (Kieras & Meyer, 1997) and Python-based math-
ematical models.

By harnessing standard programming protocols and lan-
guages, the SIMCog approach can lighten the modeler’s bur-
den while broadening the environments in which computa-
tional cognitive models operate. Because SIMCog-JS can
operate in an environment with facilities for complex data vi-
sualization (e.g., D3), we will be pushed to enhance ACT-
R’s functionality. In the future SIMCog-JS could be inte-
grated with an artificial vision system to, for example, au-
tomatically determine object shape; this combined approach
could, in fact, bolster both candidate solutions to the task re-
implementation challenge.
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Abstract 

Password authentication is a widely deployed security feature 
on desktop and mobile systems. Inputting complex passwords 
on mobile devices can be an onerous task. The composition of 
the passwords creates a unique challenge for people to input 
as not all characters are displayed on the keyboard at the same 
time, forcing the user to switch between multiple screens. The 
results from a previous study informed an ACT-R model of 
password input on mobile devices. The timing data generated 
from the model fits the experimental results well. The strategy 
that the model employs compliments the results from the 
experiment providing further information into the strategy 
subjects employed. Validated models of password input on 
mobile devices are an important tool that can aid designers in 
usability testing and security professionals when creating new 
password policies. 

Keywords: Passwords; mobile typing; touchscreens; human 
factors; useable security. 

Introduction 
Twelve characters long, one number, one uppercase letter, 
and one special character; password must contain at least 
two of the following types of characters: letters, numbers, 
and symbols; these are just two examples of enforced 
password policies meant to make passwords more secure. 
Many systems now set a minimum length as well as force 
users to include non-alphabetic characters in their password. 
The policies are enforced by the system because they give 
the passwords high entropy. Passwords are considered high-
entropy if they are long and contain a variety of character 
types. This combination makes them harder to crack using a 
brute force attack. As the computational power of computers 
increases, systems are increasingly enforcing password 
policies that make them high-entropy. These policies vary 
from system to system and make passwords not only 
difficult to remember but difficult to input. At the same time 
users are creating more and more accounts with different 
systems and must remember an ever-increasing number of 
passwords (Florencio & Herley, 2007). But there is 
recognition that the user is an integral part of the security of 
the overall system (Adams & Sasse, 1999). Being able to 
test the effects of new password policies prior to enforcing 
them would be beneficial to security professionals as well as 
users of the system. 

Inputting passwords on mobile devices presents a unique 
challenge for the users not present on desktop systems. 
Commonly typed characters are always visible on physical 

keyboards; on mobile devices characters are on multiple 
screens that the user must shift between. Navigating 
between different screens not only increases the number of 
taps before the character can be input but it also requires the 
user to remember the keyboard screen, or screen depth, in 
addition to the location of the character. Now users must 
recall the password, keep track of a character’s position 
within a password, its spatial location on the keyboard, and 
its relative screen depth. This becomes even more 
complicated if the current character is available on multiple 
screens. Passwords of longer length provide more 
opportunities for input error. These differences can place 
significant perceptual-motor and cognitive demands on 
users. Figure 1 shows the layout of the keyboard at the 
different screen depths on an iPhone. 

 

 
 

Figure 1. The categories of keys based on their screen depth 
and type on an iPhone 
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ACT-R (Anderson, 2007) is a multi-domain cognitive 
architecture for simulating and understanding human 
cognition and performance. ACT-R’s current typing ability 
is comparable to that of a moderately skilled touch typist. 
Moderately skilled is defined as typing about 30-40 WPM 
and knowing the location of the keys without having to look 
for them but not performing as rapidly as an expert typist 
(John, 1996). Das and Stuerzlinger (2007) built an ACT-R 
model simulating expert text input on a cellular telephone 
with a 12-button telephone keypad using multi-tap as the 
input method. Multi-tap is an older system of text entry 
where the user presses a key to cycle through the letters 
associated with that key; for example pressing “6” twice 
would produce an “N.” With the proliferation of 
smartphones, this older input method is much less common 
today as smartphones supply full keyboards as well as other 
methods for text input. A validated ACT-R model of text 
input on a smartphone is not available. In making progress 
toward building a working model of password input on 
mobile devices, a model of the typing portion of password 
input was built in isolation from the memory component. 
Since the models are expandable, as more aspects of the task 
need to be modeled, the model can change to incorporate 
errors and the memory component of the task. 

Modeling 
An ACT-R model was built to model the input speed from 
the password transcription typing experiments in Gallagher 
(2014). The task presented subjects with a string similar to a 
high entropy password. The string was always present at the 
top of the screen. Subjects were instructed to type the string 
exactly as it appeared as quickly and accurately as possible. 
Two of the experimental results heavily influenced the 
strategy employed by the model. The first result was that as 
subjects progressed through this task their input speed 
increased because they spent less time on the page before 
inputting the target character. The second result was that 
throughout the experiment subjects did not navigate 
efficiently between keyboard screen depths. The model was 
built to provide insight into some of the performance 
aspects of the task that were not explained by the subject 
data alone. One question was why did the time spent on the 
page before symbols were typed remain slower than non-
symbols. A second question was how were subjects 
searching through keyboard screens to find the characters 
they were less familiar with.  

Method 
Data Modeled 
The model was constructed based on the subjects who 
interacted with the smartphone using one finger to input 
text. We took interkey interval (IKI) as our primary 
dependent measure rather than the more coarse measure of 
words per minute. This has the advantage of increasing the 
constraint on the model, since matching only global 
performance obscures details of how that performance 
arises. Furthermore, this allowed us to focus on error-free 

performance, since WPM also includes error correction, 
which was beyond the scope of this initial inquiry. 

There were six character categories: Lowercase, 
Uppercase, Number, Symbol1, Symbol2, and Symbol3. 
These categories were determined based on which screen 
depth characters were on, whether a shift key was required, 
and their type. The letters were in the categories Lowercase 
and Uppercase, and were distinguished by case due to the 
shift key having to be pressed prior to inputting an 
uppercase letter. The category Number represented the 
numbers, which are on screen depth 2; Symbol1 represented 
the symbols that were visible only on the same page as the 
numbers. The decision to separate these two groups was 
because we hypothesized that subjects would be more 
familiar with where the numbers were on the screen and in 
relation to each other than they would be with the symbols. 
Symbol2 represented the symbols that were visible only on 
screen depth three. Symbol3 were the symbols that were 
visible on both screen depth 2 and 3. Figure 1 shows the 
location of the key categories.  

 
Materials 
Since there is no way to interface ACT-R directly with the 
iOS simulator, a custom environment was built in Common 
Lisp for the model to interact with. The model environment 
mimicked the mobile application used by the subjects. The 
arrangement, space, and size of the interface elements were 
the same. Figure 2 shows the two interfaces. The interface 
elements that are unique to the mobile application, like the 
touch keyboard and the masking password field, were 
reconstructed as accurately as possible in the model 
environment.  
 

 
 

Figure 2. The layout of the iOS application (left) and the 
simulated Lisp environment (right) 

 
The keyboard was built so that the visible key size was 

the same as the visible key size in the mobile application, 
but the functional key size extended beyond that. Since the 
exact functional key size is not publicly available 
information, the simulated keyboard evenly split the 
difference between adjacent keys. Another feature unique to 

46



the mobile application that was reconstructed was the visual 
change on a key press. When a key is pressed an enlarged 
version of that key is displayed above the regular position of 
the key; upon release of the press the enlarged version of the 
key disappears. In the mobile application, the password field 
shows the character for a short amount of time after it is 
typed before masking it with an asterisk. If characters are 
typed into the password field in rapid succession then the 
characters are masked as the next key is input even if the 
normal time before masking has not expired. The password 
field used in the model environment recreated this behavior 
and used a time of one second before masking the most 
recently typed character. The mouse device module in ACT-
R was used as a stand-in for a finger in touch interactions.  
 
Design 
The model was given a moderate amount of knowledge in 
declarative memory. For all characters on the keyboard, the 
model knew if they were letters, numbers, or symbols. The 
model knew the locations and screen depths of all the letters 
and numbers. The model only knew the location and screen 
depth of symbols that were presented to the subjects in the 
practice blocks of the experiment. For all other symbols, the 
model did not start with the knowledge of their location or 
screen depth. The final part of the model’s knowledge was 
which keyboard change key needed to be pressed to 
navigate between different screens. These assumptions were 
based on most subjects’ familiarity with a QWERTY 
keyboard, the relationship between numbers, and the 
experienced gained from doing the practice block. 
 

Find Text at 
Top of Screen

Identify Next 
Character

Request 
Character 

Information from 
Declarative 

Memory

Seek Out and 
Input 

Character

Find and Click 
Done Key

No Next Character

Yes 
Next 

Character

 
 

Figure 3. The overall model strategy 
 

The overall strategy that the model employed to input the 
stimuli was straightforward, a flowchart of it is shown in 
Figure 3. At the beginning of each trial the model would 
determine where the stimulus was by picking out the text 
that was at the top of the screen. The model would then shift 
visual attention to the text, identify what the first character 
was, and store it in the goal buffer. The model would then 
make a recall request to the declarative memory for all 
available information regarding that character. Either just 
the type of the character would be recalled or the type of the 
character, the screen depth, and the location of the key. The 
model would then seek out and input that character. Once 
the character was input the model would shift visual 
attention back to the stimulus and pick out the next 

character. This process repeated for all the characters in the 
stimulus. After the last character was input, the model 
would shift attention back to the stimulus and identify there 
were no more characters and seek out the done key. To 
identify the done key the model would both shift visual 
attention and the mouse in parallel to the keyboard key in 
the bottom right of the screen, identify it was the done key, 
and click on it. 
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Figure 4. The process the model used to seek out and input a 
character. The grey box is where the process starts. 

 
The different strategies for seeking out and inputting the 

characters were based on their category and whether or not 
the model knew where the key was located. Figure 4 
illustrates the process and corresponds to the box “Seek Out 
and Input Character” in Figure 3. The location and screen 
depth of the letters and number keys were always recalled 
correctly. The model took an aggressive approach to 
inputting letters and numbers by doing as many actions in 
parallel as possible. After recalling the character, if the 
model was on the correct screen depth it would move both 
visual attention and the mouse to the key location in 
parallel. Once visual attention shifted to the key the model 
would verify that it was the correct key and as soon as the 
hand reached the key a press action was initiated. Once the 
press action was initiated, the model would shift visual 
attention back to the stimulus to determine the next 
character. For keyboard change keys as well as the shift key 
the model would move the mouse and visual attention in 
parallel. When changing the keyboard the model had to wait 
for the press action to complete and the keyboard to change 
before it could shift visual attention. When the target 
character was a symbol of a known location the model took 
a more conservative input approach and the process was 
similar but conducted in a serial manner. If the model was at 
the correct screen depth it would shift visual attention to the 
key first, verify it was the correct key and then move the 
mouse toward the key and initiate the press action after 
arriving. The model waited until the press action was 
complete before shifting attention back to the stimulus to 
determine the next character. If the model was searching for 
a symbol when the key location was not known it would 
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start the search from the first page of symbols it encountered 
and randomly select an unattended key and compare it to the 
target character. This process continued until the target key 
was found or there were no more unattended symbols. If 
there were not more unattended symbols it would switch to 
the next page of symbols and start searching there. On 
screen depth two it did not search through the numbers. If 
the model started on screen depth one it would switch to 
screen depth two and start the search there. If the model 
started on screen depth two or three it would start searching 
on that page and switch to the other one if it was unable to 
find the key on the starting page. Once the model 
successfully located the symbol the location and screen 
depth were added to declarative memory.  

To navigate between screens the model had to correctly 
recall the key necessary to switch between the current 
screen and target screen. If the model was unable to recall 
the correct key it would select the incorrect key. The 
majority of the extra taps between categories subjects made 
occurred when the previous character was a number or a 
symbol and the target character was also a number or a 
symbol. The number of transitional taps to and from letters 
was closer to the minimum. Due to the difference in number 
of taps, the chunks represented by those transitions 
involving letters started with higher base-level activation 
than the chunks representing the transitions between number 
and symbols. 

There are three processes in the model that vary in the 
amount of time they take to complete. The first two are 
related to the recall of chunks from declarative memory. 
Recall times for this model are based on base-level 
activation and a random noise component. The chunks 
representing character keys started with a higher level of 
activation and recall for them never failed. The amount of 
time to recall did vary based on the activation decay and the 
random noise component. For the chunks representing the 
character transitions the initial activation started lower so 
that they would not always be recalled. The time to navigate 
between screens was influenced by recall time as well as 
success or failure of recall. The third source of variation is 
the visual search time when a symbol’s screen and location 
are not known. The preceding character determines the page 
the model is on before it starts starting searching for a 
symbol and the order it examines keys is random, the 
amount of time it takes to find a symbol varies for each run.  

To approximate touch screen interaction we used the 
mouse in place of the finger, similar to Salvucci, Taatgen, 
and Kushleyeva (2006). 

 
Results 
To be able to compare the subject data and the model data, 
the procedure from Byrne (2013) was used determine the 
number of times the model needed to be run to build a 95% 
confidence interval within 5% of the mean interkey 
intervals. The model was run 20 times to estimate the 
coefficient of variation for each of the interkey interval. The 
largest coefficient of variation was used in the computation, 

and the minimum number of model runs was determined to 
be 93. One hundred model runs were performed. 

The interkey interval for each pair of categories for the 
model and the subjects can be seen in Figure 5 and Figure 6. 
The matched pairs of the model and subject data are shown 
in Figure 7. The results of a simple linear regression 
indicated that the model was able to predict 88% of the 
variance (R2 = .88, subject = 0.69 * model  + 0.58). The 
mean absolute deviation of the model from the subject data 
was 260 ms or 15.7%. Figure 8 and Figure 9 show the 
average number of taps the model and the subjects made 
transitioning between character categories. A simple linear 
regression indicated that the model was able to predict 90% 
of the variance (R2 = .90, subject = 0.95 * model  - 0.15). 
The mean absolute deviation of the model from the subject 
data was 0.22 taps. 

 
 

Figure 5. IKI for transitions from Lowercase, Number, and 
Uppercase 

 
 

Figure 6. IKI for transitions from Symbol1, Symbol2, and 
Symbol3 
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Figure 7. Matched Pair IKI between the subjects and the 
model 

 

 
 

Figure 8. Average number of taps between character 
categories 

 

 
 

Figure 9. Average number of taps between character 
categories 

Discussion 
The strategy that the model uses highlights the three main 
reasons why inputting high-entropy passwords on mobile 
devices is slow. The first is different strategies are employed 
for different character categories. The model and subjects 
are able to efficiently input characters they are familiar with 
but take a more conservative approach when inputting 
symbols. The second reason is that the model does not have 
knowledge of where the symbols are and has to locate the 
symbols the first time they are input. The third reason is not 
being able to navigate efficiently across screen depths. Like 
the subjects, the model does not navigate efficiently across 
pages and will not always take the shortest path to the 
correct page.  

These deficiencies in task performance highlight ways 
that passwords could be structured to improve task 
performance. Concerning which symbols are selected, using 
ones on the first page reduces the amount of time spent 
searching through keyboard screens. Rather than using 
symbols that subjects are unfamiliar with, symbols that are 
input frequently could be used so that subjects are more 
likely to remember their location on the screen. While using 
high-frequency symbols subjects may eventually employ a 
less conservative approach when inputting the symbols as 
they grow more accustomed to it. With regard to inefficient 
navigation, not using characters from the different symbol 
screens in sequence would be beneficial because it would 
eliminate the need to navigate across screens. If the user 
could modify the keyboard layout, they could place the 
symbols they would like to use more frequently on the first 
screen. This would aid them in search time, as they know 
which symbols they use most and could give them priority. 
These recommendations for structuring passwords and 
keyboard designs could be tested with the model to 
determine if there are performance benefits. 

For example, take the passwords Af_3+2=5_Fa! and 
aAfF235__+=!. They are both twelve characters long, 
comprised of the same characters, and meet the 
requirements of having at least two characters of each type. 
The first one was created using recommendations for 
memorability, Addition fact _ 3+2=5 _ Fact addition!. The 
second one rearranged the characters so that they were in 
order of screen depth. To predict input time without the 
variability introduced by visual search the model was 
modified so that it knew the locations of all the symbols. 
With this modification the model predicts an input time of 
24.57s in landscape and 24.12s in portrait for the first 
version and 15.99s in landscape and 15.59s in portrait. For 
the first password the model inefficiently navigated on two 
transitions but never inefficiently navigated on the second 
version. Arranging the characters in an order that allows 
them to be input in the most efficient manner gives a 
savings of almost 10 seconds. 
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Future Modeling Directions 
There are a number of steps that could be taken to improve 
the model’s performance in the remaining categories. When 
typing a Number the model is faster when coming from 
Symbol1 and Symbol3 than the subjects are. One of the 
reasons that this happens is because the model never 
misidentifies the page that it is on while subjects do and will 
navigate off of screen depth two even when they do not 
have to. When typing a character in Symbol2 the model is 
slower than subjects for all preceding character categories 
except Symbol2. One of the reasons that this could be 
happening is the model is using completely random visual 
search. There are six symbols that are part of the category 
Symbol2 that are pairs, [ ] { } and < >. If a subject knows 
the location and screen depth of one of members of a pair, 
they can use that information to more quickly find the other 
member of that pair instead of blindly searching for it. 
Additionally if subjects are searching and find one half of 
the pair they can use this as a cue to find the other half 
where the model just continues searching randomly. 

In advancing the model forward the first major change to 
make would be to have the model make errors when 
inputting the stimuli. This can likely be accomplished by 
turning on motor movement noise in ACT-R. With noise on 
the model would not always successfully acquire the target 
key and would also not always land in the center of the key. 
This would introduce the most common kind of errors, 
adjacent key errors. The subject data indicates that while not 
all errors are caught and corrected the majority of them are. 
Therefore the model’s strategy would need to change so that 
sometimes it would verify the input. After inducing the 
model to make errors, the next step in development would 
be to branch out to the other input styles and devices. 
Additionally, there may be variations in subject strategy. 
Subjects may keep more than one character in working 
memory at a time instead of referring to the stimuli after 
each character is typed. 

Additionally this model only used an iPhone. Further 
research needs to be done to be able to generalize to other 
iOS devices and platforms, e.g., Android and Windows 
Phone, and the variety of devices they run on. Using 
Android phones. Now that the size of iPhones has increased 
and alternative keyboards are available for iOS, these new 
features can be tested to see if they provide any advantage 
when typing passwords. 

Conclusions and General Discussion 
Although mobile device keyboards were designed to be 
similar to physical keyboards, they are not the same and 
many of the limitations of the mobile device make typing 
passwords slower. One of the main factors in the slow input 
speed is inputting the symbols. While the model learns the 
location of the symbols the initial act of searching through 
the keyboards screens is time consuming. Compounding the 
slow down is the conservative approach taken during the 
typing process to ensure accuracy. Since the model does not 
navigate between the symbol pages and number pages 

efficiently it could be helpful for passwords to not require 
symbols and numbers in sequence. Having a working model 
of password input on mobile devices has a number of 
benefits. When presented with novel passwords, the model 
can make predictions of password typing time. This is 
especially useful because as new password policies are 
generated they can be tested to see if they are detrimental or 
beneficial to improving input speed. In addition to different 
password policies, different keyboard designs can be tested 
prior to implementation. Typing the password is only one 
component of authentication and needs to be incorporated 
with work that looks at the cognitive component as well. 
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Introduction
Using cognitive modeling to predict user behavior in the
human-computer interaction domain is a promising field, but
often hindered by practical problems. Especially the creation
of a mock-up of the technical system under evaluation is often
a tedious and time-consuming task. For the growing number
of HTML-based applications, the modeling toolbox ACT-CV
(Halbrügge, 2013) provides direct access to the user interface,
removing the necessity to create a mock-up before the actual
modeling can start. A down-side of this approach is that unal-
tered applications often cannot be used for fast-time simula-
tion. This paper presents a new tool that solves this problem
by capturing UI states and also the control flow of HTML ap-
plications and by transforming both into finite automata that
can be used for fast-time simulation.

Related Work
The amount of work that needs to go into the creation of a
link between a user interface (UI) and a cognitive architec-
ture should not be underestimated, a fact that has been well
put by Kieras and Santoro (2004, page 102): “Programming
the simulated device is the actual practical bottleneck”. There
are solutions to this, but they often require instrumented ap-
plications (e.g., Urbas et al., 2006; Büttner, 2010). Other ap-
proaches like SegMan (Ritter, Van Rooy, St. Amant, & Simp-
son, 2006) allow unaltered applications, but work on a pixel-
by-pixel basis, forcing the modeler to re-create the symbolic
information from its lowest-level graphical equivalent.

ACT-CV
The cognitive modeling toolbox ACT-CV has started as a vi-
sual device for ACT-R (Anderson et al., 2004) that uses com-
puter vision (hence ACT-CV) for the creation of symbolic
representations of a visual scene from a video camera or a
computer screen capture. HTML support was added in ver-
sion 2 (Halbrügge, 2013), building ACT-R’s visicon (visual
icon) directly from the textual and clickable elements in the
browser window and applying ACT-R’s mouse clicks to them.

While direct access to real-world user interfaces eliminates
the tedious need to create mock-ups, some inconveniences re-
main: Fast-time simulation is impossible, especially in the
presence of graphical transitions and animations that take
fixed amounts of time. It is also very hard to parallelize the
model runs during batch processing as every model would
need at least its own browser instance. In the case of state-
ful user interfaces, extra checks would be necessary to ensure
that the model sessions do not interfere with each other.

Creating Finite Automata from Dynamic Web Pages
When we bring to our mind that ACT-R’s visual module only
uses the geometry, color, and (textual) content of a screen el-
ement, it should be obvious that creating and holding a com-
plete browser instance to create this small amount of infor-
mation is highly inefficient. How can we improve this?

The approach taken in this paper is to keep a history of the
observed visicons in their reduced form, and taken together
with the actions taken by the model, using this history to cre-
ate a computational representation of the system that com-
pletely replaces the original browser content. As a cognitive
model can only “see” through ACT-R’s visicon, the removal
of the actual browser is transparent to it.

Formalization The state s ∈ S of the user interface is the
set of currently visible elements as represented in ACT-R’s
visicon. The visicon is a table of chunks of type visual-object
that contain their positions, dimensions, colors, and symbolic
values. For reasons of simplicity, we consider every visicon
entry as a possible action a ∈ A. An action is executed by in-
teracting (i.e., clicking or tapping) with its corresponding UI
element and usually leads to a new UI state. We are assuming
discrete time, i.e., every transition to a new state denotes a
new time step.

How can we represent the UI logic? If the UI had Markov
properties, i.e., no hidden states, it could be captured by a
deterministic transition function δ(S,A) 7→ S. This is usually
not the case, though. Stateful interfaces are the rule rather
than the exception; examples on the web are shopping carts,
stored billing information, or personalized news and ads with
the help of browser cookies.

In order to support hidden states, ACT-CV uses a deter-
ministic finite partially observable Markov decision process
(POMDP) representation for the UI logic. If a pair of state
and action does not lead deterministically to another state, we
go back in history until we can establish a deterministic tran-
sition function again, e.g., δ(S,A,S,A) 7→ S. Implementation-
wise, we only store the part of the history that is needed to
reproduce the observed behavior of the UI.1 During the learn-
ing phase, the complete history needs to be kept in order to
be able to adapt to newly discovered hidden states.

Exploration of the User Interface Finding an optimal so-
lution to a POMDP problem is known to be NP-hard (i.e., not

1The flexible history approach presented here is not always opti-
mal, e.g., because states with self-transitions can fill up the history
without adding any information. A better, but more complex solu-
tion would be Looping Suffix Trees (Holmes & Isbell Jr, 2006).
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easily computable for non-trivial cases, Kaelbling, Littman,
& Moore, 1996). Fortunately, we are not in need of opti-
mal solutions, often not even complete ones. The part of the
state space that is actually visited by the cognitive model un-
der investigation is most of the time much smaller than the
complete state space of the application.

If the cognitive model is deterministic, we can build the UI
representation from the observation history of a single com-
plete model run. Non-deterministic models may visit much
more states than deterministic ones. Due to this, we need to
explore the application beforehand and independently of the
model. ACT-CV procides a simple exploration mechanism
that is inspired by the RMax algorithm (Brafman & Tennen-
holtz, 2003) for this situation.

Application Example and Results ACT-CV has been used
during a modeling attempt targeted at a HTML-based home
assistance system (Halbrügge & Engelbrecht, 2014). The
work comprised an analysis of sensitivity towards global
ACT-R parameters that needed hundreds of model runs. If
this analysis had to be done in real-time, it would have needed
several weeks to complete. With the help of ACT-CV and
the state machine approach introduced above, the analysis
could be run approximately 150 times faster on a common-
place desktop computer and finished within a few hours.

Open Issues While the automaton approach has worked
very well in the example given above, issues remain. First,
graphical transitions like fade-ins make it hard to determine
when human users can actually see and act upon different el-
ements on the screen. As ACT-CV does not capture the fade-
in, some timing information may get lost. Secondly, page
scrolling behavior has not yet been modeled using the au-
tomaton approach. Scrolling can lead to many different UI
states and may need extra treatment. And finally, if the UI al-
lows data entry, e.g., in text fields, this instantly blows up the
amount of possible states of the application. Free exploration
cannot be used in this case.

Conclusion
Especially when using cognitive modeling to capture rare
events like errors, it is often necessary to execute many model
runs. In this case, it is very important to be able to run the
model in fast-time simulation. In the case of HTML-based
interfaces, this is only possible if a non-HTML mock-up is
available. While some modeling tools (e.g., CogTool, John,
Prevas, Salvucci, & Koedinger, 2004) have import functions
for static HTML content, dynamic applications were not yet
covered. ACT-CV closes this gap by allowing to extract the
information on the screen that is needed by ACT-R’s visual
module from the rendered browser content. The application
logic is transformed into a finite state machine by the means
of guided or free exploration using a POMDP approach.

ACT-CV is freely available for download at http://act-
cv.sourceforge.net.
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Introduction 
Building occupants interact with various elements of a 
building in order to satisfy their diverse needs – such as 
thermal comfort, privacy, task implementation, etc. As a 
result they significantly influence the energy balance of a 
building. For example, operating windows has a major 
influence on heating demand; operating lighting has a major 
influence on electricity demand, etc. If energy saving is an 
aim, this human interaction with buildings must not be 
ignored. 

In building sciences building simulation systems are very 
often used in order to predict and optimize the energy 
balance of newly planned buildings. Based on local weather 
data these codes calculate the dynamic energy flows in and 
around the building caused by solar radiation, temperature, 
and humidity differences and convective energy transport, 
etc. The algorithms are well established and validated.  

In an attempt to reproduce human interactive behavior in 
buildings, various algorithms have been developed in recent 
years that can be used in building simulations. Usually, 
these algorithms are rather simple stochastic models – such 
as probit models – that link a (limited set of) predictor(s) – 
such as solar radiation – to the execution of a particular 
action – such as closing the sun screen. Due to their 
simplicity they fail to capture both, the multifaceted 
character of the context of interaction as well as the 
complex cognitive processes underlying interaction.  

Research aims 
A larger research project has been started in the past in order 
to improve the predictability of energy- relevant human 
interaction with buildings by means of analyzing the 
involved psychological processes and by developing an 
according cognitive model (Grabe, 2013, 2014b). This 
research project can roughly be subdivided into three main 
parts (Grabe, 2014a): The first part aimed for the systematic 
identification of the contextual factors and their 
interrelations that are relevant for this type of interaction 
and developed a heuristic method to achieve this goal 
(Grabe, 2015). An example for a typical contextual factor is 
the structural and mechanical characteristics of the element 
the occupant wishes to interact with and its reachability (e.g. 
the window). These factors determine the ease of use of the 
element and thus (part of) the costs of interaction.  

To be useful for prediction, these somewhat qualitative 
relationships need to be transferred – in a second step – into 
scientific conceptualizations of pertinent disciplines. This 
has already partly been done by identifying a vast number of 
theories from psychology and social sciences that 
theoretically conceptualize the above mentioned qualitative 
relationships and that have potential to be useful for a 
predictive model. Among those, cognitive architectures – 
such as ACT-R (Anderson, 2007) – play an important role.  

Finally, the third step will aim at the integration of these 
theories into building simulation systems. This requires a 
specific adaptation to the syntax and semantics of building 
simulation systems and the transformation into software 
code for the quantitative prediction of behavior. 

Cognitive modelling fields 
A number of psychological processes that take place prior, 
during and after interaction seem to be particularly suited to 
be modelled by the principles of cognitive architectures. An 
example will illustrate this point. 

During interaction, a building occupant is confronted with 
a basic type of decision: The operation of which element of 
the building is best suited to satisfy his or her actual need 
given the actual context? Imagine a person that is feeling 
too warm and sets the goal to feel cooler. In principal, there 
is a multitude of action options to choose from: opening the 
window, switching off the heating, removing part of the 
clothing, closing the sun screen, switching on the cooling, 
etc. However, these action options are not equally suited to 
satisfy the actual need in the given context. To make a 
decision, further contextual information must be received 
directly from the environment via some sensory system (e.g. 
the fact that the sun is currently not shining) or must be 
retrieved from declarative memory (e.g. the external 
temperature as experienced before entering the building, or 
the fact that the heating is currently not switched on). 
Further on, each action is associated with a certain 
probability to be successful in satisfying the actual need and 
there are also costs attached to the execution of each action. 
Both, probability of success and costs are not easily defined. 
A measure of success might include how fast a temperature 
drop can be achieved and how sustainable the new 
conditions are. Costs might include diverse aspects like the 
physical effort to move to the window or in how far the 
(anticipated) new conditions will interfere with the 
satisfaction of other needs (for example, opening the 
window might increase noise level and interfere with task 
implementation). Moreover, satisfaction of a need might be 
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more or less urgent (e.g. feeling hot instead of simply warm 
increases urgency). This urgency can be expressed as the 
value of achieving the particular goal.  

From the perspective of cognitive architectures, it is 
plausible to regard these different action options as a set of 
potentially adequate production rules to reach the goal. Each 
production rule has its own specific utility, given a 
particular context. Determining factors such as probability 
of success or costs are learned during interaction with a 
specific building in a specific context and utilities can be 
established.  

Relevant specificities of building simulations 
Behavior cannot be analyzed or predicted without 
considering the physical environment in which it takes 
place. Building simulation systems are well suited to 
simulate essential parts of this environment and can thus 
represent the required counterpart to the simulation of 
particular types of behavior. However, some specificity has 
to be taken into account. A main example of such specificity 
is the simulation time span and the time discretization in 
building simulations. Since we are interested in the 
building’s performance during the whole year, simulations 
usually comprise 8760 hours. The involved thermo-dynamic 
processes usually show such a low dynamic that a time 
discretization below 30 minutes is seldom reasonably; and 
even with such a discretization the amount of produced data 
is enormous. This is not well in agreement with the dynamic 
of cognitive processes which usually requires a far finer 
time discretization.  
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Abstract

This paper describes a new set  of results on visual  search of 
displays of 75  objects  that  differ in size, shape, and color, and 
presents a cognitive architecture model based on the active 
vision  concept that accounts for the effects using object 
eccentricity and size effects, noisy saccades, and fixation 
memory provided by a persistent  visual store. The data 
confirm older, less complete studies of this task. The model is 
a significant refinement of earlier visual search models and 
preliminary fits show that it promises to provide an integrated 
architectural account of these effects.

Keywords: cognitive architecture, visual search; cognitive 
modeling; eye movements

Introduction
Many everyday and work activities involve visual search, 

the process of visually scanning or inspecting the 
environment to locate an object of interest that will then be 
the target of further activity. An especially tractable form of 
visual search takes place in many human-computer 
interaction tasks in which a particular icon coded by color, 
shape, and other attributes must be located on a screen and 
then clicked on using a mouse. Such visual search takes 
place in a visual environment that is much simpler than 
natural scenes, and so is a both a good theoretical and 
practical domain to model visual search processes. It 
combines relative simplicity of the visual characteristics of 
the searched-for objects with practical relevance. The task is 
a natural one in the sense that such activities are very 
common in current technology; an example is current radar 
displays in military applications, which can contain a large 
number of icons and other objects (cf. Kieras & Marshall, 
2006). Thus understanding in detail how visual search 
works in such domains can lead to better system designs. 
Kieras (2010) presented a model for the results of a classic 

study by Williams (1967), who using early film-based eye 
tracking methodology, explored the visual search of large 
and dense displays of many items that can be searched by 
multiple attributes.  He manipulated the size of the objects 
along with their color and shape,  an unusual combination in 
the visual search literature. Kieras and Hornof (2014) 
showed how the model could be used in a simpler form 

applicable to interface design problems. But some key 
issues in the model could not be addressed because Williams 
reported only a small subset of the potential data, and 
essentially no characteristics of the eye movements 
themselves. 
What’s new.  New eye movement data was collected in a 

Williams-like task that includes the complete eye movement 
trajectory and precise search completion times. This allows 
analysis of additional effects,  such as those of object size, 
saccade distance, the characteristics of fixated objects that 
do not match the search cues, refixation effects,  and so forth 
- far beyond what is possible with the Williams (1967) data.
The EPIC architecture was improved in two significant 

ways: First, the acuity functions that describe whether an 
object property can be detected as a function of object 
eccentricity and size were given the same form as 
psychophysical functions resulting from an especially 
relevant class of experiment. Second, EPIC’s eye movement 
mechanism has been completely accurate - if the cognitive 
processor issued an instruction to fixate a certain object, the 
eyes always moved exactly to that object. However, there is 
abundant literature that eye movements to a target normally 
fall short and have variability linear with the distance. EPIC 
models would thus be more efficient than humans, meaning 
that to match human data, other parameters might have to be 
distorted from their realistic values. Thus, EPIC’s 
oculomotor processor now makes “noisy” eye movements. 
To compensate, the visual search strategy has to be adapted 
to complete the task in spite of the unreliability of fixations.
Thus despite the superficial similarity of this work to the 

earlier, there are new challenges in the modeling. The work 
reported here is preliminary - there is much new ground to 
explore. First the experiment will be presented, followed by 
the architectural changes and the current modeling results. 

The Visual Search Experiment
The task was to locate a target object in a field of seventy-

five distractor objects.  Each object on the display had a 
unique two-digit number and a unique combination of color, 
size,  and shape. Participants were precued with the number 
of the target, and some combination of the target’s color, 
size, and shape.
Twenty-four participants were recruited from the 
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University of Oregon campus community. Two were 
excluded because the eye tracker could not be calibrated to 
them. All had normal or corrected-to-normal vision. 
Participants received a base payment of $10 plus a bonus 
(ranging from $5 to $8) based on their speed and accuracy.
Search fields were presented on the central 1600 x 1200 

portion of a color-calibrated Dell 2407WFP 24-inch monitor 
connected to a 3.06 GHz Intel Core 2 Duo Macbook Pro 
running Mac OS 10.8. The data collection software was 
written in C++, Objective-C, and Cocoa. Eye movement 
data were collected using a binocular 120 Hz LC 
Technologies Eyegaze tracker after a nine-point calibration. 
The monitor was positioned 60 cm from the participant. 
Each participant was presented with ninety-six search 

fields, each with seventy-five randomly arranged objects. 
Figure 1 shows one of the search fields. Each search field 
was preceded by the presentation of a precue that described 
the target in text and included the target’s two-digit number 
and, depending on the condition, some combination of the 
the target’s color, size, and shape. Because each precue 
could include any combination of the three features, 
including none, there were a total of eight possible precue 
types. Each combination was used in twelve trials,  resulting 
in the ninety-six trials per subject.
Search fields contained seventy-five objects on a 67% gray 

background that subtended 39° by 30° of visual angle. Each 
object had a unique combination of color, size, and shape. 
Colors were blue, green, yellow, red, and purple. Sizes were 
small (0.8º), medium (1.6º), and large (2.8º),  measured as 
the diameter of the circular object of that size, with other 
shapes normalized to the same area. Shapes were circles, 
semi-circles, squares, equilateral triangles, and crosses. 
Each object had a one-pixel black border.
The seventy-five unique objects were randomly distributed 

across the search field with at least one degree of visual 
angle between adjacent objects.  A unique two-digit number 
from 01 to 75 appeared in the center of each object with a 
height of 0.26° (10 pixels). The precue appeared in the 
center of the display in the same typeface, with each feature 
listed on a separate line. Participants started each trial by 
clicking on an XX above the target description.

Each successful trial proceeded as follows: (1) The precue 
appeared in the center of the display. (2) The participant 
moved the mouse and clicked on the XX. (3) The precue 
disappeared and the search field appeared. (4) The 
participant found the target. (5) The participant moved the 
mouse and clicked on the number in the target.
Participants were constrained to not move the mouse until 

they found the target by using a point-completion deadline 
(Hornof, 2001). Participants practiced until they were 
comfortable with the deadline.
Participants were rewarded for successful trials with a 

pleasant 170 ms “cha-ching” sound and penalized for error 
trials with a 350 ms buzzer. Participants were also 
financially rewarded. Each trial started with a bonus of five, 
twelve, or twenty-one cents,  depending on the difficulty of 
the condition (for example, color was easiest) and the bonus 
diminished at a rate of 0.4, 0.3, or 0.15 cents per second 
until the participant clicked on the target (stopping at zero, 
and with faster rates for easier conditions). Errors resulted in 
no bonus plus a five-cent penalty. Accumulated bonuses 
were reported to the participants every twenty-four blocks.

Results
The fixations were identified using a dispersion-based 

algorithm with a maximum dispersion window size of 0.7º 
and a minimum fixation duration of 60 ms.  The error in the 
eye tracking data was reduced using the method of required 
fixations, as described in Zhang & Hornof (2014), yielding a 
series of fixations for each trial by each subject, for a total 
of about 64 thousand fixations.
In each trial first,  last, and any offscreen (and subsequent) 

fixations were discarded. Then the apparent target of each 
fixation was designated as the object on the display whose 
center was closest to the point of fixation; these were 
considered to be the fixated objects. Then the proportion of 
fixations in which the properties of the fixated object 
matched the cue properties were calculated.  Similar 
calculations were made for other statistics, such as the 
saccade distance - the difference between the current and 
previous fixation. These statistics were accumulated for 
each subject in each condition, and means computed for 
each condition. 
In all of the graphs shown here, the observed mean values 

are plotted with solid bars, and the predicted with open bars. 
Observed values are shown with 95% confidence intervals 
for the mean based on the values averaged over subjects. 

Figure 1. A sample search field used in the experiment.
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The observed values will be discussed first; the predicted 
later in the context of the model presentation. 
First, the results were consistent with those reported by 

Williams(1967). Figure 2 shows the proportion of fixations 
on objects that matched the cued properties. E.g., if the 
color was the only specified cue, about 74% of the fixations 
were on objects with the specified color. The color cue 
produces the highest proportion of matches, followed by 
object size,  whereas object shape produces the lowest 
proportion of matches. The Number Only condition is 
shown for comparison; here a “match” just corresponds to 
whether the fixated object has the same property as the 
target object; the fact that the proportion of matches 
corresponds to their distribution in the display (five colors 
and shapes, three sizes) means that these fixations were 
basically random with regard to the color,  size, or shape of 
the object. 
These results replicate the Williams results quite well, 

showing that color is the most effective cue in guiding 
visual search, and shape is the least. But size appears to be 
more effective in these data compared to Williams, being 
similar to color, perhaps because there were only three 
different sizes, rather than four as in Williams that may have 
been difficult to discriminate.
To further compare with Williams (1967), Figure 3 shows 

the number of fixations required to complete the task for 
each cue type. The color cue requires the fewest fixations, 
followed by size, then shape, with the Number Only cue 
requiring the most. These effects also basically replicate the 
Williams results, but are more precise due to better eye 
tracking methodology. 
A new effect in these data concerns the saccade distance. If 

a cue is more effective than another in guiding visual search, 
the corresponding property of an object should be visible at 

a greater eccentricity, meaning that saccades should be 
longer on the average for more effective cues. Figure 4 
shows this effect; color cues produce the longest saccades, 
followed by size, then shape, then Number Only.  The effect 
is fairly small, but reliable, as shown by the overlap 
relations of the confidence intervals. The small size of the 
effect could be due to averaging over both matching and 
mismatching objects in the effective cue conditions.

Discussion

Visual Search and Active Vision
The empirical literature on visual search was dominated for 

a long time by studies that ruled out eye movements. But 
tasks in which the eye is free to move about a static display 
is more representative of the normal operation of the visual 
system and the role of attention in visual activity. This point 
was argued eloquently by Findlay & Gilchrist (2003) in 
presenting an active vision framework for understanding 
visual activity.
In active vision, a key process is choosing the next object 

for inspection. A variety of studies (see Findlay & Gilchrist,
2003, for a review) have shown that properties such as the 
color, shape, size, or orientation influences which object is 
chosen for the next fixation; the phenomenon is called 
visual guidance. These properties are available to some 
extent in extra-foveal or peripheral vision, meaning that 
visual attention, which is almost synonymous with where 
the eye is fixated, involves using extra-foveal information to 
select for detailed examination one of the objects currently 
perceived in the visual scene.
The importance of color in visual search is consistent with 

many results ranging from classic human factors studies 
(e.g. Sanders & McCormick, 1987). But in the active vision 
framework, color is not specially privileged in some way, 
but rather, various direct measurements show that the color 
of an object is visible over a wide range of eccentricity and 
object sizes (e.g. Gordon & Abramov, 1977), and so can 
often serve as an effective cue about where to look next.  The 
relative ineffectiveness of shape is likewise not due to a 
fundamental problem with shape, but rather that in many 
cases, recognizing the shape requires resolving detailed 
features that can only be seen close to the fovea. As an 
extreme of shape recognition, recognizing the text label can 
require foveal vision. 

Saccade accuracy
A general property of these data was that there are many 

fixations that appear to be between objects. The average 
distance between the fixation point and the center of the 
closest object averaged 0.99° and was similar across cue 
conditions. This inaccuracy could have three causes: (1) a 
deliberate strategy to collect information over a wider area 
than a precise fixation would allow, which seems unlikely 
given the density of the display; (2) measurement error, 
even after applying our error correction technique; (3) error 
and noise in the oculomotor system – saccades tend to fall 
short of the intended target and display some variability as 
well. In these data, there is no strong tendency for in-
between fixations to be followed by a short corrective 
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saccade to precisely fixate an object. Rather,  it seems likely 
that depending on the extent of extra-foveal vision, the eye 
can collect enough information at the "missed" fixation 
point that a person can usually correctly decide if an object 
in the vicinity is the target, and fixate another object if not. 

Repeat fixations and memory failures
One overall feature of these results is that many more 

fixations are required than should be necessary if each 
object only received one fixation; for example, it should 
require no more than 37.5 fixations on average in the 
Number-Only condition to find the labeled object, but about 
71 are performed. The data shows that 33% of the fixations 
are on a previously fixated object in this condition; in 
contrast,  the four color-cue conditions have a lower repeat 
rate of 21%.
In contrast,  some observations and modeling of repeat 

fixations (Peterson et al. 2001, Kieras & Marshall, 2006, 
Kieras, 2009, 2010) suggests that repeat fixations are 
relatively rare, around 5%, implying a good memory for 
previous fixations, and almost all are performed 
immediately, being due to recognition (encoding) failures 
rather than failures of the memory for previous fixations.
However, in these data, immediate repeats average about 

14% with little variation between cue conditions, and the 
average lag between repeat fixations is about 2.4 in the color 
cue conditions, and much higher at 12.5 in the Number-
Only condition (lag = 0 is an immediate refixation). So 
perhaps repeat fixations in these data are due to both factors: 
there are some encoding failures leading to immediate or 
almost immediate fixations, and some memory failures, 
especially in the conditions that take much longer. 

The EPIC Cognitive Architecture
The EPIC architecture for human cognition and 

performance directly supports an active vision approach to 
visual search and provides a general framework for 
simulating a human interacting with an environment to 
accomplish a task. The reader is referred to Meyer & Kieras 
(1997) or Kieras (in press), for a more complete description 
of EPIC; here is only the necessary minimum description. 
In the EPIC architecture, the eye processor contains acuity 

functions that specify whether each visual property of each 
object is currently visible as a function of the size of the 
object and its eccentricity. The currently available visual 
properties for each object are represented in the sensory 
store; the perceptual processor then encodes the properties 
of each object, possibly in relation to other objects, and 
passes the encoded representation on to the perceptual store 
where they are available to the cognitive processor to match 
the conditions of production rules. The perceptual store 
contains the current representation of the visual world that 
cognition can reason and make decisions about,  including 
decisions about where to move the eyes next by 
commanding the ocular motor processor. 
When the eyes move away from an object, the properties 

of the object persist for a short time (e.g. 200 ms) in the 
sensory store, and when lost, the perceptual processor notes 
that the corresponding property in the perceptual store no 

longer has sensory support. After a relatively long time, the 
property will then be lost from the perceptual store.  But if 
the object disappears completely, it and all of its properties 
will be removed from the perceptual store fairly quickly. 
The notion that the representation persists for a considerable 
time as long as the scene is present is supported by studies 
summarized by Henderson & Castelhano (2005); memory 
for previously fixated objects was assessed in natural visual 
scenes, and retention times of at least several seconds were 
observed. Since this form of memory has not been studied 
extensively, its properties and duration must be chosen to fit 
the modeled data. 

Model for the Search Task
The model is an instantiation of the active vision concept; 

constructing it requires a choice of (1) visual acuity 
functions and parameters, (2) a model of the "noise" in the 
eye movements, (3) a parameter for the persistence time of 
visual properties in the perceptual store that are no longer 
sensorily supported, and (4) a set of production rules that 
implement the visual search strategy. Each of these will be 
described, with emphasis on the new features in this work.

New acuity functions
The availability of a perceptual property in extra-foveal 

vision depends heavily on the eccentricity (the distance in 
degrees of visual angle from the center of gaze) of the 
object, normally referred to in degrees of visual angle,  and 
on the size of the object (also measured in degrees of visual 
angle), and on the specific property involved. Despite the 
many decades of research on vision, the literature does not 
contain a comprehensive set of parametric data on acuity for 
different visual properties as a function of their eccentricity 
and size, especially for the density and properties typical of 
computer displays. Space limitations do not allow a review 
of the available data (see Findlay & Gilchrist, 2003). 
Previously, EPIC used simple forms of acuity functions 

that were adequate to fit the limited data such as 
Williams(1967). The new work here was to anchor the 
acuity functions closer to the available psychophysical data. 
Of special interest are studies of "cortical magnification" 
which is based on the reasoning that a constant amount of 
visual cortex (presumably supporting a certain number of 
receptive fields) are required for performing discrimination 
at a certain level, and since anatomically, the density of 
cortical representation declines with distance from the 
fovea, the size of the stimulus must increase to involve the 
same amount of cortex. Such functions have been measured 
in psychophysical experiments; a typical result (e.g. Virsu & 
Rovamo, 1979) is that to maintain discriminability, the size 
of the object must increase as a cubic function of 
eccentricity; the required size increases linearly for a 
moderate eccentricity, and then quite sharply in the further 
periphery. A cubic function with a moderate linear 
coefficient,  a zero quadratic coefficient and a very small 
cubic coefficient provides a good fit.Visual search studies 
such as Carrasco & Frieder (1996) show that if object size is 
constant, then targets at greater eccentricity are located more 
slowly, whereas if peripheral objects are magnified in size 
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according to the measured functions,  search time becomes 
flat with eccentricity. However,  it appears that magnification 
functions measured for individual objects greatly 
overestimate the acuity for objects in dense visual fields 
(e.g. see discussion in Anstis, 1974). To measure acuity in 
dense displays would be very difficult,  and the literature 
does not contain useful parametric studies. 
To deal with this non-definitive picture,  a simple family of 

acuity functions are proposed, and their parameters 
determined by a combination of general constraints set by 
the literature and iterative maximization of fit in the models. 
A separate function was specified for each property: color, 
encoded size (small, medium, large), shape, and text label. 
The acuity function is a Gaussian detection function that 
gives the probability that the property will be detected (be 
available) for an object with size s at eccentricity e:

P(detection) = P(s > N(µ, σ))
µ = a + be + ce2 + de3, σ = a constant

The form for µ (which can be interpreted as the 50% 
threshold for object size) reflects the commonly fitted form 
of cortical magnification functions. The value of σ governs 
the steepness of the ogival detection function; smaller 
values of σ make it look more like an all-or-none threshold-
like process. 
In the preliminary predicted results presented here, the 

acuity parameters were determined by informal iterative 
fitting. The a term was held at 0.05, b was estimated as 0.2 
for color,  size, and shape, and 0.1 for text, c was held at 0, d 
was 0.0004 for color and size, .025 for shape, .05 for text, 
and σ was 0.5 for color, size, and shape, and 1.0 for text.
The availability for each property is independently 

resampled for all objects whenever the eye is moved. As the 
eye moves around, the available properties of the same 
object can fluctuate, and will not be reliably available from 
one fixation to the next. However, the information, once 
acquired, will remain for some time in the perceptual store.

New model of saccade accuracy
A variety of studies (see Harris, 1995 for a review) have 

shown that saccades tend to fall short of the actual fixation 
target,  and the standard deviation of the saccade distance 
tends to be proportional to the distance. Following Harris 
(1995), the new oculomotor processor samples the distance 
for a saccade to an object at eccentricity e from a Gaussian 
distribution: 

saccade length = N(µ, σ))
µ = g·e, σ = s·µ

Typical values for g (gain) range from 0.85 - 0.95, and s 
(spread) is typically around 10%. The current preliminary 
fits use the values suggested by Harris as optimal, namely 
g=0.95, s=10%. Unlike previous EPIC models, this model 
thus often misses the object to be fixated,  which decreases 
the probability that (e.g.) its text label will be available, 
meaning that the task strategy must either attempt to fixate 
the object again, or choose a entirely different object to 
fixate. On the other hand, if the acuity functions are such 
that most fixations are close enough, there may be little 
effect of inaccurate saccades.

Fixation memory
As summarized in the task strategy below, memory for 

previous fixations was implemented by only choosing 
objects to fixate whose relevant properties are currently 
unknown, either because the object was never fixated, its 
properties were not detected, or it was fixated a long time 
ago but the properties have been lost from the perceptual 
store. As mentioned below, the duration of properties of 
visible objects in perceptual store interacts with the acuity 
functions and model strategy in predicting the properties of 
repeat fixations. For the model predictions presented here, 
this duration was set at 15 s.

New task strategy
The visual search strategy in the model is a new variation 

of a basic strategy that has been used in several EPIC visual 
search models.  There are now three concurrent threads of 
execution. In the first thread, nomination rules now 
continuously propose objects to fixate whose available 
visual properties match the cued properties. In the second 
thread, choice rules pick a single candidate from the 
nominated objects according to a priority scheme, and 
launch an eye movement to the chosen candidate. The 
priority scheme favors the more widely available attributes, 
and so chooses an object with a matching color over one 
with a matching size over one with a matching shape. If 
there are no nominations,  a “guessed” object is chosen 
whose cued properties are currently unknown. Objects are 
only nominated or chosen if their text label property is 
currently unknown, which serves as a memory for fixations, 
and if more than one object qualifies,  the closest one is 
chosen. The response rules in the third thread wait for the 
eye movement to the candidate to be complete and either 
click on the object if its text label matches the target label, 
or discard it if not, which enables the next choice of object 
to fixate. If the text label is not available (e.g. the saccade 
may have fallen short) the strategy waits for up to three 
additional cycles and then nominates the object for the next 
eye movement, which takes priority. 

Model Results
Using the parameter values and task strategy described 

above, the model was run using the actual set of stimuli 
used in the experiment, which consisted of 2112 
combinations of cue condition, search fields, and target 
object within that search field, with 4 repetitions of these 
stimuli, giving 1056 trials in each experimental condition, 
and the simulated eye movement and response time data 
were collected. These fits are preliminary, but encouraging; 
further work is in progress.
Figures 2-4 above show the observed and predicted 

statistics in each condition. As a summary measure of the 
goodness of fit of predicted to observed, r2=0.89 for the 
proportions of matching fixations in Figure 2; r2=0.92 for 
the number of fixations in Figure 3, and r2=0.79 for the 
saccade distances in Figure 4, where it is clear that the 
distances for the weak cues of Shape and Number-Only are 
seriously under-predicted. In results not shown graphically, 
the predicted RTs are well correlated with the observed 
(r2=0.92), but the model over-predicts them substantially, 
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probably due to suboptimal methods for disqualifying a 
fixated object. Most seriously, the overall predicted repeat 
rates are too high (41 vs 25% in the observed data), 
especially in the weak cue conditions; increasing the 
property decay time from 15 s to 20 s or more improves the 
fit, but then the number of fixations is under-predicted in the 
weak cue conditions. 

Guided versus unguided fixation choices
An insight from this preliminary modeling work is that 

there are basically two kinds of fixation choices: a guided 
fixation when the object matches a cue, and an unguided 
fixation when there is no candidate that has a matching cue 
property. While unguided fixations dominate the Number-
Only condition, they clearly play a role in the other cue 
conditions, because fixations to non-matching objects make 
up a quarter or more of the fixations in these conditions.
For unguided fixations, the model strategy must choose a 

next object on some basis; if this strategy is incorrect, then 
all of the summary statistics for a cue condition will be mis-
predicted. Several strategies have been explored, but no 
clear winner is yet evident - for example,  choosing a 
qualified candidate at random, rather than the closest, 
produces a different pattern of mis-predictions in the weak 
cue conditions. The next steps in this work will separate 
fixations on matching objects from non-matching, which 
should help characterize guided versus unguided fixation 
choice strategies.

Conclusion
This model represents a realization of the active vision 

concept in terms of a computational cognitive architecture 
whose components incorporate noisy saccades, size and 
eccentricity effects in perception, and a persistent visual 
perceptual store that represents the current visual situation 
and provides a memory for previous fixations. The task 
strategy implements visual guidance by using the supplied 
target properties and the information in the visual perceptual 
store to choose the next object to fixate. The adequacy of 
the architecture, and a deeper understanding of the 
functional properties of the visual system, will emerge as 
the model is developed to more closely account for the eye 
movement data.
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Abstract

ACT-R is a popular cognitive architecture. Although its psy-
chological theory is well-investigated, it lacks a formal founda-
tion. This inhibits computational analysis of cognitive models
and leads to technical artifacts in ACT-R implementations.
In this paper we present an adaptable implementation of
ACT-R derived from our formalization presented in previous
work. We show how this formal approach supported by the use
of the declarative programming language Constraint Handling
Rules (CHR) leads to an implementation of the ACT-R close
to the theory while maintaining interoperability. Due to the
adaptability of our implementation we are able to extend the
conflict resolution strategy of the system by production rule
refraction in our implementation easily avoiding the problem
of over-programming in some ACT-R models. The use of CHR
facilitates the application of analytical methods from the CHR
ecosystem paving the way for ACT-R model analysis.
Keywords: ACT-R, Constraint Handling Rules, conflict reso-
lution, refraction, model analysis

Introduction
ACT-R is a popular cognitive architecture with lots of users
and application models. The psychological theory is well-
investigated and allows for studying of human-behavior by
performing experiments both with humans and artificial ACT-
R agents. However, from a computational point of view,
ACT-R lacks a formal theory of its underlying computational
concepts which inhibits analysis of the computational proper-
ties of a model. Like in every production rule system, proper-
ties like confluence (i.e. the order of rules does not matter for
the result) and termination can be important to the soundness
of a cognitive model. While confluence may be regained by a
conflict resolution mechanism, unwanted or unexpected non-
confluence could be the result of a programming error. Con-
fluence analysis can help to detect all rules that could lead to
undesired behavior and help the modeler to check the validity
of his model.

In this paper, we present our translation of ACT-R models
to the language Constraint Handling Rules (CHR). CHR is a
declarative rule-based programming language which comes
from the field of logic programming (Frühwirth, 2009). Due
to the close relation of CHR to logic, a formalization of the
ACT-R production rule system can be derived from the trans-
lation. This closes the gap between the formalization and exe-
cution of ACT-R models simplifying analysis. There are anal-
ysis methods and tools for CHR programs, e.g. for analysis
of confluence, termination and operational equivalence which

can be applied to ACT-R models. In (Gall & Frühwirth,
2014b) we have shown the first steps towards such an analy-
sis toolbox for ACT-R by defining an abstract operational se-
mantics of its procedural system and showing soundness and
completeness of our translation with respect to the CHR very
abstract semantics (Frühwirth, 2009). This result is crucial
for lifting CHR results to ACT-R. Another benefit of our im-
plementation is its adaptability. We exemplify this by adding
refraction to the conflict resolution mechanism of ACT-R. Re-
fraction inhibits rules to fire twice on the same state.

The contributions of this paper are a concise description
of our adaptable implementation of ACT-R with CHR, the
implementation of refraction as the first of its kind in ACT-R
and its application to simplify an existing example model.

We concentrate on the symbolic parts of ACT-R in this
paper, since we want to explain the formalization of the ba-
sic production rule system with a generalized conflict resolu-
tion. Nevertheless, in our implementation we have captured
various conflict resolution mechanisms (Gall & Frühwirth,
2014a) and the declarative module with its sub-symbolic con-
cepts (Gall, 2013). The restriction is also closer to our ab-
stract semantics used for confluence analysis of ACT-R mod-
els: It is necessary to capture all possible transitions non-
deterministically to find all transitions that could inhibit con-
fluence. The abstraction can then be augmented by the details
making our results applicable to actual ACT-R implementa-
tions in a next step.

Constraint Handling Rules
First, we give an informal introduction to the programming
language Constraint Handling Rules which is the basis of our
implementation. For a detailed description of the language
we refer to (Frühwirth, 2009) and (Frühwirth, 1998). CHR
programs consist of a set of rules operating on a constraint
store comparable to the working memory in other produc-
tion systems. Given an initial constraint store, matching rules
are applied to the store to exhaustion. The data elements of
the store are (CHR) constraints which are first-order predi-
cates of the form c(t1, . . . , tn). For instance, name(robert),
age_of(robert,75) or b are constraints. The terms in the
arguments of a constraint can also contain variables that are
denoted by capital letters, e.g. X.

There are three types of rules in CHR – simplification,
propagation and simpagation:
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simplification @ Hr <=> G | B.
propagation @ Hk ==> G | B.
simpagation @ Hk \ Hr <=> G | B.

Hr, Hk and B are conjunctions of CHR constraints, whereas
the so-called guard G consists of a conjunction of simple
built-in tests like arithmetic comparisons, syntactic equality
etc. comparable to the modifiers -, <, > in ACT-R produc-
tion rules. Guards are optional and can be omitted.

Simplification rules match the constraints on the left-hand
side of the rule with the store binding variables of the rule
with the contents of the store. If matching constraints are
found and the tests in the guard hold, the matching con-
straints are removed from the store and replaced with the
constraints in the body B. An example simplification rule is
blue, yellow <=> green modeling the mixture of the col-
ors blue and yellow. If both colors are found in the store, they
are replaced by the color green.

In contrast to simplification rules, propagation rules leave
the matching constraints in the store and add the body. Sim-
pagation rules are a mixture of both rules: The constraints
in Hk are kept in the store, whereas the constraints in Hr are
removed.

To execute CHR programs, an initial constraint store is
specified by a so-called query and then rules are applied to ex-
haustion: E.g., a program consisting of the color-mixing rule
from above would simplify the query blue, blue, yellow
to blue, green. Since there are no more yellow – blue pairs
in the store, the rule is not applicable anymore.

In implementations, CHR rules and queries are applied in
textual order: from top to bottom and from left to right. Rules
in CHR can be read as logical formulae giving programs a
declarative semantics (Frühwirth, 2009). The logical reading
of CHR programs together with analysis methods and tools
for e.g. confluence or termination makes CHR suitable for
program analysis.

The Basic Implementation of ACT-R in CHR
For an introduction of ACT-R we refer to (Anderson et al.,
2004; Anderson & Lebiere, 1998; Taatgen, Lebiere, & An-
derson, 2006). Our formalization and implementation of
ACT-R and hence the following description of the implemen-
tation of ACT-R features is based on those sources together
with the ACT-R reference manual (Bothell, n.d.).

Our implementation of ACT-R in CHR consists of two
parts: a compiler and a runtime environment. The compiler
takes a set of ACT-R production rules and translates it to CHR
rules and the runtime environment implements the features
necessary to execute the translated CHR rules according to
ACT-R.

Basic Translation of ACT-R models to CHR
This section describes the work of the compiler translating
ACT-R models to CHR rules. The description first explains
how the state of the procedural system of ACT-R can be repre-
sented in terms of constraints. Based on these considerations,
the actual translation of production rules is described.

States The state of the procedural module in ACT-R
is represented by the chunks in the buffers. We can
represent a chunk by the following constraints: a con-
straint chunk(cname,type) and for each slot-value pair of
the chunk a chunk_has_slot(cname,slot,value) con-
straint. The buffers with their contents are represented by
buffer(bname,cname). There are some assumptions on
the state, like for instance “There is at most one chunk
constraint for each chunk name”, “There is at most one
buffer constraint for each buffer”, “There is at most one
chunk_has_slot constraint for each combination of chunk
name and slot” and “Slots and types are consistent”. Those
assumptions follow from our formal description of ACT-R in
(Gall, 2013) and (Gall & Frühwirth, 2014a). The assumptions
can be checked by some simple CHR rules, if needed. They
play an important role for model analysis.

Production Rules We translate each ACT-R rule to a CHR
propagation rule, i.e. the tested constraints are left in the
store. The buffer tests on the left-hand side of an ACT-R rule
consist of a buffer name, usually a chunk type and a set of
slot-value pairs. Such a test signifies that the specified buffer
holds a chunk of the specified type with specified slot-value
pairs. The values of the slot-value pairs can also be variables
which are bound to the actual values of the slot in the buffer.
The following rule shows the translation of such tests to a set
of constraints. Actions are translated to special action con-
straints described later:
buffer(b,C), chunk(C,t), chunk_has_slot(C,s,v), ...
==> action(...), ... .

C is a fresh variable which will be bound to the name of the
chunk in the specified buffer with name b. The other con-
ditions expressed by constraints depend on the value of C,
specifying that C has to have the type t and respective val-
ues in its slots (for each slot-value pair in the original rule, a
chunk_has_slot constraint is in the head of the CHR rule).
If the value of a slot-value pair is a variable it is also translated
to a variable in the resulting rule.

The actions on the right-hand side of an ACT-R rule
are translated to constraints buffer_modification(b,CD)
for modifications, buffer_request(b,CD) for requests and
buffer_clearing(b) for clearings. In those constraints b
stands for the buffer name the action refers to and CD is a
term chunk(CName,Type,LSVP) which describes the chunk
defined by the action in the rule. If name CName or type
Type are not defined they have no value (i.e. they remain
an unbound variable). LSVP is a list of slot-value pairs taken
directly from the original rule, e.g. [(s1,v1), (s2,v2)].
For each of the three action constraints there is a rule in the
run-time environment which actually performs the action de-
scribed in the next section.

In ACT-R, the procedural module blocks as soon as a rule
has been selected to fire. Contrarily, CHR implementations
execute the right-hand side of a rule depth-first from left to
right. This leads to the effect that after the adding of the first
constraint on the right-hand side of a CHR rule, the next rule
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might fire directly, before the other constraints are added. The
behavior of ACT-R can be modeled by two phases: a match
phase and an apply phase. Those two phases are represented
in CHR by a constraints match. The presence of this con-
straint in the store indicates that the procedural module is in
the match phase. Each ACT-R production rule can be trans-
lated to a CHR rule as follows:
buffertests \ match <=> bufferactions, match.

If all buffer tests succeed and the program is in the match
phase, i.e. a match constraint is in the store, then this con-
straint is removed prohibiting other rules from firing and the
actions are performed. At the end, a new match constraint is
added allowing other rules to fire.

Runtime Environment
The runtime environment is a framework which offers some
features needed to actually execute the rules produced by the
compiler.

Scheduler ACT-R implementations usually include a
scheduling unit which takes track of the points in simulation
time when a certain event is executed. Events in this context
are triples (T,P,C) signifying that the constraint C is added
to the store at simulation time T with priority P. In ACT-R,
priority decides which event is executed first, if they are due
at the same simulation time. The constraints added can be for
example the phase controlling constraint match or the action
of a production rule. The scheduler implements the following
interface described in table 1.

Table 1: Interface of the scheduler.
Constraint present Action
get_time(T) T is bound to current simulation time
add_event(T,P,C) event triple (T,P,C) is memorized
next_event constraint from event with smallest

time (and highest priority) is added
to the store

Production Rule Actions In the last section, the produc-
tion rule actions have been translated to some special con-
straints. In the following, we describe the rules in the runtime
environment which perform the actions specified by these
constraints. For details consult (Gall, 2013).

The rule for buffer modifications ignores any name or type
in the chunk description, since they are not allowed to be
modified (Bothell, n.d.). The symbol _ denotes an anony-
mous variable.
buffer(B,C) \ buffer_modification(B,chunk(_,_,SVP))
<=> modify_slots(C,SVP).

It adds a constraint modify_slots which takes care of the
actual modification of the individual slots in the chunk of the
specified buffer. The buffer clearing action is implemented
similarly. However, for the request action, the implementa-
tion involves a module which returns a result. The modules

have their individual constraint stores and simply have imple-
ment the following interface: They have a rule which reacts
if a constraint module_request(Request,Result,Time) is
added to their store. Request is the chunk description from
the original production rule and it is the only argument with
a value. The request action then binds the variable Result
to a chunk description with the result chunk and the variable
Time to the simulation time it takes to calculate the request.
The request action is then implemented as follows:
buffer_request(B,Request)
<=> M:module_request(Request,Result,Time),

get_time(Now),
add_event(Now+Time,P,replace_chunk(B,Result)).

In this code M is the module associated with buffer B. The
replace_chunk is a helper constraint which removes the old
chunk from the buffer and adds the result chunk to the store.
It is scheduled at the moment the request has finished, i.e. that
the result of the request is only applied after the module has
finished the request.

Modules As described before, a module can be added to the
system by writing a new Prolog module which implements a
rule reacting on a module_request constraints. Such Pro-
log modules have their own constraint store which does not
interfere with the store from the procedural system.

Implementation of Advanced Concepts
By now we have seen how ACT-R rules can be translated to
CHR and how the ACT-R framework can be built using CHR.
However, we have ignored timings and therefore scheduling.
We extend our translation scheme with those considerations
and show the ACT-R main cycle. Furthermore, the basic im-
plementation of conflict resolution is described.

Scheduling
To realize scheduling of production rule action, we translate
each ACT-R rule to two CHR rule of the following form:
buffertests \ match
<=> get_time(Now),

add_event(Now+0.05, 0,
apply_rule(rule_name, buffertests).

buffertests \ apply_rule(rule_name, buffertests)
<=> schedule actions now,

get_time(Now), add_event(Now, -10, match).

In the first rule, the match constraint is removed to end the
match phase. Since in ACT-R the procedural module block
for 50ms simulation time, the rule application is postponed
by that time by scheduling an apply_rule event 50ms from
the current time with the rule name as argument. Addition-
ally, the buffer tests, i.e. the resulting variable bindings, are
memorized in a second argument making sure that the condi-
tions still match at the rule application time.

The second rule can be applied after the scheduler has
added the corresponding apply_rule constraint and the
memorized variable bindings in the buffer test still apply.
Then the actions are scheduled at the current time with prior-
ities as defined in (Bothell, n.d.). Finally, a match constraint
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is scheduled at the current time with low priority to make sure
that the actions are performed before the next rule can match.
Note that for requests first are only scheduled to be stated at
the current simulation time. The resulting changes are applied
after a time offset defined by the requested module.

ACT-R Main Cycle
With the scheduler and the rules modified for scheduling, the
ACT-R main cycle can be built: First, the initialization code
is executed (adding chunks, . . . ), then the initial time is set to
0 and an initial event match is added to the scheduling queue.
As soon as there are no more events in the queue, computation
is stopped.

Conflict Resolution
The current considerations have ignored the case when more
than one production rule is applicable. Like other produc-
tion rule systems, ACT-R resolves such conflicts by a certain
conflict resolution strategy. In the CHR implementation de-
scribed so far, only the first matching rule will be applied,
since CHR tries rules in textual order.

To implement conflict resolution, we exchange the first rule
of our translation scheme for production rules by the follow-
ing rule scheme:
buffertests, match
==> conflict_set(rule(rule_name, buffertests)).

Since we have a propagation rule, the match constraint stays
in the store, even if a matching rule has been found. Instead
of scheduling the rule application directly, the rule is added
to the so-called conflict set which collects all matching rules
by adding a corresponding conflict_set constraint memo-
rizing the rule and its matching variable binding.

Since the match constraint is still present afterwards, an-
other rule can match again. In the end, the constraint store is
filled with conflict_set constraints of all matching rules.
As a last rule, we remove the match constraint and start the
select phase which selects the rule being applied according to
a certain strategy: match <=> select.

In the runtime environment, we can simply add a rule
which reacts on the presence of a select constraint and
prunes the conflict set. For instance, the rule could simply se-
lect on arbitrary rule and discard all other rules without defin-
ing an order on the rules:
select, conflict_set(R1) \ conflict_set(R2) <=> true.
select, conflict_set(R)
<=> get_time(Now),

add_event(Now+0.05, 0, apply_rule(R).

The first of the two rules will remove conflict_set con-
straints repeatedly, as long as there is more than one such
constraint in the store. As soon as only one conflict_set
constraint is left, the second rule can be applied which simply
schedules the rule application event of that rule.

In practice, the conflict resolution depends on some prop-
erties of the rules. This only needs a slight adjustment of
the conflict set pruning rule. For example, production utili-
ties can be taken into account. In (Gall & Frühwirth, 2014a)

we have shown that our implementation allows to exchange
the conflict resolution mechanism by simply exchanging the
reaction on the select constraint. Since the rules for conflict
resolution are split into a separate module, it suffices to ex-
change this file to modify conflict resolution. We refer to the
original paper for details.

Implementation of Refraction
In (Young, 2003) the question is raised, if ACT-R should in-
clude rule refraction. Refraction is a concept introduced in
(McDermott & Forgy, 1977) as a possible conflict resolution
strategy for production rule systems. It inhibits production
rules from firing twice on the exact same instance.

Young argues that the lack of refraction can lead to (as he
calls it) over-programming, i.e. determining the order of rule
applications in advance. This aspect destroys declarativity
of ACT-R models, since it follows a more imperative – i.e.
step-by-step/state-by-state – thinking. This seems to be inel-
egant and leads to the problem that adjustments of one pro-
duction rule result in changing every production rule (Young,
2003). Furthermore, the question if such state-aware produc-
tion rules explain human cognition can also be raised. Al-
though it has been discussed in the community, to the best of
our knowledge, refraction has not been included in the ACT-
R reference implementation by now.

In the following, we describe how refraction can be in-
cluded with our CHR implementation and exemplify again
how easy it is to exchange fundamental parts of our im-
plementation due to the power of CHR and logic program-
ming. First of all, we memorize the instantiation of a rule
that is being applied in an instantiation constraint. The
instantiation of a rule is a list of all constraints with their
matching values. Hence, we can use a propagation rule
which reacts on the presence of an apply_rule constraint:
apply_rule(R) ==> instantiation(R).

Before the actual conflict set pruning of an arbitrary con-
flict resolution strategy (as described before), we add a rule
which removes a production rule from the conflict set if it is
present in an instantiation constraint from the store:
instantiation(R) \ conflict_set(R) <=> true.

With those two rules the basic refraction mechanism is imple-
mented. Rules should fire again on the same instantiation, if
there were changes in one of the involved parts of the instan-
tiation. In this case, if the instantiation has been “touched”
intermediately, the instantiation constraint should be re-
moved from the store to allow the rule to fire again on this
instantiation if it occurs again later. For ACT-R this is the
case if a modification or a request have changed the content
of one of the buffers of the instantiation in the meantime.
Hence, we add two rules which detect changes in buffer or
chunk_has_slot constraints:
buffer(B,C1) \ instantiation(rule(_,Hk,_))
<=> member(buffer(B,C2),Hk), C1 \== C2 | true.
chunk_has_slot(C,S,V1) \ instantiation(rule(_,Hk,_))
<=> member(chunk_has_slot(C,S,V2),Hk), V1 \== V2 |

true.
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Those two rules react if new buffer or chunk_has_slot
constraints enter the store. The guard with the member check
tests if there is a constraint referring to the same buffer or
chunk but having different values. In this case obviously a
modification or request occurred and hence this particular in-
stantiation can be removed from the history. Note that the
use of refraction in our implementation is optional and can be
exchanged and even combined with other conflict resolution
strategies (Gall & Frühwirth, 2014a).

Evaluation
We show in an example model, how refraction can simplify
the rules of a cognitive model and make them less imperative,
i.e. defined from state to state. Our example is derived from
the semantic model from ACT-R tutorial unit 1 (The ACT-R
6.0 Tutorial, 2012). This model implements a taxonomy of
some animals and adds information about some of their prop-
erties. For example, it categorizes animals in categories like
fish and birds. Additionally, properties like swims or dan-
gerous are annotated to categories and representatives. We
shortly describe the subset of the model which is the objec-
tive of our example.

The knowledge is organized as chunks of type property
with slots object for the name of the object, e.g. shark,
attribute for an attribute of the object, e.g. dangerous or
category, and value for the value of the attribute, e.g. true
in case of the dangerous attribute of the shark or fish for cat-
egory. In the following, we concentrate on chunks with the
attribute category. The goal of the model is to judge if a cer-
tain object is member of a category. Such a goal is encoded in
a chunk of type is-member with slots object for the object
to judge, category for the category, and judgment for the
result of the query encoded by this chunk.

In a first initialization step, the model requests a chunk
from declarative memory which refers to the object the judg-
ment refers to and which has the attribute category, since it
wants to deduce the membership of the category (and not
something about other properties of the objects) (see the rule
initial-retrieve in figure 1). To judge the membership
of an object in a category, the model can verify the mem-
bership directly, if the retrieved chunk already contains the
information that the object is a member of the queried cate-
gory (rule direct-verify). Otherwise, it can chain through
the categories, i.e. take the category of the found object
and check if it is a subcategory of the queried category (rule
chain-category). Note that in our description the rule to
deduce failure has been omitted due to space reasons.

The rules are over-programmed in the sense that the judg-
ment slot always gets a value determining the state of the
derivation. For instance, in the beginning, the judgment is
expected to be nil and is then changed to pending. This pre-
vents the first rule from firing repeatedly leading to an endless
loop. The rules direct-verify and chain-category check
if the judgment is pending in the beginning. This shows the
imperative thinking behind such rules: Those two rules are

(P initial-retrieve
=goal>

ISA is-member
object =obj
category =cat
judgment nil

==>
=goal>

judgment pending
+retrieval>

ISA property
object =obj
attribute category)

(P direct-verify
=goal>

ISA is-member
object =obj
category =cat
judgment pending

=retrieval>
ISA property
object =obj
attribute category
value =cat

==>
=goal>

judgment yes)

(P chain-category
=goal>

ISA is-member object =obj1
category =cat judgment pending

=retrieval>
ISA property object =obj1
attribute category value =obj2

- value =cat
==>

=goal>
object =obj2

+retrieval>
ISA property object =obj2
attribute category)

Figure 1: Rules of the semantic model

always meant to fire after the initialization. This is ensured
by an artificial state slot in the goal chunk.

With refraction, we can simplify the rules as follows:
direct-verify and chain-category do not have to check
for the judgement slot in their conditions and the rule
initial-retrieve is not required to change the judgment
slot of the goal in its actions to pending because it never
fires again on the same goal. You can find the translation of
the model to CHR together with commented example deriva-
tions with and without refraction on our homepage1. It can
be seen that without refraction, the model ends in an infinite
loop due to the repeated application of the initialization rule.
With refraction, the model derives the correct judgments. For
the initialization rule it seems legitimate to check for a nil
judgment, since this is encodes that the goal has not yet been
achieved. It could also check for values other than yes or no
or check if the retrieval buffer is empty or does not contain a
suitable chunk for the problem. This might further increase
the declarativity of the model.

Related Work
As mentioned before, (Young, 2003) has raised the question
if production rule refraction should be included in ACT-R.
(Lebiere & Best, 2009) refer to this idea and discuss how the
lack of refraction can lead to pathological behavior of a model
like infinite looping. The authors also point out that the tradi-
tional strategies to avoid such behavior are difficult to model

1http://www.uni-ulm.de/?id=59460
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and sometimes also lack cognitive plausibility. The paper also
mentions strategies to inhibit repeated retrieval of declarative
memory addressing another architectural problem that could
be included in our implementation of declarative memory.

ACT-R has also been implemented in Python (Stewart &
West, 2006, 2007) and Java (jACT-R, n.d.; Salvucci, n.d.).
These implementations do not concentrate on formalization
and analysis. We thank the reviewers for pointers to work on
the formalization of cognitive modeling in general (Cooper &
Fox, 1998; Howes, Vera, Lewis, & McCurdy, 2004). We plan
to investigate how those approaches relate to our work.

Conclusion
In this paper we have presented our implementation of ACT-R
in CHR including the translation of ACT-R models to CHR
rules and the embedding of the basic ACT-R framework in
CHR. We then explained the implementation of some more
specific concepts of ACT-R like conflict resolution and finally
refraction. To the best of our knowledge, our implementation
is the first to include refraction in ACT-R.

It can be seen that the fundamental ideas of ACT-R – rules,
chunks, scheduling and conflict resolution – can be captured
concisely and elegantly in CHR. By the implementation of re-
fraction and the previous work in (Gall & Frühwirth, 2014a),
we have shown the adaptability of our implementation.

Due to the conciseness and declarativity of the rules needed
to describe the ACT-R in terms of Constraint Handling Rules,
a formalization of ACT-R can be derived from our implemen-
tation. We have shown parts of this formalization in (Gall,
2013; Gall & Frühwirth, 2014a, 2014b). The formalization
together with the analysis tools of the CHR world pave the
way for an ACT-R analysis toolbox. In (Gall & Frühwirth,
2014b), we have taken the first steps towards ACT-R analysis
by formulating and abstract operational semantics which is
sound and complete with respect to the very abstract seman-
tics of CHR.

Although we have concentrated on the procedural system
of ACT-R in this particular work, we want to emphasize that
we also have implemented other components like the declar-
ative module with concepts like chunk activation. For details,
we refer to (Gall, 2013).

For the future, we want to extend our ACT-R implementa-
tion by more features known from the ACT-R world. We also
want to investigate how CHR analysis tools in detail can be
applied to ACT-R models. Additionally, we plan to extend
our abstract operational semantics with more details from
ACT-R to investigate how they relate. Finally, the transfer
of concepts, methods and ideas from the ACT-R production
rule system like activation or reinforcement learning based
conflict resolution could be included in an extension of CHR.
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Abstract 

Integration across capabilities, both architectural and 
supraarchitectural, is critical for cognitive architectures.  Here 
we revisit a classic failure of supraarchitectural capability 
integration in Soar, involving data chunking, to understand 
better both its source and how it and related integration issues 
can be overcome via three general extensions in Sigma. 
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Many of the most important early results from Soar 
concerned how integration across a small general set of 
architectural mechanisms, plus appropriate knowledge 
above the architecture, could yield a wide variety of 
problem solving and learning capabilities (Laird, Newell & 
Rosenbloom, 1987).  Because these capabilities all 
intrinsically involved forms of knowledge above the 
architecture, in addition to mechanisms within the 
architecture, they are on the whole most appropriately 
considered supraarchitectural; i.e., above the architecture. 

Some supraarchitectural capabilities, such as lookahead 
search across metalevels, became part of the toolkit 
available for routine use in more comprehensive systems – 
in this case via a set of default rules that were loaded 
whenever Soar was initialized and usable whenever a tie 
occurred among operators proposed for selection.  However, 
others of these capabilities – such as declarative learning via 
what came to be called data chunking (Rosenbloom, Newell 
& Laird, 1991) – proved impossible to deploy routinely in 
combination with other capabilities, and thus never 
amounted to more than standalone demonstrations. 

Such failures in supraarchitectural capability integration 
loomed over Soar for years as one of its most significant 
flaws.  In the case of declarative learning, the inability to 
integrate it routinely with other capabilities was ultimately 
accepted as a fundamental limitation in Soar, triggering a 
dramatic shift to an approach in which new declarative 
memory and learning modules were implemented in Soar 9 
for routine use in conjunction with other capabilities (Laird, 
2012).  This move then helped trigger an even broader shift 
in Soar from its early emphasis on uniformity to its more 
diverse present state, while also aligning it more closely 
with ACT-R’s long-term approach (Anderson et al., 2004). 

Sigma (Rosenbloom, 2013) is a more recent architecture 
that is based on combining what has been learned from over 
three decades of separate work in cognitive architectures – 
Soar in particular – and graphical models (Koller & 
Friedman, 2009).  One of the three key desiderata driving 
the development of Sigma – functional elegance – is a 

reformulation of Soar’s earlier notion of uniformity.  Sigma 
maintains many of the high level concepts from Soar, yet it 
has revealed an ability both to embody a wider variety of 
supraarchitectural capabilities and to integrate them together 
routinely.  Here we analyze what has enabled Sigma to 
overcome this earlier fundamental limitation in Soar. 

The key to integration of supraarchitectural capabilities is 
to fit them naturally within the system’s overall processing 
and control structure, which for both Soar and Sigma can 
range from reactive to deliberative to reflective.  Reactive 
processing can be thought of as parallel, memory driven, 
automatized, or System 1.  It may include basic forms of 
perception, memory access, reasoning and decisions, but it 
is limited to what can be accomplished within a single 
cognitive cycle; i.e., ~50 msec in people.  Deliberative 
processing can be thought of as algorithmic, knowledge 
intensive, or controlled.  It comprises routine sequential 
behavior based on sufficient expertise to always know what 
to do.  Reflective processing deals with situations that are 
problematic – yielding impasses and metalevels – and can 
be thought of as search driven or System 2. 

Both of the supraarchitectural capabilities mentioned 
earlier – lookahead search and data chunking – are 
implemented reflectively in Soar; that is, an impasse must 
occur that halts normal processing before the metalevel 
processing necessary for the capabilities can proceed.  In the 
former case, hypothetical reasoning about the future occurs, 
as necessary, across metalevels.  In the latter case, 
declarative knowledge structures must be explicitly 
assembled within a metalevel in order for chunking – Soar’s 
sole learning mechanism at the time – to learn new rules 
from them.  Although chunking can occur each decision, it 
is an inherently reflective learning mechanism because it 
learns from traces of rules that fire in metalevels. 

Reflective integration is unproblematic for lookahead 
search because an impasse has already brought normal 
processing to a halt.  However, normal processing could 
continue in the absence of data chunking, and an artificially 
induced impasse is in fact required to enable it.  Thus, 
reflective integration is natural in the former case, but both 
artificial and intrusive in the latter case, where reflection is 
in service of learning for the future rather than solving the 
current problem. This is not to say that deliberate reflective 
learning can’t be appropriate or natural, as in after-action 
review or post-problem metacognition, or that reflective 
learning can’t occur naturally as a side effect of metalevel 
problem solving – as with chunking – but it can be 
inappropriate and intrusive when pursued deliberately 
during task performance. 
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Yet, declarative learning – both semantic and episodic – 
must be able to occur continually on a routine basis.  Since 
data chunking could not achieve this, and Soar’s 
formulation of supraarchitectural reactivity – in terms of 
parallel knowledge access (i.e., rule firing) until quiescence, 
followed by a decision – could support no other approaches, 
distinct semantic and episodic memories and learning 
mechanisms were added in the Soar 9 architecture to enable 
declarative learning to proceed reactively and in parallel. 

Sigma, in contrast, succeeds because of three general 
extensions to the reactive level.  The first extension is to 
support a more general form of knowledge structure – one 
that is hybrid (discrete + continuous) and mixed (symbolic + 
probabilistic) – and thus also a more general form of 
reactive reasoning.  This enables Sigma not only to perform 
symbolic reasoning in parallel – as was supported by Soar’s 
parallel rule system – but also probabilistic reasoning and 
signal processing.  Data chunking was a purely symbolic 
approach to declarative memory, but declarative memory in 
Soar 9, and in ACT-R before it (Anderson et al., 2004), has 
a strong activation-based subsymbolic component.  This 
aspect is provided in Sigma’s supraarchitectural declarative 
memories via reactive probabilistic reasoning. 

The second extension is that, instead of only making 
decisions about which action to perform next, Sigma can in 
parallel make decisions about any of the values in working 
memory.  This enables not only reactive retrieval of 
distributions from declarative memory, but also reactive 
selection of the best choices from these distributions.  In 
Sigma, declarative retrieval is thus inherently reactive, with 
deliberative retrieval arising only as necessary (through 
explicit manipulation of cues across decisions).  Declarative 
retrieval in Soar has traditionally been deliberative, even in 
Soar 9, although a more reactive mode has recently been 
introduced (Li & Laird, 2015). 

The third extension is the inclusion of a reactive learning 
mechanism based on gradient descent that updates 
parameters everywhere in long-term memory once per 
cognitive cycle (Rosenbloom, Demski, Han & Ustun, 2013).  
Instead of embodying one general reflective learning 
mechanism, as in the early days of Soar, or this plus 
multiple memory-specific reactive learning mechanisms, as 
in Soar 9, Sigma supports a single general reactive learning 
mechanism.  This is adequate for learning not only the 
contents of semantic and episodic memory (Rosenbloom, 
2014), but it can also acquire: Q functions in reinforcement 
learning; models of actions that are experienced; maps (as 
part of SLAM); and perceptual and transition functions in 
speech recognition (Joshi, Rosenbloom & Ustun, 2014).  
Moreover, because it operates in parallel over all parameters 
in Sigma’s long-term memory, multiple reactive 
supraarchitectural learning capabilities can proceed without 
interference with each other or with other capabilities. 

These three extensions together enable a full reactive path 
from perception through memory access, reasoning, 
decisions and learning (and, hopefully, ultimately affect and 
motor control as well).  In the process they yield a major 

expansion of what can occur in general via parallel reactive 
processing, in moving from Soar to Sigma, and thus which 
reactive supraarchitectural capabilities can be implemented 
and integrated together in a routine manner.  Declarative – 
semantic and episodic – memory and learning provide 
compelling examples, but so do perceptual memory and 
learning – as in speech recognition and parameter learning  
– and imagery (e.g., mental map) memory and learning. 

None of this implies that Sigma will not eventually need 
additional learning mechanisms – such as for acquiring new 
types of memory structures rather than just new instances of 
existing types – but it does imply that a suitably general 
reactive cycle can support much broader supraarchitectural 
capability integration than was previously thought. 
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Introduction 
Memory processes drawing on declarative knowledge play 
an important role in many cognitive models, for example in 
models of decision making. Within the fast-and-frugal 
heuristics research program, several strategies have been 
proposed that describe how people infer unknown criteria 
using knowledge associated with these criteria as cues. 
Much of the success of fast-and-frugal heuristics lies in their 
ecological rationality, or fit to regularities in the 
environment. Ecological rational decision strategies exploit 
regularities in the structure of the environment as they are 
reflected in basic cognitive capacities, such as memory. 
However, little research has looked at how environmental 
structures are mapped into mental representations. The 
ACT-R architecture offers a quantitative theory about how 
patterns of occurrences and co-occurrences of information 
in the environment are reflected in the memory activation of 
corresponding chunks. In this poster, we propose an ACT-R 
based ecological memory model representing objects and 
associated knowledge contingent on environmental 
frequencies of information encoded in the corresponding 
memory chunks. Based on internet statistics, we predict 
retrieval probabilities and retrieval latencies for associative 
knowledge, which will serve, for example, as input for 
simulating the selection and performance of knowledge-
based decision strategies. A corresponding model could 
provide the missing link explaining how the interplay 
between the environment and the cognitive system promotes 
ecologically rational decision making. 

Modeling Associative Memory in ACT-R 
The basic unit of knowledge in ACT-R’s declarative 
memory is the chunk. New declarative knowledge is added 
to memory by encoding representations of objects that are 
attended in the environment. A chunk can encode discrete 
elements of information as well as associations between 
elements being attended at the same time. The type of 
pattern encoded in the chunk is given in a isa slot, whereas 
other slots indicate the relationship between the elements of 
information that is being configured together. The 
knowledge that Berlin has an airport, for example, can be 
represented in a chunk with the following structure: 

 BERLIN-AIRPORT  
  ISA   CITY_FACT  
  CITY   BERLIN  
  FACT   AIRPORT 

In addition to symbolic information, each chunk encodes 
subsymbolic information about the likelihood that the chunk 
will be needed to reach one of the system’s processing goals 
-the chunk’s activation. The likely usefulness is a Bayesian 
estimate of posterior need odds derived from the past 
usefulness of the chunk (prior odds, or history factor) as 
well as from the current context (likelihood ratio, or context 
factor). ACT-R’s theory of human associative memory 
offers a set of equations to calculate a chunk’s activation 
from these two factors. Specifically, the activation, Ai, of a 
chunk i is determined by the base-level activation, Bi, plus 
the spreading activation the chunk receives from each of the 
j elements in the current context: 

Ai= Bi +        
    (Activation). 

Assuming approximately equal spacing of encounters of a 
chunk since its time of creation L, the base-level activation 
of a chunk can be approximated by (Anderson, 1993): 

Bi = ln n/(1-d) - d ln L (History Factor), 
where d is a decay parameter and n is the number of 
encounters of the object or relation encoded by the chunk.  

In addition to the base-level activation which reflects the 
prior use of the chunk itself, a chunk receives spreading 
activation from related chunks currently attended in the 
current context. The amount of spreading activation a chunk 
receives depends on the associative strength, Sji, between 
elements j stored in the buffers and chunk i as well as on the 
weight Wj given to each source of activation.  The 
associative strength factor Sji, can be calculated from 
environmental frequencies of occurrences and co-
occurrences of chunk i and elements j according to the 
following equation (Schooler & Anderson, 1997): 

Sji =         
    

 (Context Factor), 

where P(i|j) is an estimate of the probability of i occurring 
when j is present and P(i) is the base rate of i occurring. 
Source activation is typically divided equally among the 
number of sources of activation, m, and sums to a constant, 
W, which implies that 

Wj =     (AttentionWeighting), 
In ACT-R, only chunks that exceed a certain amount of 

activation Ai, as defined by the retrieval threshold,W, can be 
retrieved. Because of the stochastic volatility in momentary 
activation levels, chunks exceed this threshold with a certain 
probability. The retrieval probability, p, for chunk i, is a 
logistic function of the chunk’s activation: 

   =  

   
     W 

 
  (Retrieval Probability), 
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where s is a scale parameter representing noise in the 
retrieval process. Given a chunk is successfully retrieved, 
the retrieval time can be expressed as an exponential 
function of the chunk’s activation: 

Ti =       (Retrieval Time). 
The above equations describe how patterns of occurrences 

and co-occurrences of objects in the environment are 
reflected in subsymbolic properties related to the activations 
and associative strengths of chunks in ACT-R’s declarative 
memory. Importantly, the chunk’s activations, in turn, allow 
for behavioral predictions about retrieval probabilities and 
retrieval times for the corresponding memories. We use 
observed retrieval probabilities and retrieval time 
distributions for knowledge about cities to calibrate our 
memory model for chunks encoding associative knowledge 
about these cities. We then use our model to predict 
people’s knowledge of and retrieval speed for cities and 
associated facts from frequency statistics obtained from the 
internet. 

Behavioral Data 
One-hundred twenty-eight students (54 female; mean age 20 
years, SD = 2.23) took part in the experiment. Participants 
received a fixed payment of 5 CHF (5.39 US$) 
supplemented by a performance bonus of up to 33 CHF 
(35.56 US$) depending on the coherence of their responses 
in the main task with responses given in a later control task 
where similar knowledge was tested. The stimuli for the 
cue-knowledge task (see Figure 1) consisted of 95 European 
cities and eight cues. Cue-knowledge tested was whether the 
city had an airport, a university, a premier league soccer 
team, the headquarters of a company listed on the stock 
market, a cathedral, a subway, a harbor, and whether it was 
served by a high-speed train line. Each city was paired with 
each of the cues, so that the items consisted of a total of 760 
city-cue pairs.  

 
 

Figure 1: Illustration of the cue-knowledge task. 
 
Participants were presented with city-attribute pairs one at 

a time in and were asked to respond with either “yes” if they 
could remember having seen or heard of the city possessing 
such an attribute or “no” if they could not remember having 
heard of this before. Responses were made by pressing keys 

on the right and left side of the keyboard. The order of 
presentation of items was randomized. All trials were 
preceded by a small fixation cross for 1,000 msec and 
participants were instructed to fixate the cross until it 
disappeared and to respond as quickly and accurately as 
possible upon stimulus onset. 

Predicting Accessibility from Internet Statistics 
We approximate memory activation Ai resulting from 
encounters with certain information in a person’s 
environment by the activation Ai,web estimated from web 
counts, the number of entries for this information in the 
knowledge base Wikipedia. 

Ai = c + b Ai,web. 
The parameters c and b serve as scaling parameters 
describing the unknown relation between how often we 
encounter an object in our environment and the web 
frequency of the corresponding search term.  

We calibrated the memory model to the log odds of 
retrieval of cue-knowledge. Subsequently, we calibrated the 
model to the observed retrieval times for retrieved cue-
knowledge. Activations for chunks encoding cue-knowledge 
estimated from web counts were then used to predict 
observed retrieval probabilities and retrieval time 
distributions.  

Conclusion 
Comparisons between observed and predicted retrieval 
probabilities, and observed and predicted retrieval time 
distributions show that our memory model is able to capture 
how the probability of retrieval and the accessibility of cue-
knowledge depends on the distribution of relevant 
information in the environment. 

Our work extends the ecological approach for populating 
the contents of declarative memory in ACT-R (e.g., 
Marewski & Schooler, 2011). Possible applications include 
the simulation of performance of and selection between 
knowledge-based inference strategies and could be used for 
any model interested in mirroring the statistical structure of 
the environment outside the laboratory. 
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In sequential diagnostic reasoning multiple pieces of 
information have to be combined to find a best explanation 
for observed symptoms (e.g., Johnson & Krems, 2001). 
Tracking memory processes involved in reasoning proves 
difficult because they proceed without accompanying 
actions towards the environment. However, this is important 
in order to build and test cognitive models (Schulte-
Mecklenbeck, Kühberger, & Ranyard, 2011). Memory 
indexing is a novel method to study the time course of 
information processing in memory during reasoning and 
decision making (Jahn & Braatz, 2014; Renkewitz & Jahn, 
2012) by recording eye movements. The basic principle 
underlying memory indexing is that people look at an 
emptied spatial location when retrieving information that 
has been associated with the spatial location during 
encoding (e.g., Richardson & Spivey, 2000). We use 
memory indexing to reveal memory dynamics in sequential 
diagnostic reasoning in order to test process assumptions 
derived from cognitive models on reasoning and belief 
updating. 

We study sequences of symptoms, for which more than 
one diagnosis is possible. Reasoners strive for a coherent 
interpretation of symptoms (Kostopoulou, Russo, Keenan, 
Delaney, & Douiri, 2012). When two diagnoses compete, 
coherence can be achieved by biased interpretation of 
symptoms that increases the belief in one hypothesis while 
decreasing the belief in alternatives (Holyoak & Simon, 
1999; Mehlhorn & Jahn, 2009). Maximizing coherence 
often favors the initially leading hypothesis. But it can 
strengthen an alternative when stronger evidence for an 
alternative hypothesis has accumulated. Then, a hypothesis 
change takes place. 

In this study, we test process assumptions of coherence 
maximization, i.e. biased symptom processing towards the 
leading hypothesis or hypothesis change, by applying 
memory indexing and presenting participants with 
ambiguous symptom sequences, for which coherence 
maximization over the course of symptom processing can 
favor one or the other diagnosis. The biases in symptom 
processing preventing or inducing a hypothesis change 

should be revealed by participants’ gaze behavior. 

Method 
The study consisted of a learning phase and a subsequent reasoning 
phase. During the learning phase, participants acquired the 
knowledge needed for the reasoning phase. The reasoning task was 
to determine the most likely cause of a patient’s symptoms. The 
patients were workers in a chemical plant that produces four 
chemicals and each worker was affected by exactly one of those 
chemicals (Mehlhorn, Taatgen, Lebiere, & Krems, 2011). 

Participants 
Thirty-two students (21 female, Mage = 22.4, range: 19-39 years) 
from Technische Universität Chemnitz participated in the study.  

Apparatus and Material 
An SMI RED remote eye tracker sampled data of the right eye at 
120 Hz in a laboratory setting.  

Four chemicals were assigned to screen quadrants (Fig. 1). Each 
quadrant enclosed three rectangular frames, which contained 

 

Figure 1: Left: Spatial arrangement of chemicals (A, B, C, D) and 
symptom classes (e.g., a, ac, ab) as presented during learning. 

Right: Emptied spatial arrangement during the reasoning phase. 
 

three symptom classes that the respective chemical could cause. 
For example, the chemical at the top left caused symptoms from 
the symptom classes circulation, pain, and skin. One symptom 
class was unique (pain for the top left chemical, denoted with 
single small letters, e.g., a) and two symptom classes were shared 
with other chemicals (denoted with two small letters, e.g., ab). 

Procedure 
In the learning phase, participants first learned how symptoms 
were assigned to symptom classes and second how symptom 
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classes related to chemicals. Associations between symptom 
classes and chemicals were established by presenting symptom 
classes in rectangular frames in the screen quadrants that each 
represented one chemical (Fig. 1, left side). During reasoning, 
symptoms were presented auditorily while participants only saw 
the emptied rectangular frames (Fig. 1, right side). Eye movements 
were recorded throughout the reasoning phase. The diagnostic 
decision was collected at the end of the reasoning trial.  

       Response A     Response B 

  
Figure 2: Mean proportion of fixation times in each interval that 

fell upon the A-, B-, C-, or D-quadrants for four ambiguous 
symptom sequences and A- and B-responses. Error bars represent 

standard errors. 

Results and Discussion 
For the analyses of eye movements, four areas of interest 
(AOIs) were defined corresponding to the four quadrants 
representing the four chemicals. The AOIs were denoted A, 
B, C, and D according to the four chemical roles. Each trial 
was divided in five time intervals defined by the onsets of 
each of the four symptom presentations and the response 
interval. For each of the five intervals and each AOI, we 
computed the proportion of total fixation time in the four 
AOIs separately for each symptom sequence, each 
participant, and by diagnostic response. 

Fig. 2 shows plots of mean fixation proportions of four 
exemplary symptom sequences. There are separate plots for 
trials with A-, and B-responses. The sequences in Fig. 2 are 
ordered from top to bottom according to the number of 

consecutive symptoms that supported the A-hypothesis from 
the beginning of the sequence onward. 

Fixation proportions after the first symptom presentation 
reflected which hypothesis was supported. During 
subsequent symptom intervals fixation proportions increased 
towards the most likely hypothesis given the subjective 
interpretation of symptoms in the symptom sequence. After 
strong evidence for an alternative hypothesis had 
accumulated, fixation proportions revealed a hypothesis 
change for B-responses in sequences starting with an a-
symptom and for A-responses in the sequence starting with 
a B-symptom. Fixation proportions during the response 
interval reflected which hypothesis was chosen. 

Eye movements as revealed by applying memory indexing 
to the study of sequential diagnostic reasoning of ambiguous 
symptom sequences reflect the reasoners’ tendency to strive 
for coherence in interpreting new information. Studying eye 
movement behavior will inform existing computational 
models on reasoning and decision making and enhance the 
understanding even of memory-based reasoning processes.  
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Abstract

We demonstrate how basic cognitive functions of learning and
memory can be modeled mathematically and how such models
are first built from a bare minimum of essential information
and then developed systematically in a step by step manner to
include more and more realistic features.
Keywords: Cognitive learning and memory; Hopfield model;
orthogonalization; attractor neural network; LTP; LTD; spin
glass

Introduction
Learning and memory are amongst the basic cognitive at-
tributes of our brain, yet we are only beginning to understand
the physiological mechanisms underlying them. Whatever lit-
tle success we have achieved in recent years in this direction
can be attributed, to some extent, to mathematical and com-
putational modelling of these and related phenomena. We
offer a glimpse of how one approaches this problem through
mathematical modelling.

Developing mathematical models
Learning and memory are related in that we first learn,
and, if what we learn stays in the brain and can be re-
called then we say that we are able to memorise. A ma-
jor break in understanding “learning” was given by Donald
Hebb in 1949 (Hebb, 1949), who pointed out that the synapse
connecting the neurons are plastic in nature and that their
strength can change in an irreversible manner. These changes,
termed as long-term potentiation (LTP) and long-term depres-
sion (LTD), are manifestations of ‘learning’. Leon Cooper
(Cooper, 1973) cast the Hebbian hypothesis in the following
mathematical form,

Ji j =
1
N

p

∑
µ=1

ξ
(µ)
i ξ

(µ)
j , (1)

where, in a fully connected network of N neurons, Jij repre-
sent the synaptic strengths between neurons i and j, and ξi

(µ)

represents the activity of the ith neuron, which is taken as 1
if the neuron fires and −1 otherwise; µ is index for a pat-
tern/vector of ±1s. The Jij thus depends on the activities of
the neurons that are connected by it as was hypothesized by
Hebb (Hebb, 1949). It changes cumulatively as new patterns
µ are presented successively to the network.
John Hopfield (Hopfield, 1982) used mathematical frame-
work of a physics system called ‘spin glass’ (Edwards & An-
derson, 1975) and incorporated this prescription for learning
in a simple model of firing/not firing (i.e. ±1) neurons to
account for numerous memories that the brain can accom-
modate at the same time. In particular, it helped us under-
stand ‘content addressability’ or ‘associative recall’ in which

if the network encounters a pattern that is similar to but not
the same as an imprinted pattern, then it can associate the
new pattern with the imprinted one. This accounts for a com-
mon feature of cognitive memory in which we can identify a
familiar (or memorized) object from its partial, or obscured,
or noisy appearance. In fact we can imagine around each
imprinted pattern a collection of patterns that bear similarity
with the imprinted pattern in varying degrees. This region in
the configuration space is called “basin of attraction” and the
Hopfield network is called attractor neural network (ANN). A
noisy version of an imprinted pattern falling within a certain
range around it, if presented to the ANN, will by and by con-
verge to the imprinted pattern following the retrieval/recall
prescription,

h(ν)i =
1
2

N

∑
j=1
j 6=i

Ji jξ
(ν)
j , (2)

where h(ν)i is the local field (or post-synaptic potential) on
neuron i due to activities on all the other (N−1) neurons (in
an arbitrary pattern ν) projecting onto i via Jij’s. If νth pattern
is not one of the the imprinted patterns then the condition,

h(ν)i ξ
(ν)
i > 0 (3)

will not be met for all i’s. In that case {1 sgn(h(ν)i )} are fed on
the right hand side of equation (2) as {ξ(ν)i } and condition (3)
is checked with the new set {h(ν)i }. After a few iterations the
νth pattern converges to the imprinted pattern in whose basin
of attraction the νth pattern happens to fall. In physics terms
this means that the imprinted pattern, say µ, corresponds to a
minimum of the following total energy function (or Hamilto-
nian),

H =
1
2

N

∑
j=1
( j 6=i)

Ji jξ
(µ)
i ξ

(µ)
j , (4)

This energy function is akin to that of spin-glass (Edwards &
Anderson, 1975). What makes it useful as a model for mem-
ory is that it has an exponentially large number of minima,
which correspond to different configurations of up and down
spins or ±1, being fed in through (1).
Random sets of {ξ(µ)i } minimize H as long as the number of
imprinted patterns does not exceed a critical limit (Amit, Gut-
freund, & Sompolinsky, 1985). As new patterns are imprinted
according to (1) noise builds up in the system and beyond a
stage (p/N > 0.14) the noise submerges the signals and we
end up in a situation where none of the imprinted patterns is
retrieved. This catastrophic loss of memory is cognitively un-
realistic.
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In figure (1) we show a simulation of the Hopfield model.
It shows the variation of the number of patterns that are
retrieved with 100% accuracy as a function of the number
of stored patterns, p normalised by N. Note that beyond
p/N=0.1, the fraction of stored patterns that are retrieved
accurately begins to reduce, and drops rather steeply for
p/N >0.15. Close to p/N=0.3 hardly any of the stored pat-
terns is retrieved. This marks the memory catastrophe.

Going beyond, with corrections
To remove the above hurdle we have improved the Hopfield
model to eliminate the noise from the system, which is pro-
duced by “cross-talks” between the imprinted patterns. Our
hypothesis is that when an information comes to be recorded,
it is first “orthogonalized” with respect to all the information
in the memory, and then the orthogonalized version is
stored in the memory following the Hebbian hypothesis
(1). Orthogonalization is a mathematical transformation that
converts a set of vectors into a mutually perpendicular set.
Orthogonalization amounts to identifying similarities and
differences that the new pattern may have with all those in the
memory and then storing these similarities and differences in
the synapses. While the mathematical details can be found
in (Srivastava & Edwards, 2000), we will highlight here a
curiously interesting aspect of our hypothesis.

Suppose a set of vectors {ξ(µ)} is to be stored in the
Hopfield like neural network. In the orthogonalization
hypothesis ~ξ(µ)’s will be orthogonalized sequentially (for
µ=1,2,3...p) following Gram-Schmidt’s procedure (Srivastava
& Edwards, 2000). This will give us a set {~η(µ)}, which
will be inscribed/stored in the network following (1) using
{η(µ)} instead of {ξ(µ)}. However, we find that we can study
the retrieval, or recall, of the original vectors ~ξ(µ)’s from
the network. Most significantly N ~ξ(µ)’s in a network of N
are retrieved efficiently, i.e. with 100% accuracy in a single
iteration of prescription (2).
The red plot in figure (1) displays that the fraction of p stored
patterns that can be retrieved perfectly stays at 1 for all values
of p upto p=N when the orthogonalized versions of the given
p patterns are stored. The orthogonalization scheme gives
new insight into the basins of attraction of ~ξ(µ)’s and their
stability conditions (Sampath & Srivastava, manuscript in
preparation).

In sum we have shown that mathematical modeling plays
a crucial role in understanding the mechanisms of cognitive
functions. Such models not only provide quantitative results
which can be substantiated by experiments, but also have
almost indefinite scope for improvement and generalization
to include new parameters, and relax approximations and
simplifying assumptions to make the model more and more
biologically realistic. In the present model, for instance,
we need to (a) dilute the connectivities between neurons
(a neuron is typically connected to 15% or less of other
neurons), (b) take into account the fact that Jij need not be

Figure 1: Fraction of perfect retrieval vs load parameter
(p/N), in conventional Hopfield model (magenta) and after
introducing orthogonalization for learning (red), (N=1000) .

equal to Jji, and (c) treat a multinary neuron rather than
binary to account for the fact that a neuron may fire at
different rates, etc. Also, an incoming new information
need not be orthogonalized with respect to all the previously
stored information; it should be orthogonalized with respect
to a selected set of old and stored information - i.e., the
memory ought to have a hierarchical structure. Moreover, we
should generalize the model to go beyond sequential learning
symbolized by Gram-Schmidt orthogonalization and include,
e.g. episodal memories.
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Abstract 
Decisions from Experience (DFE) involve situations where decision 
makers sample information before making a final choice. Trying 
clothes before choosing a garment and enquiring about jobs before 
opting for one are some examples involving such situations. In DFE 
research, conventionally, the final choice that is made after sampling 
information is aggregated over all participants and problems in a 
given dataset. However, this aggregation does not explain the 
individual choices made by participants. In this paper, we test the 
ability of computational models of aggregate choice to explain 
choices at the individual level. Top three DFE models of aggregate 
choices are evaluated on how these models account for individual 
choices using the maximization criterion. A Primed-Sampler (PS) 
model, a Natural-Mean Heuristic (NMH) model, and an Instance-
Based Learning (IBL) model are calibrated to explain individual 
choices (maximizing or non-maximizing) in the Technion 
Prediction Tournament (the largest publically available DFE 
dataset) and the generalization SC Problems dataset. Our results 
reveal that all the three DFE models of aggregate choices perform 
average to explain individual choices. Although the IBL model 
performs slightly better than PS and NMH models; all the three 
models are able to account for all individuals in both the calibration 
and generalization datasets. We conclude by drawing implications 
for computational cognitive models in explaining individual choices 
in DFE research. 

Keywords:  Aggregate choice, individual choice, experience, 
sampling, computational models, maximization. 

Introduction 
The steep rise in number of smartphones has given an ample 
choice to consumers to experiment with (Emarketer, 2014). 
As a result, a customer now has the privilege of choosing 
between a wide range of smartphones. To buy the best, one 
must sample information about the various handsets before 
making one final choice for one’s preferred smartphone. The 
act of making choices based upon sampled information, 
however, is not limited to choosing between smartphones 
rather, it is a very common exercise involving people in 
different facets of their daily life (choosing clothes, choosing 
jobs etc.). In fact, information search before a choice 
constitutes an integral part of Decisions from Experience 
(DFE) research, where the focus is on explaining human 
maximizing decisions based upon one’s experience with 
sampled information (Hertwig & Erev, 2009).  

  In order to study people’s search and choice behaviors in the 
laboratory, DFE research has proposed a “sampling 
paradigm” (Hertwig & Erev, 2009). In the sampling 
paradigm, people are presented with two or more options to 
choose between. These options are represented as blank 

buttons on a computer screen. People are first asked to sample 
as many outcomes as they wish from different button options 
(information search). Once people are satisfied with their 
sampling of the options, they decide from which option to 
make a single final choice for real.   

  Computational cognitive models of human choice behavior 
have thus far predicted choices at an aggregate level in the 
sampling paradigm, i.e., when people’s final choices are 
averaged over a large number of participants models 
(Busemeyer & Wang, 2000; Gonzalez & Dutt, 2012; 
Lejarraga, Dutt, & Gonzalez, 2012). For example, the 
Primed-Sampler (PS) model, the Natural-Mean Heuristic 
(NMH) model, and the Instance-Based Learning (IBL) model 
are popular DFE algorithms for explaining aggregate choices 
(Erev et al., 2010; Gonzalez & Dutt, 2011). The PS model 
depends upon the recency of sampled information, where the 
model looks back a few samples on each option before 
making a final choice (Gonzalez & Dutt, 2011). On the other 
hand, the NMH model is a generic case of the PS model. In 
this model, one calculates the natural mean of outcomes 
observed on each sampled option, and using the same for 
making a final choice (Hertwig, 2011). Similarly, the IBL 
model (Gonzalez & Dutt, 2011) consists of experiences 
(called instances) stored in memory. Each instance’s 
activation is a function of the frequency and recency of the 
corresponding outcomes observed during sampling in 
different options. These activations are used to calculate the 
blended values for each option, thereby helping the model 
make a final choice. The IBL model rely on ACT-R 
framework for its functioning (Anderson & Lebiere, 1998). 

   Prior DFE research has shown that, at the aggregate level, 
the PS, NMH, and IBL models exhibit superior performance 
compared to other computational models in the sampling 
paradigm (Erev et al., 2010; Gonzalez & Dutt, 2011). For 
evaluating these models at the aggregate level, a comparison 
is made between a model’s data and human data from the 
Technion Prediction Tournament (TPT) dataset (TPT being 
the largest publically known DFE dataset). However, up to 
now, none of the three DFE models have been evaluated in 
their ability to account for maximizing choice behavior at the 
individual participant level (i.e., in explaining the 
maximizing final choice of each human participant playing a 
problem in a dataset). If these models are able to account for 
maximizing choices at the aggregate level, then one expects 
that they might also be able to account for maximizing 
choices at the individual level. However, given that there are 
sources of noise in both the sampling data as well as in these 
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models, it is likely that these models are no better than 
random chance in explaining choices at the individual level. 
Furthermore, as models developed at the aggregate level have 
different number of free parameters, it is important to use 
generalization as a test of a model’s ability to account for data 
at the individual level (Busemeyer & Wang, 2000).  

In this paper, our main goal is to evaluate how models, which 
explain choice behavior at the aggregate level, perform at the 
individual level. In order to evaluate models at the level of an 
individual participant, we use the largest publically available 
TPT dataset in the sampling paradigm (Erev et al., 2010) to 
calibrate the models. Next, we use the SC Problems six-
problem dataset (Hertwig et al., 2004) to generalize the 
calibrated models and test them at the individual level. In 
what follows, we detail the dataset used and the working of 
the three models described above. Then, we discuss the 
methodology of calibrating these models at the individual 
participant level so as to capture the maximizing final choice. 
Next, we present the results of models’ evaluation at the 
individual level both during calibration and during 
generalization. Finally, we close the paper by discussing the 
implications of our results for models of aggregate choice. 

The Technion Calibration Dataset 

The Technion Prediction Tournament (TPT) (Erev et al., 
2010) was a competition in which several participants were 
subjected to an experimental setup, the “e-sampling 
condition.” In this condition, participants sampled the two 
blank button options in a binary-choice problem before 
making a final choice for one of the options. During 
sampling, participants were free to click both button options 
one-by-one and observe the resulting outcome. Participants 
were asked to press the "choice stage" key when they felt that 
they had sampled enough (but not before sampling at least 
once from each option). The outcome of each sample was 
determined by the structure of the relevant problem. One 
option corresponded to a safe choice: Each sample provided 
a medium (M) outcome. The other option corresponded to the 
payoff distribution of a risky choice: Each sample provided a 
High (H) payoff with some probability (pH) or a low (L) 
payoff with the complementary probability (1 - pH). At the 
choice stage, participants were asked to select once between 
the two options. Their choice yielded a random draw of one 
outcome from the selected option and this outcome was 
considered at the end of the experiment to determine the final 
payoff. Competing models submitted to TPT were evaluated 
following the generalization criterion method (Busemeyer 
&Wang, 2000), by which models were fitted to choices made 
by participants in 60 problems (the estimation set) and later 
tested in a new set of 60 problems (the test set) with the 
parameters obtained in the estimation set. The 120 problems 
consisted of choice between a safe option and a risky option 
as described above. The M, H, pH, and L in a problem were 
generated randomly, and a selection algorithm was used so 
that the 60 problems in each set differed in its M, H, pH, and 
L from other problems. In all the models described here, we 

have considered an individual human or model participant 
playing a problem in a dataset (competition or estimation) as 
an “observation.” Also, all model parameters have been 
calibrated by using the entire TPT dataset that consisted of 
120 problems and 2,370 observations. For more details about 
the TPT, please refer to Erev et al. (2010). 

In this section, we detail the working of three popular DFE 
models that have been used to evaluate human choices at the 
aggregate level.   

 
Prime Sampler (PS) Model 
   The PS model (Hertwig, 2011) employs a simple choice 
rule. In this model, participants are expected to take a sample 
of k draws from each option. The exact value of k differs 
between observations (an observation is defined as a 
participant playing a problem in a dataset). The PS model 
assumes that the exact value of k for an observation is 
uniformly drawn as an integer between 1 and N, where N is a 
free parameter that is calibrated in the model. The final choice 
for each observation is determined by the following choice 
probability: 
 

𝑃𝑟𝑜𝑏 (𝑂𝑝𝑡𝑖𝑜𝑛 𝑋) =
𝐸𝑋𝑃(𝑆𝑀𝑒𝑎𝑛𝑋) (𝐸𝑋𝑃(𝑆𝑀𝑒𝑎𝑛𝑋) + 𝐸𝑋𝑃(𝑆𝑀𝑒𝑎𝑛𝑌))⁄   . . . (1) 
 
Where, 𝑆𝑀𝑒𝑎𝑛𝑋 and 𝑆𝑀𝑒𝑎𝑛𝑌 are the samples means of the two 
options and 𝑃𝑟𝑜𝑏 (𝑂𝑝𝑡𝑖𝑜𝑛 𝑋) is the probability of 
choosing 𝑂𝑝𝑡𝑖𝑜𝑛 𝑋. For each model observation, the 
𝑃𝑟𝑜𝑏 (𝑂𝑝𝑡𝑖𝑜𝑛 𝑋) is compared with a random number U (0, 
1) to make a choice for one of the two options. If the value of 
random number is less than or equal to 𝑃𝑟𝑜𝑏 (𝑂𝑝𝑡𝑖𝑜𝑛 𝑋), 
then a choice is made for Option X. According to literature, 
the PS model has performed very accurately at predicting 
aggregated human choices in the sampling paradigm (Erev, 
Glozman, & Hertwig, 2008). 

Natural Mean Heuristic (NMH) Model 
   The NMH model (Hertwig & Pleskac, 2010) involves the 
following steps: 
Step 1. Calculate the natural mean of observed outcomes for 
each option by summing, separately for each option, all n 
experienced outcomes and then dividing by n. 
Step 2. Apply equation 1, where the sample mean is replaced 
by natural mean. 
 
Thus, the NMH model is a special case of the PS model, 
where k = an observation’s sample size. There are no free 
parameters in the NMH model. Like the PS model, this model 
has also performed very accurately at predicting aggregated 
human choices in the sampling paradigm (Hertwig & 
Pleskac, 2010).  

Instance Based Learning (IBL) Model 
The IBL model is based upon the ACT-R framework 
(Gonzalez & Dutt, 2011; 2012) and this model is known to 
predict human aggregate choices better than several DFE 
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models that include assumptions similar to those made in the 
PS and NMH models (Gonzalez & Dutt, 2011). In this model, 
every occurrence of an outcome on an option is stored in the 
form of an instance in memory. An instance is made up of the 
following structure: SDU, here S is the current situation (a 
number of blank option buttons on a computer screen), D is 
the decision made in the current situation (choice for one of 
the option buttons), and U is the goodness (utility) of the 
made decision (the outcome obtained upon making a choice). 
When a decision choice needs to be made, instances 
belonging to each option are retrieved from memory and 
blended together. Blended values are a function of activation 
of instances being blended. Activation is a function of the 
frequency and recency of observed outcomes that occur on 
choosing options during sampling. In binary choice, the IBL 
model chooses one of two options by selecting the one having 
a value greater than a random variable (Gonzalez & Dutt, 
2011; 2012). The blended value of option j (e.g., a gamble 
that pays $4 with .8 probability or $0) at any trial t is defined 
as             

𝑉𝑗,𝑡 = ∑ 𝑝𝑖,𝑡𝑥𝑖,𝑡

𝑛

𝑖=1

                  ⋯ (2) 

where xi, t is the value of the U part of an instance i (e.g., either 
$4 or $0, in the previous example) at trial t and pi, t is the 
probability of retrieval of that instance from memory at the 
same trial [10]. Because xi, t is the values of the U part of an 
instance I at trial t, the number of terms in the summation 
changes when new outcomes are observed within an option j 
(and new instances corresponding to observed outcomes are 
created in memory). Thus, n=1 if j is a safe option with one 
possible outcome. If j is a risky option with two possible 
outcomes, then n=1 when one of the outcomes has been 
observed on an option (i.e., one instance is created in 
memory) and n=2 when both outcomes have been observed 
(i.e., two instances are created in memory).  

 
At any trial t, the probability of retrieval of an instance i is 

a function of the activation of that instance relative to the 
activation of all instances created within that option, given by  

                              

𝑝𝑖,𝑡 = 𝑒𝐴𝑖,𝑡/𝜏

∑ 𝑒𝐴𝑗,𝑡/𝜏   
𝑗

                   ⋯ (3)  

 
Where τ, is random noise defined as =𝜎. √2   and σ is a free 
noise parameter. Noise in Equation (2) captures the 
imprecision of recalling past experiences from memory. The 
activation of an instance corresponding to an observed 
outcome in a given trial is a function of the frequency of the 
outcome’s past occurrences and the recency of the outcome’s 
past occurrences (as done in ACT-R). At each trial t, 
activation A of an instance i is 
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where d is a free decay parameter; ,i tJ  is a random draw from 
a uniform distribution bounded between 0 and 1; and ti is each 
of the previous trial indexes in which the outcome 
corresponding to instance i was observed. The IBL model has 
two free parameters that need to be calibrated: d and σ. The d 
parameter controls the reliance on recent or distant sampled 
information. Thus, when d is large (> 1.0), then the model 
gives more weight to recently observed outcomes in 
computing instance activations compared to when d is small 
(< 1.0). The σ parameter helps to account for the sample-to-
sample variability in an instance’s activation. For each model 
observation, the model applies equation 1 to make a choice 
for one of the two options (for this purpose, the sample mean 
is replaced by blended values, Vj,t for each option). 

The Coin Toss (CT) Model 
    The CT model is used as a baseline model and it 

represents chance performance. In this model, we compare 
the value of a random number between [0, 1] with probability 
= 0.5. In a binary-choice task, if the random number value < 
0.5, then the model chooses the final choice as one option; 
otherwise, the model chooses a final choice as the other 
option. When simulated, for a binary-choice task, this model 
is expected to produce close to 50% accuracy in explaining 
participants’ individual choices. As the probability is fixed at 
0.5, this model contains no free parameters. 

Method 
Model Execution 
Models submitted to the TPT were evaluated only according 
to their ability to account for aggregate choice behavior (i.e., 
the proportion of choices for the option with H and L 
outcomes were aggregated across participants and problems) 
(Erev et al., 2010). In this paper, we account for the choice at 
the individual participant level. For this purpose, a choice 
made by a model observation is evaluated against a choice 
made by a corresponding human observation. In order to 
compare human and model choices for each observation, we 
evaluate an “error ratio” (i.e., the ratio of incorrectly 
classified final choices between model and human 
observations divided by the total number of observations). 
Firstly, for each observation in human data, we determine the 
final choice whether maximizing or non-maximizing.  In the 
TPT dataset, a choice is classified as maximizing if the 
expected value of an option (based upon given problem) with 
high or low outcome is greater than expected value of an 
option with medium outcome. Those cases for which the 
aforementioned criteria fails are termed as having non 
maximizing choice. Furthermore, human final choice is then 
compared with the theoretical maximizing or non-
maximizing choices to obtain maximizing human final 
choice per observation. A similar final maximizing choice is 
then derived for a model observation and this derived choice 
is compared to the maximizing choice made by the 
corresponding human observation. The final choices from 
each of the three models are compared to 2,370 human 
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observations, i.e., the total number of participant-problems-
set combinations in TPT dataset. For a model, the error-ratio 
is calculated as:   
Error Ratio = (MHNM +NHMM)/ (MHNM + NHMM + NHNM 
+MHMM)                                                                  ⋯    (5) 
Where, MHNM was the number of observations where the 
human made a maximizing choice but the model predicted a 
non-maximizing choice. NHMM was the number of 
observations where human made a non-maximizing choice 
but the model predicted a maximizing choice. Similarly, the 
MHMM and NHNM were the number of observations, where a 
human observation made the same choice (maximizing or 
non-maximizing) as predicted by the model. The smaller the 
value of the error ratio, the more accurate is a model in 
accounting for maximizing individual choices of human 
participants. For some observations, a model could be equally 
likely to choose either of the options. Such cases were 
discarded from the error ratio calculation and were termed as 
uncategorized (UN) cases, separately. Thus, more are the 
number of UN cases, the poorer is the corresponding model’s 
algorithm in accounting for complete human data. 
    In the PS model, an integer value was drawn between 1 and 
N. For the purposes of model calibration, a maximum value 
of N was assumed to be 216. This choice of maximum value 
was justifiable as 216 is the maximum sample size in the TPT 
dataset (Erev et al., 2010). For each new value of N from 1 to 
216, the PS model was run 5 times over the set of 2,370 
observations (i.e., for each run, 2,370 observations were used 
in the model). Error ratio was computed for each of the 5 runs 
and these five 5 ratios were then averaged for calculating the 
average error ratio. The N value for which the average error 
ratio was minimized was taken as the calibrated N value. The 
choice of 5 runs of the model is because it enabled us to 
account for the randomness present in the model due to 
equation 1.   
   The NMH model did not possess any free parameters. The 
model’s calibration involved only the natural mean 
computation for each observation based on the outcomes 
observed on both the op options during sampling. In NMH 
model, the final maximizing choice was made for an option 
based upon equation 1. This model was run 5 times across 
2,370 observations since the computation of final choice 
involved random decisions.  
  The IBL model described here has two free parameters d 
and σ that were calibrated using a genetic algorithm program. 
The genetic algorithm repeatedly modified a population of 
individual parameter tuples in order to find the tuple that 
minimized the error ratio. In each generation, the genetic 
algorithm selected individual parameter tuples randomly 
from a population to become parents and used these parents 
to select children for the next generation. Over successive 
generations, the population evolved toward an optimal 
solution. The population size used here was a set of 20 
randomly-selected parameter tuples in a generation (each 
parameter tuple was a particular value of d and σ). The 
mutation and crossover fractions were set at 0.1 and 0.8, 
respectively, for an optimization over 150 generations. For 

each parameter tuple, the IBL model was run 5 times across 
2,370 observations. Across the 5 runs, the model’s average 
error ratio was computed by averaging the error ratios from 
each run. The parameter tuple that minimized the average 
error ratio across 150 generations were reported as the 
calibrated parameters for the IBL model. 

Results  
In the PS model, the best average error ratio across 5 runs was 
found to be 0.40. This error ratio occurred at N=18. Figure 1 
shows the average error ratio results obtained from the PS 
model for different values of N. As shown in the figure, for 
the first few values of N, the error ratio reduced rapidly as the 
size of N increased (up to N = 18 samples). However, the 
error-ratio value saturated to a smaller proportion after 
increasing N further. Thus, there was not much variation in 
the error ratio from N=18 to N=216.  

 
Figure 1. Results from the PS model. The value of 

parameter N was varied between 1 and 216. The best 
average error ratio = 0.40 for N=18.  

 
Table 1 shows the individual-level results from the PS model 
for the best value of N=18. As shown in Table 1, the NHNM 
combinations constituted 24.8% of total combinations. This 
NHNM proportion was second best amongst other 
combinations (MHMM, MHNM, NHMM, and UN). The MHMM 
combinations had the highest value of 34.3%. The combined 
average of both the combinations formed about 59.1% of 
correctly predicted choices by the model. In contrast, the 
erroneous MHNM and NHMM ratios were at 21.2% and 19.5% 
respectively. There were no uncategorized (UN) observations 
out of 2,370 observations. The PS model’s best average error 
ratio is almost 10% better than the average error ratio of 50% 
resulting from the CT model. Thus, the PS model explained 
certain proportion of human dataset fairly accurately. 
   
Table 1. Results from the calibrated PS model. The error ratio 
= 0.40 for N = 18.  
 

Combinations 
from Human Data 

and Model h/m 
Number of 

Observations 

Percentage of 
2370 

Observations 
NHNM  588.2 24.8 
MHMM  814 34.3  
NHMM  463.8 19.5  
MHNM 504 21.2 

UN 0 0 
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Next, we investigated the performance of the NMH model. 
Table 2 shows the results from this model. The model’s 
average error ratio equaled 0.44 across 2,370 observations. In 
the NMH model, the NHNM and MHMM values accounted for 
22.8% and 32.5% of all 2,370 observations, respectively. The 
best value of error ratio was for the MHMM combinations, 
where about 32.5 % of the 2,370 human observations were 
accounted by the model. The erroneous MHNM and NHMM 
combinations from the model were 23.08% and 21.5% of the 
2,370 human observations, respectively. The second best 
value accounted by the model was that for the MHNM 
combinations.  The error ratio obtained from the NMH model 
is marginally higher than that obtained from the PS model 
However, the NMH model too, classified all observations. 
Thus, like the PS model, the NMH model was able to explain 
a large dataset. The model showed an improvement of 5% 
over the CT model and performed efficiently at the individual 
level. 

 
Table 2. The high level results from the NMH model. The 
average error ratio = 0.44.  
 

Combinations 
from Human 

Data and Model 
H/M 

Average 
Number of 

Observations 

Percentage 
of 2370 

Observations 
NHNM  542.4 22.8 
MHMM  771 32.5 
NHMM 509.6 21.5 
MHNM 547 23.08 

UN 0 0 
 
Next, we evaluated the IBL model’s ability to account for 

individual final choices in the TPT dataset. The results from 
IBL model are presented in Table 3. The best calibrated 
values of d and σ in the IBL model were found to be 13.6 and 
0.22, respectively. The large d value exhibited reliance on 
recency during sampling resulting in maximization. Also, the 
small σ value exhibited lesser sample-to-sample variability in 
instance activations. The calibrated IBL model produced 
37.6% of NHNM combinations and 26.12% of MHMM 
combinations, respectively.  Having a total of comparatively 
higher values for the NHNM and MHMM combinations 
increases the accuracy of the IBL model compared to the 
NMH and PS models. In contrast, the erroneous NHMM and 
MHNM combinations were 17.9% and 18.2% respectively 
from the IBL model and both these percentages were slightly 
less than those obtained in the NMH and PS models. Thus, 
the human choices were predicted more correctly by the 
model for about 11.1% of total observations. This erroneous 
classification is about 2% higher than the same erroneous 
classification from the NMH model. Based upon above 
statistics, the IBL model’s performance was better than the 
PS and NMH models. Also, the number of uncategorized 
(UN) cases resulting from the IBL model was zero. 
Furthermore, as the average error ratio from the IBL model 

was 0.36, the model shows 14% superior performance 
compared to the CT model.  

 
Table 3. Results from the calibrated IBL model. The 
calibrated value of parameters d=13.6 and σ=0.22. The 
average error ratio= 0.36.  
 

Choice 
Combinations 
from Human 

Data and Model 

Average 
Number of 

Observations 
across 5 Runs 

Percentage 
of 2370 

Observations 

NHNM  892.6 37.6 
MHMM  619.2 26.1 
NHMM 432.8 18.2 
MHNM 425.4 17.9 

UN 0 0 
 

Table 7 shows the results summary from the PS, NMH, and 
IBL models in the calibration TPT dataset. The PS model 
gave an error ratio of 0.43. The NMH model gave an error 
ratio of 0.44, which was close to value of error ratio from the 
PS model. However, the IBL model gave an error ratio of 
0.36, which was less than that of the other two models. The 
NMH model considers the complete sample size of each 
observation as opposed to the PS model, where the PS model 
takes into consideration only last few samples of each 
observation. In this regard, we can conclude that the PS 
model is more efficient than the NMH model as it uses a 
much smaller proportion of samples for about the same error 
ratio compared to the NMH model. The IBL model’s error 
ratio is lower than the other two models; also, the IBL model 
does not have any UN observations. 

 
Table 4. Summary of results from the three DFE models on 
TPT dataset. 

 

Model Parameters 
UN 

Observations 
Error 
ratio 

PS N = 18 0 0.40 
NMH - 0 0.44 
IBL d=13.6,σ=0.22         0 0.36 

  
As the three models have different number of free 
parameters, we verified the results from these models upon a 
generalization to a different dataset (Busemeyer & Wang, 
2000). For generalization, we used the SC Problems data set. 
This dataset has 6 problems, out of which 4 are identical to 
those in the TPT dataset (one option risky and the other safe) 
and 2 problems are different from the TPT dataset (both 
options are risky). Table 5 shows generalization results from 
the PS, NMH, and IBL models (models were run with the 
parameters derived in the TPT dataset). The IBL model gave 
the best error ratio of 0.32. Also, the IBL model did not have 
any UN observations. 

 
Table 5. Summary of results from the three DFE models (SC 
Problems dataset). 
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Model UN Observations Error ratio 

PS 0 0.34 
NMH 0 0.37 
IBL 0 0.32 

 
Discussions & Conclusion 

So far, literature in judgment and decision making had 
compared models by evaluating their maximizing 
performance at the aggregate level (Gonzalez & Dutt, 2011; 
2012). In such comparisons, the average performance from a 
model was compared to the average performance from 
human data (the average was computed across several 
participants).  However, in this paper, we compared a 
model’s maximizing performance at the individual 
participant level. We used three popular and competing 
models of aggregate human choice and evaluated their 
abilities in explaining individual human choices over 
maximization criterion. Overall, in the TPT dataset, our 
results reveal that all the three models of aggregate choice 
performed average at the individual level (error ratio <44%) 
in both the calibration and generalization datasets. The IBL 
model’s strength is in its ability to account for higher number 
of maximizing human choices across a large number of 
observations. 
  Furthermore, it was found that the two models (PS and 
NMH) find it easier to explain individual maximizing choices 
compared to individual non-maximizing choices (there were 
greater proportion of MHMM combinations compared to 
NHNM combinations across the two models). However, the 
IBL model manages to explain the NHNM combinations better 
than the MHMM combinations. Also there were no UN cases 
reported across the three models. 

In addition, the PS and NMH also report a higher 
proportion of erroneous MHNM combinations compared to the 
erroneous NHMM combinations as opposed to the IBL model. 
Thus, both the models were unable to predict a maximizing 
final choice for human observations, while the IBL was able 
to do the same and had a fairly lower error ratio. This finding 
could also be due to the fact that the one of the options 
contained two outcomes compared to the single outcome in 
the other option. Thus, the greater variability experienced in 
one of the option drove a model to make choices that 
maximized over a constant value; whereas, the same 
variability drove humans to maximize upon recency. We 
generalized the models on another dataset to test this 
reasoning. In this dataset, again the IBL model performs best 
thereby proving the stability to the model. 
   We believe that this paper augurs a beginning of a larger 
research program that plans to launch an in-depth 
investigation of the presence of NHMM and MHNM cases 
among influential models of experiential choice. As part of 
future research, we would like to investigate problems where 
there are multiple options   rather than current problems 
where one options were more of binary kind. Such problems 
with two options would help us investigate the role of 
variability in affecting contradictory human and model 

choices as depicted by the MHMM cases. Furthermore, in this 
paper, we took three competing models of experiential 
choice; however, as part of future research, we plan to extend 
this investigation to a larger set of DFE models and other 
application areas that cover other theoretical ideas.  
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Introduction
Being treated fairly by others is an important social need.
Experimentally, fairness can be studied using the Ultimatum
Game in which the decision to reject  a low, but non-zero,
offer  is  seen  as  a  way  to  punish  the  other  player  for  an
unacceptable  division.  The  canonical  explanation  of  such
behavior is inequity aversion: people prefer equal outcomes
over personal gains (Fehr, Schmidt, 1999). However, there
is abundant evidence that the decision to reject a low offer
can  be changed by both contextual  factors  and emotional
state,  which  cannot  be  satisfactorily  explained  by  the
inequity aversion model. 

A recent  alternative explanation proposes  that  the main
driving  force  behind  the  decision  to  reject  is  that  of
deviation  from  expectations:  the  larger  the  difference
between the actual  offer  and the expected offer, the more
likely one is to reject the offer (Chang, Sanfey, 2013). We
tested and extended this idea by providing participants with
explicit  information  on  what  kind  of  offers  to  expect.
Crucially, we independently manipulated both the mean and
the variance of expected offers.

Methods
Each participant played as the responder in the Ultimatum
Game and made a series  of  decisions to  either  accept  or
reject  monetary  offers.  Participants  were  provided  with
information as to what kind of offers to expect in form of
histograms,  indicating  what  the  current  group of  partners
supposedly offered  in  a  previous  experiment.  The critical
manipulation was of both the mean and the variance of the
histograms.  First,  behavioral  data  were  analyzed  using  a
logistic  mixed-model  analysis.  Second,  we  fitted  and
compared  different,  previously proposed utility models.  A
second group of participants also underwent scanning using
fMRI.

Results
As expected, we found that the decision to accept or reject a
certain  offer  was  dependent  on the  information  provided.
Importantly,  we  found  that  the  mean  and  variance  of
expected  offers  differentially  affected  this  decision.
Specifically,  changing  the  mean  expected  offer  shifts  the
threshold for acceptance. In contrast, changing the variance
alters  how  strictly  this  threshold  is  adhered  to.  A model
comparison showed that the expectation model outperforms
the inequity aversion model.

Conclusions
These  results  demonstrate  the  complex  nature  of  social
expectations,  which  might  be  better  conceptualized  as
distributions instead of simple mean expected values,  and
how  they  influence  considerations  of  fairness.  Follow-up
work is examining the neural bases of these expectations.
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Introduction 
What makes a decision strategy simple or complex? In this 
project, we investigated the time costs for cognitive sub-
processes and bottlenecks of decision strategies. In order to 
gauge these time costs, we formally implemented two 
prominent decision strategies as well as a working memory 
(WM) load manipulation within the cognitive architecture 
ACT-R (Anderson, 2007) and compared the performance of 
the strategies under varying degrees of WM load. We tested 
the simulation results from this analysis in an empirical 
study.  

The first tested strategy is tallying (TALLY), which 
integrates across several attributes to make a decision 
(Gigerenzer & Goldstein, 1996). The second strategy is the 
take-the-best heuristic (TTB), which relies on one best 
attribute (or reason) and considers further attributes only if 
the decision alternatives do not differ on that reason. As 
TTB does not integrate across multiple attributes and often 
searches only part of the information, it is considered a 
relatively “simple” strategy (Gigerenzer, Todd, & the ABC 
Research Group, 1999).  

Using TALLY and TTB as paradigmatic examples of 
integrative and one-reason decision making strategies, 
respectively, we evaluated the hypothesis that integrative 
strategies induce higher cognitive costs than one-reason 
strategies—as indicated, for instance, by longer response 
times and lower execution accuracy when set under WM 
load (cf. Payne, Bettman, & Johnson, 1993).  

Methods 
In a dual-task paradigm, one group of participants were 
instructed to make decisions using TALLY and another 
group using TTB while being set under WM load by a 
concurrent tone-counting task.  

Decision Task and Strategy Instruction 
The decision task was to infer which of two animals has a 
longer lifespan based on five biological attributes displayed 

as visual symbols. One group of participants (n = 42) was 
instructed to use TALLY, which examines all attributes and 
integrates the attributes in favor of each alternative; the 
other group (n = 42) was instructed to use TTB—the 
strategy that justifies decisions with one attribute and only 
examines more attributes when the decision alternatives do 
not differ on the current attribute. 

To investigate the behavior of TTB in face of varying 
search requirements, we varied the number of attributes that 
needed to be searched before a difference between the 
alternatives could be detected (1-5 attributes).  

Working Memory Load  
In the concurrent tone-counting task, participants counted 
the number of times bird voices were played. To induce 
increasing amounts of WM load, there were either none, 
one, two or even three different kinds of bird voices. The 
tones started before the decision information became 
available and continued until a decision was made in the 
decision task. Thereafter, it had to be indicated how often 
the voice of each bird species had been played.  

Computational Models in ACT-R 
We implemented computational models for the decision 
strategies and the concurrent counting task in ACT-R 6.0. 
The models pursue the goals for the decision and tone-
counting task, handling multi-tasking demands using 
Threaded Cognition (Salvucci & Taatgen, 2008). 
Specifically, the models for the decision strategies (i.e., 
TALLY and TTB) and for the tone-counting task all rely on 
ACT-R’s problem state and retrieval module, as well as on 
the procedural module to progress through the course of 
their tasks (cf. Borst, Taatgen, & van Rijn, 2010). 

The models store the information relevant for the two 
tasks in separate chunks that are either in the problem state 
(i.e., the buffer of the imaginal module) or need to be 
retrieved from declarative memory (i.e., when the other task 
was using the problem state). We modeled effects on 
reaction times and accuracy in terms of retrieval activity in 
both tasks using a combination of (a) decay in base-level 
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activation, (b) spreading activation, and (c) chunk confusion 
via noise.  

From the models we extracted time costs for (a) cognitive 
sub-processes (i.e., the amount of time that the constituent 
models rely on a specific cognitive resource corresponding 
to an ACT-R module), and (b) the bottlenecks they impose 
on cognitive processing (i.e., the amount of time that the 
models rely on a specific resource and no other process is 
executed in parallel). 

Results 
The modeling results showed that TTB produced faster 
response times than TALLY when WM load was not 
present or low and only little information had to be searched 
to make a decision. When WM load was higher and TTB 
had to inspect more attributes, however, the decision times 
of TTB increased strongly and exceeded those of TALLY. 
Both strategies could be applied with high accuracy that 
only decreased slightly under WM load. The concurrent task 
was also executed with high accuracy, although accuracy 
slightly declined for TTB when more attributes were 
inspected. Importantly, these patterns of results also 
emerged in the empirical study.  

The computational models made it possible to attribute 
the performance differences of the strategies to the 
component cognitive sub-processes in both tasks, revealing 
bottlenecks to processing: When WM load is high and many 
attributes have to be inspected, the TTB model spends more 
time retrieving information from memory, updating WM, 
and coordinating the mental actions for decisions and the 
concurrent task compared to the TALLY model.  

Another difference between the strategies is that TTB 
performs an ordered visual search for the next best attribute 
when the previous attribute did not discriminate between the 
alternatives; TALLY, by contrast, requires no ordered 
search as it examines all attributes irrespective of their 
order. Indeed, visual processing demands imposed time 
costs and bottlenecks to both models and increased for the 
TTB model as TTB’s search requirements increased. 
However, these time costs for visual processes did not 
account for the extended decision times under WM load in 
any of the models. 

Discussion 
The results point to differential cognitive costs of 
paradigmatic examples of one-reason (i.e., TTB) and 
integrative (i.e., TALLY) strategies. These differences 
become most evident when more information needs to be 
searched and the resources for WM are occupied by another 
task (i.e., tone-counting), revealing conditions under which 
TTB imposes greater demands on WM than does TALLY. 

In this project we used computational models to reveal the 
cognitive costs of decision strategies under varying internal 
(i.e., WM load) and external (i.e., search requirements) 
circumstances. We conceptualized the complexity of 
decision strategies in terms of time costs for cognitive sub-
processes and bottlenecks for cognitive processing. In doing 

so, we gain novel insights into the cognitive complexity (or 
simplicity) of strategies. The project therefore extends the 
concept of building blocks of decision strategies (e.g., 
Gigerenzer et al., 1999), allowing to quantify the simplicity 
of “simple heuristics” and to compare it across different 
decision strategies. 
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Introduction
The attentional blink (AB; Raymond, Shapiro, & Arnell,
1992) is a phenomenon that captures people’s limited ability
to process stimuli presented in quick succession. When a
second target item (T2) in a stream of distracting items is
presented 200-400ms after the first target (T1), the accuracy
of reporting T2 will be decreased as compared to when T2 is
presented outside of this time window.

It has long been thought that the AB is a structural capacity
limitation, insusceptible for interventions aimed at reducing
or removing the AB (e.g. Taatgen, Juvina, Schipper, Borst, &
Martens, 2009). However, recently several training studies
have shown independently that it is possible to improve
recognition of T2 in the impaired time frame (Choi, Chang,
Shibata, Sasaki, & Watanabe, 2012; Damsma, 2014). This
indicates that the AB is more likely to be caused by the use of
a disruptive cognitive strategy than by a structural limitation
of the brain.

To explain the reduced AB from Damsma (2014), a
cognitive model based on an earlier attentional blink model
(Taatgen et al., 2009) was developed to take the training from
Damsma into account. The model predicts that consolidation
of the first target in memory will be delayed after training,
so that the first and second target can be combined into one
memory chunk. The goal in the current study is to test this
prediction.

We repeated the experiment by Damsma using
electro-encephalography (EEG) to focus on an event-related
potential (ERP) component that has previously been found
to reflect memory consolidation processes, the P300 (e.g.,
Donchin & Coles, 1988).

If working memory consolidation is delayed after training,
as predicted by the model, this should be reflected by a delay
in the P300 as well. We therefore expect the onset of the
P300 to be later after the training on the letter-mask task then
before the training.

Study
Methods
Behavioral Fourteen people (age: 18-27, mean: 22.3; 10
female) performed three parts of the experiment: an AB
pretest, an AB posttest, and in between a training using the
letter-mask task from Damsma (2014). All three parts of the
experiment were performed in one session, with short breaks
between the tasks.

In the AB task, participants were presented with zero to
two target letters in a stream of 22 numbers. Each item was
presented for 100ms. T1 was the fifth item in the stream. In
the case of two targets, T2 appeared either 100ms (lag 1),
300ms (lag 3), or 800ms (lag 8) after T1. No feedback was
given. Both parts contained 320 trials.

In the letter-mask task a letter was presented on the screen,
followed by a mask (‘#’). Participants had to recognize and
report the letter that was presented as fast as possible after
the mask disappeared. The presentation time of the letter
was variable and depended on the accuracy of the participant.
Presentation times varied between (16 and 91ms). Feedback
was given in the form of points for speed and accuracy. The
training consisted of 520 trials.

In total, the experiment took approximately 1.5 hours to
complete.
EEG EEG activity was recorded from 128 locations
according to the ABC electrode system. Data were
re-referenced offline to the grand average of all electrodes.
Artifact rejection was performed using the FASTER method
(Nolan, Whelan, & Reilly, 2010) in combination with visual
inspection. The signal was calculated relative to a 200ms
pre-stream baseline. ERPs were measured at electrode A19
(Pz).

Results

Behavioral Accuracy results replicate previous experiments;
a dip in accuracy is observed on lag 3 compared to lag 1
and 8. The data were analyzed with a t-test on blink size
between pre- and posttest. The size of the blink is defined
as the difference between the mean accuracy on lag 1 and 8
(no-blink trials) and the accuracy on lag 3 (blink-trials). The
size of the blink is smaller after training, compared to before
training (t(13) =−2.03, p = 0.063).1

EEG Only participants showing a training effect are
included (11 out of 14).2 One person was removed due to
problems with EEG recording.

The EEG latencies were analyzed using mixed effect
models. The latency of the P300 peak was determined by
taking the latency of the maximum peak 200-600ms after the
onset of the target. We hypothesized that the latency of T1
would be delayed; which could account for the difference in
behavioral results.

1We use a liberal p-value threshold of 0.1 here, because this small
study replicates an effect that has been confirmed in other studies
(e.g. Damsma, 2014).

2This does not influence the results of this analysis.
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Figure 1 shows the grand averages of A19 on lag 3, both
targets correct. P300 Latencies on T1 are very similar for
other lags. There is no effect of part (t < 1, p > .1), nor
is there a difference in latency due to lag (t < 1, p > .1) or
accuracy (t < 1, p > .1).

Figure 1: ERP on Lag 3 trials with both targets correctly
reported. Band pass filtered from 1 to 30 Hz.

Discussion
The model of Taatgen et al. (2009) predicted that working
memory consolidation would be delayed after training. In
combination with the relationship between working memory
consolidation and the P300 (Donchin & Coles, 1988), we
hypothesized that the P300 will occur later after training, as
compared to before training.

Although the behavioral results confirm results from
previous studies – training on the letter-mask task decreases
the attentional blink – we did not find any evidence of a
shift in latency of the P300. There are several possible
explanations for this. First, the latency of the P300 might
not reflect the change in working memory strategy. Although
the P300 has been related to working memory consolidation
(Donchin & Coles, 1988), the effects of memory on the P300
are most prominent in its amplitude, instead of the latency
(Polich, 2007). Other analyses, focused on the amplitude
instead of the latency of the P300, are necessary to specify
whether there is a relationship between the P300 and the
decrease in the attentional blink.

Second, although the model predicts a shift in working
memory consolidation after training, this does not necessarily
have to explain the improvement after training. Currently,
new experiments are exploring alternatives, such as a
speed-up in target processing.

From the current analysis, we can conclude that if there is a
change in memory strategy following the letter mask training,
this change is not reflected in the latency of the P300.
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Abstract
We propose that experimentally recorded sequences of eye
movements are input into a cognitive model. By removing
the need to model decisions on where to look next during a
complex task, modelling long-term activation effects in real-
world data becomes conceivable. Eye movement records from
experiments on program comprehension shall be used because
object-oriented source code provides knowledge structures re-
quired by a cognitive model of comprehension. We introduce
a tool that supports this new approach. The tool is based on
an implementation of the ACT-R cognitive architecture written
in the Java programming language and could therefore attract
Java developers to the cognitive modelling community.
Keywords: tools; ACT-R; Java; eye movements; program
comprehension; cohesion; activation

Motivation
Eye movements of programmers reading computer programs
can be explained by models written in a cognitive architecture
like ACT-R (Anderson et al., 2004). This is comparable to,
but may be easier to achieve, than explaining eye movements
in natural language comprehension. Modelling program com-
prehension in a Java-based implementation of ACT-R could,
in addition, attract programmers to ACT-R that are capable of
contributing to ACT-R as a cognitive architecture.

Psycholinguists like Garrod and Terras (2000) have stud-
ied coherence effects (i.e. effects of semantic relations ex-
pressed in a text) in reading using eye tracking and provided
explanations for their findings that are suitable for cognitive
modelling. While it would be possible to model the results
of these experiments in ACT-R, there are a number of open
problems for such models. E.g. representations of lexical and
conceptual knowledge required for these tasks are not readily
available (Lohmeier & Russwinkel, 2013).

ACT-R has already been implemented in Java (see jACT-
R1 and Java ACT-R2) and can therefore be integrated directly
into the development environments used by Java program-
mers, making ACT-R development possible in a well-known
programming language. This would also allow ACT-R tools,
e.g. for visualisation, to be developed using a larger set of
existing application programming interfaces and frameworks
than is available for Lisp.

Eye Movements in Program Comprehension
Mandel (1984) compared measures of eye movements during
reading to predictions generated by a computational imple-
mentation of a theory from cognitive linguistics. Burkhardt,

1http://jact-r.org/
2http://cog.cs.drexel.edu/act-r/

Détienne, and Wiedenbeck (1997) used a related theory to ex-
plain findings on the comprehension of the source of object-
oriented computer programs. It has also been suggested that
computational cognitive models be used to model program
comprehension (Hansen, Lumsdaine, & Goldstone, 2012).
For object-oriented programming languages provide knowl-
edge structures required for models from cognitive linguistics
(Lohmeier, 2014), eye movements of programmers are fur-
thermore suitable for cognitive modelling based on theories
from cognitive linguistics: Recorded eye movements could
be used to model activation of conceptual knowledge repre-
sented in the source code. Because the source code can be
parsed automatically, the conceptual knowledge expressed in
the source code can be made available to the cognitive model
and can be used to compute activation values to explain co-
herence effects in source code that are comparable to those
found in studies like Garrod and Terras (2000).

Eye Tracking and jACT-R in Eclipse
We are developing a plug-in that controls an eye tracking de-
vice and sends eye movement data to a cognitive model.

Data capture and analysis
Similar to iTrace (Walters, Falcone, Shibble, & Sharif, 2013),
our plug-in enables the Eclipse IDE3 to calibrate an eye
tracker, to receive data from it, to save the data to disk and to
assign the data to user interface elements and words displayed
at locations fixated by the user. Both iTrace and our plug-in
support different eye trackers and user interface elements and
can be extended to support additional ones. Our plug-in has
been used to connect to eye tracking devices of SMI and The
Eye Tribe and is able to map fixations to Text, StyledText,
Label and Button user interface elements. Our plug-in imple-
ments complex event processing through an extensible chain
of filters through which eye tracking events are passed. There
are different modes, e.g. for tracking, replay and batch replay
so that visualising filters can render fixations on screen during
replay, but not in tracking or batch replay mode.

Interfacing eye movements and model
Preparation of data for the jACT-R model is implemented as
a filter that saves saccades, fixations, and words assigned to
fixations, to a log file. While tools like those of Salvucci
(2000) and Heinath, Dzaack, Wiesner, and Urbas (2007) com-
pare records of eye movements obtained experimentally to

3https://www.eclipse.org/
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eye movements generated by a model, the model we are de-
veloping does not compute durations and targets of saccades
but receives this information from the log file recorded dur-
ing an experiment. The model executes cognitive processes
that yield activation of knowledge representations and fixa-
tion durations. The jACT-R model is launched as a separate
process within the Eclipse IDE. While data capture, analyis
and submission to the model could all happen on-line, analy-
sis and input into the model are currently separated to be able
to verify the data before executing the model.

Our model does not generate saccades, but follows
Salvucci (2001) in how it distinguishes but couples visual at-
tention and the onset time of saccades, whose durations are
read from the log file. For each saccade a duration is pro-
vided. Fixations come with a duration and (multiple) words
within foveal and parafoveal vision. The model generates fix-
ation durations. In addition, activation values are provided
by the model. If a passage of source code has low cohesion
that leads to regressive saccades in the experimental data, the
model can explain this behavioural effect by means of low
activation of chunks in memory that makes memory requests
for a chunk referred to by a recently fixated word fail.

Discussion

The reconstructive model we aim at differs significantly from
typical ACT-R models that generate behaviour in a goal-
directed way. The reconstructive model attempts to exe-
cute low-level cognitive processes that fit the given fixations.
There will be situations in which a sequence of fixations will
end in a way that makes clear to a human analyst of the model
that the model failed to execute cognitive processes that ex-
plain the behavioural data in a correct or plausible way. The
better a model fits the data, the fewer of such occasions will
occur. Depending on the context-dependence of the cognitive
processes implemented, it may also be required to test differ-
ent mutually exclusive sequences of cognitive processes and
select the one that fits the behavioural data best. That would
require the state of the cognitive architecture be replicated for
each of such sequence and is beyond our current implementa-
tion which aims at an initial model of longer-lasting activation
scenarios e.g. based on 40 minutes of eye movements.

Conclusion

While not the only possible application of ACT-R for ex-
plaining records of eye movements, eye tracking studies in
program comprehension are well suited for this kind of mod-
elling because the source code provides knowledge structures
that can be used in the cognitive model. Restricting the model
to low-level cognitive processes as used to establish coher-
ence during reading should permit the implementation of a
model that is able to explain rather long-term phenomena
compared to models that generate goal-oriented behaviour
themselves. Implementing the model in jACT-R could attact
further developers to cognitive architectures.
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Abstract 

The k-TR theory to visual perception is a recent psychophysical 
theory that explains the processing of visual perception in 
humans towards the goal of object detection, recognition, 
grasping and manipulation through the notion of functional and 
grasp affordances. In this work, we postulate a new Brain 
Operating Model based on the k-TR theory and supported by 
various neuro-biological studies to accompany the observed 
psychophysics. The key components of the model include the 
Mirror Neuron System (MNS) and the Anti-Mirror Neuron 
System (AMNS). 

Keywords: Affordances; brain operating model, schema 
theory 

Introduction 
In this paper, we build a Brain Operating Model to explain 
affordance-related perceptual processing in the brain. We 
also design a schema theory based on PHG anti-mirror 
neurons and the known affordance coding linkages (as noted 
above) of the PHG substrate, calling it the Anti-Mirror 
Neuron System (AMNS) and use it to explain various aspects 
of the k-TR Common Coding Theory. The various sub-
schemas of AMNS such as the Object/Hand Perception 
Schema, Reach/Grasp Schema, Core Anti-Mirror circuit 
along with the various biological units catering to the 
schemas in terms of sub-tasks such as object affordance 
extraction, motor execution, hand motion detection etc. and 
their contributions are analyzed through simulations and 
validated through psychophysical tests that involve subject 
recall of concrete nouns based on observation of affordance 
executions with/without the target object, self-actuation 
without visual perception and solely based on touch and 
move-assist by an external agent, along with control tests and 
negative affordance coding linkages. These psychophysical 
tests demonstrate the contribution of various affordance 
features (observed/imagined, as well as both visual coding 
and touch/motor coding) with respect to object recognition or 
object identity label (concrete noun) association. 

Hypotheses Proposals 
Hypothesis 1: There exist mirror neuronal reverse linkages 
from dorsal to ventral pathway for decoding sensorimotor 
affordance cues 
Hypothesis 2: The sensorimotor encodings (action-
perception common code) carry affordance features as 
described by the k-TR theory (Varadarajan 2011) 

Hypothesis 3: Suggestive recruitment and modulation of 
dorsal and ventral feature faculties occurs in an iterative 
refinement process  
Hypothesis 4: The linkage between perception affordance 
features and motor affordance (observed/ego-actuated) 
features is an independent process (Molyneux's problem has 
a negative response) and key to visual object perception  
Corollary 1: Linguistic association in Object Recognition 
depends on affordance features from visual perception 
Hypothesis 5: Anti-mirror neurons act as interfaces or 
junctions through which physical/manipulation affordance 
features extracted from perception (observed/simulated) in 
the dorsal pathway is filtered to remove motor features and 
integrated with material affordances, affordance semantics 
and other local instance features leading to retrieval of both 
object category and object instance from memory.  
Corollary 2: Anti-mirror neurons are responsible for 
generation of perceptual affordance encodings of objects. 

Dorsal Pathway and Ventral Pathway 

The dorsal stream essentially represents the ‘Affordance’ 
stream or the ‘k’ layer stream, while the ventral stream largely 
represents ‘TR’ feature extraction.  These two pathways are 
physiologically described as the ventral and dorsal streams in 
the brain. The ventral stream can be expected to processes 
fine-grained texture information (TR). Early models of this 
Two-Stream Hypothesis portrayed the dorsal and ventral 
pathways as being independent of each other. Newer models 
show multiple interconnections between the two. Yet these 
have largely focused on the dorsal pathway receiving input 
from the ventral stream and not other way around (esp v3).  

Mirror Neurons 

Mirror neurons have been proposed as fundamental 
mechanism for learning new actions through imitation of 
observed action-affordances. Since mirror neurons respond 
to both ego-action/affordance execution as well as perception 
(visual or other sensory) of execution of action/affordances 
by an external agent, they provide the physiological 
mechanism for perception/action-affordance coupling. 
Mirror neurons are found along both the dorsal as well as the 
ventral pathways.  

Affordance based Brain Operating Model and 
Object Recognition/ Manipulation Schema 

We hypothesize in this work that there exist unique reverse 
linkages from the dorsal stream to the ventral stream and an 
iterative exchange of information along the forward and 
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reverse linkages is responsible for increase in granularity and 
fidelity of output from the two streams. In other words, the 
theory on "how" an object is/is to be afforded (through 
grasping and task driven or functional manipulation and 
typically based on geometric shape and spatial analysis - key 
processing done in the dorsal pathway) provides cues to 
recruit layers that enhance the extraction of object relevant 
features and parameters that determine "what" the object is. 
We further hypothesize that these cues represent 
sensorimotor encodings that contain affordance features 
(from k-TR) theory. For example, the first iteration from the 
dorsal to the ventral pathway could encode for attentional 
modulation based on motion, bottom-up affordance 
aberration saliencies and task driven top down affordance 
modulation. On the other hand the first iteration from the 
ventral to the dorsal pathway could encode material 
(frequency content analysis) affordances. We hypothesize 
here that the encodings are sensorimotor in nature and depend 
on observed/actuated motor, as well as affordance features 
from perception (primarily visual) along with the 
transformation from perception features to motor features 
playing a key role. A corollary from the above hypothesis is 
that linguistic association or object category labeling, which 
is an essential sub-process in object recognition should also 
employ affordance features from visual perception, since 
these are most dominant discriminative features for 
recognition. Direct support for the corollary comes from the 
recent breakthrough work from Just et al. (2010). The 
developed Brain Operating Model along with the sub-regions 
of the brain that compose the affordance extraction schema 
as well as the forward-reverse connections between the dorsal 
and ventral pathways are demonstrated in figure 1a. The 
various schemas associated with the brain regions interacting 
with the model are shown in the figure 1b.  

Anti-Mirror Neurons and Anti-Mirror Neuron 
System (AMNS) 

Besides the canonical F5 neurons that respond to ego-
affordance execution and mirror neurons that respond to both 
ego and exo-affordance execution, there are also anti-mirror 
neurons that are in a excitatory state only in response to exo-
affordance execution and accompanying linguistic 
association in the form of entities involved in the affordance 
execution. Anti-mirror neurons are found in the 
Parahippocampal Gyrus and additional neurons with similar 
function in the Entorhinal cortex. It can be hypothesized here 
that anti-mirror neurons might be interface or junction 
through which physical/manipulation affordance features 
extracted from perception (observed/simulated) in the dorsal 
pathway is filtered to remove motor features and integrated 
with material affordances, affordance semantics and other 
instance features leading to retrieval of both object category 
and object instance from memory.  

The validity of the proposed Brain Object Perception 
Model is also supported by Anti-Mirror Neuron System 
(AMNS) Psychophysical tests (Varadarajan 2013). The 
contributions of the various modules in AMNS were 

analyzed through simulations and validated through 
psychophysical tests that involve subject recall of “concrete 
nouns” based on observation of affordance executions 
with/without the target object, self-actuation without visual 
perception and solely based on touch and move-assist by an 
external agent, along with control tests and negative 
affordance coding linkages. These psychophysical tests 
demonstrated the contribution of various affordance features 
(observed/imagined, as well as both visual coding and 
touch/motor coding) with respect to object recognition or 
object identity label (concrete noun) association. On tests for 
recall of 20 samples from 50 categories across 17 test 
subjects, direct recall yielded an accuracy of 34%, while  
affordance aided recall yielded  and negative affordance 
primed recall yielded rates of 62% and 21% with object and 
60% and 2% without object. Hence, affordances were found 
to be key to recognition. The difference between observed 
(exo-) and self (ego-) affordance execution were minimal 
from the standpoint of recognition of objects in simulated 
affordance sequences. 

Figure 1a (top). Brain Operating Model and 1b (bottom). Schemas 
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Abstract 

An important source of constraints on unified theories of 
cognition is their ability to perform complex tasks that are 
challenging for humans. Malware reverse-engineering is an 
important type of analysis in the domain of cyber-security.  
Rapidly identifying the tasks that a piece of malware is 
designed to perform is an important part of reverse 
engineering that is manually performed in practice as it relies 
heavily on human intuition.  We present an automated 
approach to malware task identification using two different 
approaches using ACT-R cognitive models.  Against a real-
world malware dataset, these cognitive models significantly 
out-perform baseline approaches while demonstrating key 
cognitive characteristics such as the ability to generalize to 
new categories and to quickly adapt to a change of 
environment.  Finally, we discuss the implications of our 
approach for applying cognitive models to complex tasks. 

Keywords: functional cognitive models, ACT-R, Bayesian 
models, decision trees, malware detection. 

Introduction 
Malware reverse-engineering is an important type of 

analysis in the domain of cyber-security.  Rapidly 
identifying the tasks that a piece of malware is designed to 
perform is an important part of reverse engineering and is 
manually performed in practice as it relies heavily on human 
intuition (Sikorski & Honig, 2012). The difficulty of this 
task increases substantially when historically studied 
malware samples are significantly different (i.e. members of 
a different malware family).  Cognitive architectures such as 
ACT-R (Anderson, Bothell, Byrne, et al., 2004) have 
previously been shown to effectively model human 
cognition on a variety of decision-making (Lebiere, 
Gonzalez, & Martin, 2007) and general intelligences tasks 
(Lebiere, Gonzalez, & Warwick 2009), including complex 
domains such as intelligence analysis (Lebiere, Pirolli, 
Thomson, et al., 2013).  Further, they have been shown to 
perform well on reasoning tasks where historical knowledge 
is sparse, limited, or dissimilar to the current context 
(Taatgen, Lebiere, & Anderson, 2006).  However, models 
have occasionally had to abstract from some of the details of 
the high-fidelity framework that cannot be constrained by 
data in order to scale to complex tasks involving substantial 
human expertise (e.g., Sanner et al, 2000).  Our work fits 
into that approach by selectively using some features of the 
cognitive architecture while temporarily ignoring others. 

Malware Identification 
In this paper, we leverage such models to identify the tasks 
associated with a piece of malware.  Using a real-world 
malware dataset (Mandiant Corp, 2013), these cognitive 
models identify sets of tasks with an unbiased F1 measure 
of 0.94 – significantly out-performing baseline approaches.  
Even when trained on historical datasets of malware 
samples from different families, our ACT-R cognitive 
models still maintain the precision of baseline methods 
while providing a significant improvement to recall  by 
identifying over 60% of malware tasks. 

Existing work on malware classification falls into two 
general categories: (1) determining if a given binary is 
malicious (Tamersoy, Roundy & Horng 2014; Firdausi, Lim 
Erwin, & Nugroho, 2010) and (2) classifying malware by 
family (Bayer, Comparette, Hlauschek, et al., 2011; Kinable 
& Kostakis, 2011; Kong & Yan, 2013).  The problem of 
identifying whether a binary is malware is complementary 
to this effort (a “first step”) – as an analyst must first 
identify malware before then determining what it does.  Our 
work substantially differs from malware family 
classification as we look to directly infer the tasks that a 
malware was created to perform whereas malware family 
classification is mainly used to help guide an analyst into 
identifying tasks by first identifying a family.  It is 
noteworthy that we were able to train our classifiers on data 
of malware of different families than the malware we are 
attempting to classify and were still able to obtain a set of 
tasks with over 60% recall on the best-performing cognitive 
models.  Further, malware family classification has suffered 
from two primary draw-backs: (1) disagreement about 
malware family “ground truth” as different analysts (i.e. 
Symantec and MacAfee) cluster malware into families 
differently; and (2) previous work has shown that some of 
these approaches mainly succeed in “easy to classify” 
samples (Perdisci, 2012; Li, Liu, Gai & Reiter, 2010) – 
where an “easy to classify” family is a family that is 
typically agreed upon by multiple malware analysis firms.  
By inferring malware tasks directly, we avoid both of these 
pitfalls.  Further, as a side-effect, we create a probability 
distribution over malware families as part of an intermediate 
step – though the ultimate inference of malware tasks is 
independent of how the historical malware families are 
classified by family. 
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ACT-R Models 
The models are built using the mechanisms of the ACT-R 
cognitive architecture and learn to recognize malware 
samples based upon a limited training schedule similar to 
the actual experience of a human analyst.  Given a malware 
sample, the model generates a probability distribution over a 
set of malware families then infers a set of likely malware 
intents based upon that distribution. The models primarily 
leverage the subsymbolic (statistical) mechanisms of the 
ACT-R architecture, especially the activation calculus 
underlying retrieval from long-term declarative memory.  
Each sample is represented by its set of static and dynamic 
attributes. The model operates in two stages: first by family, 
then by intent. To assign family, the model generates a 
probability distribution over the set of possible malware 
families from the activation in declarative memory of the 
chunks representing those families. To assign intents in a 
second pass, the model combines the probability distribution 
over families with a representation linking each malware 
family to known intents. Two distinct models were created 
that leveraged separate parts of the activation calculus. 

ACT-R Rule-Based Model 
This ACT-R model is based on the Bayesian components of 
the activation calculus, specifically the base-level and 
spreading activation components. Given a malware training 
sample with its set of attributes, along with the ground truth 
family, we derive a pair of conditional probabilities p(a/f) 
and p(a/¬f) for attribute a belonging (or not) to family f.  
Those probabilities are used to set the strengths of 
association from each attribute a to each family chunk f.  
Similarly, Bayesian priors p(f) are used to set the base-level 
of each family.  Given the attributes of the current malware 
held in the goal buffer context, a retrieval for family chunks 
(the “rules”, not to be confused with production rules) 
computes their activation and sets the probability of each 
family according to the Boltzmann (softmax) equation. 
Intents are then determined by summing up the probability 
of the families associated with a given intent, with an 
appropriately set threshold (50%). 

ACT-R instance-Based Model 
This model follows the instance-based learning theory (IBL; 
Gonzalez, Lerch, and Lebiere, 2003) that is particularly 
relevant to modeling naturalistic decision making in 
complex dynamic situations. The instance-based approach is 
an iterative learning method that reflects the cognitive 
process of accumulating experiences and using them to 
make decisions. In this case a chunk is created for each 
malware instance associating the set of attributes of that 
malware with its family. When a new malware is 
encountered, a retrieval for past chunk instances is triggered 
with the purpose of inferring their family.  The retrieval 
primarily uses the base-level and partial matching 
components of the activation equation.  The base-level 
reflects the recency and frequency of each instance 

according to the power law of learning and decay, while the 
similarity measure used in partial matching is computed as 
the overlap (dot product) between the attribute vector of the 
current malware and each sample in memory.  A probability 
distribution over families is generated by the blending 
mechanism that sums up the evidence supporting each 
family from the individual instance chunks (Lebiere, 1999; 
Wallach & Lebiere, 2003).  The same process is used for 
generating intent judgments, this time partial matching the 
family probability distribution of this malware instance 
against those of past instances.  The intent chunks that reach 
the activation threshold are given as answers. 

Experiment 
We created a dataset from 132 malware samples used by the 
APT1 cyber espionage group as identified by the popular 
report by Mandiant Inc (Mandiant, 2013). Dynamic 
malware analysis was performed using the ANUBIS 
sandbox which generates an XML-formatted report for each 
malware. From the XML data, a total of 1740 malware 
attributes were identified (see Table 1). 
 

Table 1: Sample attributes from Anubis malware sandbox 
ATTRIBUTES          INTUITION 
hasDynAttrib Malware has a generic attribute determined 

in the analysis 
usesDll(X) Malware uses a library X 
regAct Malware conducts an activity in the 

registry 
fileAct Malware conducts an activity on a certain 

file 
proAct Malware initiates or terminates a process 
 
Each malware sample belonged to one of 15 families (e.g., 
BISCUIT). Based on malware family description, we 
associated a set of tasks with each family that each malware 
in that family was designed to perform. In total, 30 malware 
tasks were identified for the given malwares (see Table 2). 
On average, each family performed 9 tasks. 
 

Table 2. Sample of malware tasks. 
    TASK                     INTUITION 
beacon Beacons back to the adversary’s system 
enumFiles Designed to enumerate files on the target 
ServieManip Manipulates services running on the 

target 
takeScreenShots Takes screen shots 
upload Designed to upload files from the target 
 

Decision Tree 
We implemented a decision tree as a baseline approach.  
This hierarchical algorithm is widely used for classification 
problems (Alpaydin, 2007). We used information gain to 
find the best split at a node.  The gain was calculated using 
malware attributes.  In order to avoid over-fitting, the 

91



terminating criteria was set to less than 5% of total samples. 
Note that labels are not used for terminating the tree, hence 
the leaf nodes may or may not be pure, generating a 
probability distribution over the malware families. 

Results 
We compared the decision tree (DT) approach to 
implementations of the rule-based and instance-based ACT-
R models (ACTR-R and ACTR-IB respectively). Precision, 
recall and F1 values were computed for the inferred 
adversarial tasks. On average, each sample was associated 
with 9 tasks out of 30 different tasks in total. DT predicted 9 
tasks per sample, ACTR-R 9 tasks, and ACTR-IB 10 tasks. 

Leave One Out Cross-Validation (LOOCV) 
In leave one out cross validation, for N malware samples, 

we train on N-1 samples and test on the remaining one. This 
procedure was repeated procedure for all samples and the 
results were averaged (see Figure 1).   

ACTR-IB outperformed both the DT and ACTR-R 
models; average F1 = 0.94 vs .81 (t (132) = 5.77,   p = 5e-8), 
and .82 (t (132) = 5.35, p=3.83-7) respectively.  The 
Bayesian nature of the ACT-R model dominates because it 
is trained on a stable, almost complete set of statistics. The 
IBL model is superior because it uses the full pattern of the 
probability distribution over families rather than just a sum. 

 
Figure 1. Average Precision, Recall, F1 and Family 

prediction comparisons for DT, ACTR-IB and ACTR-R. 
 

These three approaches were also evaluated with respect 
to predicting the correct family (before the tasks were 
determined). Both the ACTR-IB and ACTR-R cognitive 
models outperform DT to predict the correct malware 
family. ACTR-IB has an average family prediction accuracy 
of 0.82, outperforming the DT model’s accuracy of 0.6, 
t(132) = 5.35, p = 3.8e-7. ACTR-R also outperformed with 
prediction accuracy of 0.72 vs 0.6, t(132) = 3.23, p = 1e-3. 
Figure 2 (below) shows family-wise performance for 
LOOCV. This gives an unbiased estimation regarding 
predictions for different malware families, giving insight as 
to which families are difficult to predict.  

ACTR-IB outperforms DT in 9 out of 15 malware 
families with an average F1 difference of 0.3 with at least 
99% confidence, t(132) = 4, p = 0.01. DT performs 
qualitatively better than ACTR-IB in 4 out of 15 malware 

families with an average F1 difference of 0.05, but this 
difference is not statistically significant, t(132) = 0.76, p = 
0.49. Similarly, ACTR-R outperforms DT in 7 out of 15 
malware families with an average F1 difference of 0.27, 
while DT does not perform significantly better than ACTR-
R, t(132) = 0.28, p = 0.786.  

Among the cognitive models ACTR-IB performs 
qualitatively better than ACTR-R in 12 out of 15 families 
with average F1 difference of 0.08, but this difference is not 
statically significant, t(132)= 1.58, p = 0.19.   

 
Figure 2. F1 measure by malware families for leave one 
out cross validation for DT, ACTR-IB and ACTR-R. 

 
 Figure 3. Average F1 values for 15 malware families (a) 

and the average precision, recall and F1 across all families 
(above) for DT, ACTR-IB and ACTR-R. 

Leave One Family Out Cross-Validation  
To see how the models generalize to unseen malware 
families, we performed a leave-one-family-out comparison, 
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where we test the models against one previously unseen 
malware family. Both the ACTR models significantly 
outperform the decision tree in terms of precision, recall and 
F1 (see Figure 3). This is primarily due to the statistical 
nature of the classification performed by the cognitive 
models over the logical classification of the decision tree. 

Despite the overall higher performance for the cognitive 
models over the decision-tree, there were certain families 
where the decision tree performed particularly well when 
compared to the cognitive model. In the F1 comparison the 
decision tree peaks for TARSIP-Eclipse and TARSIP-
Moon. Both these families are variants of the same malware 
profile. TARSIP-Eclipse performs 12 tasks, while TARSIP-
Moon performs 13. They have 12 tasks in common hence 
during testing one family gets incorrectly predicted as the 
other while still getting almost all their tasks correct. 

90/10 Training/Testing  
Finally, we randomly divided the data into 90% training and 
10% testing. This measure was then divided into 10 phases, 
where in the first phase the models were trained with 10% 
of the total training data (which was 90% of the dataset) and 
then an additional 10% of the training data was added for 
each subsequent phase. Note that each phase gets tested on 
the same test data. This allows us to observe the 
performance of the decision tree and cognitive models for 
incremental learning across the training data.  In the real 
world, humans need to be able to learn from small partial 
samples and adapt quickly to changes in the underlying 
distribution. As shown in Figure 4, it is clear that the ACT-
R models outperform the decision tree in precision, recall 
and F1 measures.  This is particularly true of the instance-
based model, which uses the dynamic nature of the blending 
mechanism to generalize over the entire space from just a 
few instances. 

An important point to note is that the cognitive models 
achieve the best performance against the decision tree with 
only 40% of the training data. T-tests were computed for 
each fraction of training data comparing each of the ACT-
IB, ACTR-R, and DT models against each other. The results 
of both ACTR models statistically outperformed decision 
tree (all p < .001) except for when 30% of the training data 
was used (p = 0.46). We hypothesized that our random 
sample for the 30% training data phase may have 
underrepresented the population of malware samples where 
the decision tree performs poorly. By examining the family-
wise performance for leave one out cross validation (see 
Figure 2) we determined that decision tree has difficulty 
predicting malware tasks from families BISCUIT, WEBC2-
CSON, WEBC2-GREENCAT, TABMSGSQL, 
COOKIEBAG and NEWSREELS (difference in F1 measure 
is greater than 0.3 as when compared to ACTR-IB or 
ACTR-R). The overall fraction of malware samples 
belonging to these families is 0.36 and in all phases, except 
it is 0.31 in the 30% phase, thus relatively increasing the 
performance of decision tree at that point. 
 

 
Figure 4. Average Precision, Recall and F1 for fraction of 
training data of 200 trials for DT, ACTR-IB and ACTR-R. 

Discussion 
These ACT-R models are not full-fledged high-fidelity 
models in that, while they make sole use of cognitive 
mechanisms, they do not use all aspects of the architecture, 
nor are they directly compared to human data.  The primary 
reasons for this approach are three-fold: (1) because of the 
challenging nature of the task, we decided to focus on the 
functional aspects of the model; (2) we did not believe that 
the unmodeled aspects of the task would significantly 
impact the performance of the model; (3) we did not have 
human performance data with which to assess the model. 

Regarding (1), we believe that there is a valid use of 
cognitive architectures for artificial intelligence that makes 
use of basic cognitive mechanisms while not necessarily 
making use of all constraints of the architecture.  In that 
case, the model has to be evaluated on functional grounds, 
which is the approach that we took.  However, we also 
discuss in the concluding section which aspects of the 
model were currently not cognitively plausible, such as the 
lack of working memory constraints, and how they could be 
remedied, perhaps by improving current deficiencies of the 
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architecture.  In general, artificial intelligence constraints, 
such as high performance on complex tasks, can serve a 
valuable purpose in driving the development of cognitive 
architectures.  Conversely, constraints on unified theories of 
cognition can be used to design more useful benchmark 
tests of artificial intelligence (Lebiere et al., 2015). 

Regarding (2), Reitter & Lebiere (2010) introduced a 
modeling methodology called accountable modeling that 
recognizes that not every aspect of a cognitive model is 
reflected in measurable performance, and thus that human 
performance data cannot constrain all aspects of a model.  In 
that case, it is arguably better to specifically state which 
aspects of the model are not constrained by data, and rather 
than mock up those aspects in plausible but impossible to 
validate manner, simply treat them as unmodeled processes.  
This approach results in simpler models with a clear link 
between mechanisms used and results accounted for, rather 
than being obscured by complex but irrelevant machinery. 

Regarding (3), we are exploring obtaining human data 
through empirical studies using expert malware analysts to 
provide the kind of data that can be directly compared 
against performance provided by a full ACT-R model. 

Conclusion 
We present two cognitive models of malware intent 
classification.  Those models are both based on the ACT-R 
cognitive architecture but leverage separate mechanisms and 
have distinct advantages.  The rule-based model leverages 
the Bayesian memory activation mechanisms.  The 
representation is more compact, with a single memory 
chunk for each family whose associations abstract the 
various instances belonging to that category, but those 
associations need to be computed and do not involve time 
discounting and other adaptive features (Thomson & 
Lebiere, 2013). The instance-based model is based on a 
more direct, incremental learning that accumulates malware 
instances in long-term memory and leverages neurally 
plausible pattern matching processes such as partial 
matching and blending (Lebiere et al., 2013) but is less 
parsimonious with storage and thus has potential scalability 
issues for large data sets. 

A number of further model developments can address 
those and other issues.  The first computational efficiency 
issue is the size of the feature set, which can easily number 
in the hundreds for a given malware.  It is also an issue of 
cognitive plausibility since feature set size is associated to 
working memory, usually assumed in humans to be about 
seven or so (Miller, 1956).  Reducing feature set size could 
also potentially improve generalization by removing 
features that are only misleadingly associated with specific 
intents and focusing on those that are causally related to 
malware function.  One potential approach is to choose 
among features those that most contribute to correct 
performance.  This can be implemented in ACT-R by 
relying on the production utility reinforcement learning 
mechanism to sequentially select specific features 
(Rutledge-Taylor et al., 2011). Given the limited working 

memory constraint in the form of a fixed spreading 
activation parameter, this can benefit performance both in 
eliminating spurious features and focusing limited 
attentional resources on the most diagnostic features. 

Another approach to reducing feature set size is to build 
higher order features with which to represent malware 
instances.  This process is similar to the concept of 
chunking in expertise-driven domains such as chess playing 
(Chase & Simon, 1973).  When those higher-order features 
are known, they can be directly incorporated in the model 
and have been shown to improve learning performance by 
orders of magnitude (Sanner et al., 2000).  Alternatively, a 
deep learning algorithm could be used to infer those features 
in a manner similar to past efforts combining ACT-R with 
neural learning mechanisms (e.g., Jilk et al., 2008, 
Vinokurov et al, 2011), illustrating the benefits of 
combining symbolic and neural architectures. 

A second model development to improve computational 
efficiency for the instance-based learning model would be to 
reduce the size of the instance set in long-term memory.  
One possibility is to reinforce the most similar malware 
chunk(s) already in memory instead of creating a new one, 
which has already been shown to preserve generalization 
while sharply reducing memory requirements and retrieval 
process demands (Sanner et al, 2000).  This approach results 
in the emergence of prototypes that can be seen as a middle 
ground between the single-chunk representation of 
categories in the rule-based model and the pure instance-
based approach of the IBL mode. 
 Another approach to reducing the size of the 
feature set would be to include an ontology of malware 
functionality  (e.g., Mateos et al., 2012) that would allow 
the model to reason over the association of features and 
intents and prune the representation (e.g., Oltramari et al., 
2014).  This process of combining symbolic reasoning to 
guide statistical learning is one of the main advantages of 
integrated cognitive architectures. 
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How do people come to a decision when facing conflicting 

options? In the case of delay discounting (e.g. Frederick, 

Loewenstein, & O’Donoghue, 2002) – the choice between 

an immediate but small reward and a delayed but large one 

– research generated a multitude of descriptive models 

pinpointing precisely how people devalue and choose 

rewards across delays (Doyle, 2013). This descriptive and 

outcome-centered perspective has been complemented 

recently by models focusing on the process dynamics 

leading to delay discounting decisions (Rodriguez, Turner, 

& McClure, 2014). We present work that embraces and adds 

to this dynamic approach in two ways. First, we 

demonstrate how dovetailing continuous dynamic modeling 

and continuous empirical measures (Dshemuchadse, 

Scherbaum, & Goschke, 2012; Spivey, Grosjean, & 

Knoblich, 2005) constrains the conceptualization of the 

processes underlying a decision. Second, we extend the 

dynamic approach from the intra-trial time scale of single 

decisions to the inter-trial time scale of sequences of 

decisions (compare Duran & Dale, 2014) to explore their 

interacting effects on behavior (Scherbaum, Dshemuchadse, 

& Kalis, 2008; Scherbaum, Dshemuchadse, Leiberg, & 

Goschke, 2013). We present a dynamic computational 

model of delay discounting behavior (Tuller, Case, Ding, & 

Kelso, 1994; see also O’Hora, Dale, Piiroinen, & Connolly, 

2013; van Rooij, Favela, Malone, & Richardson, 2013) that 

reproduces existing data (Scherbaum et al., 2013) and 

predicts new behavioral patterns such as a dependence of 

current choices on choice history or the temporal decay of 

these choice persistence effects. The model’s predictions are 

validated in three experiments, indicating the 

complementary value of harvesting decision dynamics at 

different time scales on the modeling and the experimental 

side of the investigation of delay discounting decisions. 
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Abstract 
Selective attention is paramount for adaptive behavior as 

it biases information processing towards stimuli that are 
relevant for achieving our goals. The mechanisms 
underlying this bias are under debate, however: Whereas 
one class of models postulates that selective attention solely 
relies on the amplification of goal-relevant information (e.g. 
Cohen, Dunbar, & McClelland, 1990), a second class of 
models deems additional inhibitory processes necessary to 
suppress distracting stimuli (e.g. Houghton & Tipper, 1994).  

Here, we explore the explanatory value of both accounts 
from a dynamic perspective that focuses on the continuous 
unfolding of goal-directed behavior over time (see 
Scherbaum, Dshemuchadse, Fischer, & Goschke, 2010; 
Spivey & Dale, 2006). We present two variants of a 
Dynamic Neural Field model (see e.g., Johnson, Spencer, & 
Schöner, 2008; Sandamirskaya, Zibner, Schneegans, & 
Schöner, 2013) that incorporate the diverging assumptions 
regarding the nature of selective attention. Running 
simulations of an attentional set-switching paradigm with 
both models, we show that – even though they make similar 
predictions with regard to discrete markers of performance 
like response times – the continuous development of 
response tendencies over the course of single trials differs 
markedly whether or not inhibitory processes take part in 
attentional selection.  

To test these dynamic predictions empirically, human 
participants completed the same set-switching paradigm 
using mouse-tracking as a continuous measure of 
performance (see e.g., Scherbaum et al., 2010). Comparing 
modeled and observed behavior revealed clear evidence for 
the persisting amplification of previous target information 
but no signs of sustained distracter suppression. 

These findings illustrate that dovetailing dynamic 
computational modeling with continuous measures of 
behavior can open promising avenues for understanding the 
mechanisms underlying fundamental cognitive abilities.  

Acknowledgments 
This research was supported by the German Research 
Council (DFG-project 1827/11 granted to Stefan Scherbaum 
and SFB 940/1 2014).  

References 
Cohen, J. D., Dunbar, K., & McClelland, J. L. (1990). On 

the control of automatic processes: A parallel distributed 
processing account of the Stroop effect. Psychological 
Review, 97(3), 332–361.  

Houghton, G., & Tipper, S. P. (1994). A model of inhibitory 
mechanisms in selective attention. In D. Dagenbach & T. 
H. Carr (Eds.), Inhibitory processes in attention, memory, 
and language. San Diego, CA, US: Academic Press. 

Johnson, J. S., Spencer, J. P., & Schöner, G. (2008). Moving 
to higher ground: The dynamic field theory and the 
dynamics of visual cognition. New Ideas in Psychology, 
26(2), 227–251.  

Sandamirskaya, Y., Zibner, S. K. U., Schneegans, S., & 
Schöner, G. (2013). Using Dynamic Field Theory to 
extend the embodiment stance toward higher cognition. 
New Ideas in Psychology, 31(3), 322–339.  

Scherbaum, S., Dshemuchadse, M., Fischer, R., & Goschke, 
T. (2010). How decisions evolve: The temporal dynamics 
of action selection. Cognition, 115(3), 407–416.  

Spivey, M. J., & Dale, R. (2006). Continuous Dynamics in 
Real-Time Cognition. Current Directions in 
Psychological Science, 15(5), 207–211.  

 

97



Neural Correlates of Cognitive Models 
 

Marcel van Gerven (m.vangerven@donders.ru.nl) 
Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen 

Montessorilaan 3, 6525 HR, Nijmegen, The Netherlands 
 

Sennay Ghebreab (s.ghebreab@uva.nl) 
Cognitive Neuroscience Group, University of Amsterdam 

 Nieuwe Achtergracht 129, 1018 WS Amsterdam, The Netherlands 
 

Guy Hawkins (guy.e.hawkins@gmail.com) 
Amsterdam Brain and Cognition Center, University of Amsterdam 
 Nieuwe Achtergracht 129, 1018 WS Amsterdam, The Netherlands 

 
Jelmer Borst (j.p.borst@rug.nl) 

Dept. of Artificial Intelligence, University of Groningen 
Nijenborgh 9, 9747 AG Groningen, The Netherlands 

 
 
 

Keywords: Cognitive modeling, fMRI analysis, EEG analysis 

Introduction 
In recent years, model-based approaches in neuroscience 
have become more prevalent, providing an answer to the 
claim that neuroscience is data rich yet theory poor. Indeed, 
different cognitive models provide predictions that can be 
empirically validated using neural data, providing new 
insights into the neural basis of human cognition.  

In this symposium four speakers will present new results 
in the field of model-based cognitive neuroscience. The first 
two speakers will outline how models that have their roots 
in machine learning and computer vision can be used to 
obtain new insights into the neural basis of visual 
perception. The third speaker addresses how computational 
models can provide new insights into the neural basis of 
decision-making. Finally, the fourth speaker complements 
this work by discussing how neuroimaging data can be used 
to constrain cognitive models. 

This symposium will provide attendants with new 
insights into this new field of research which promises to 
bridge the gap between formal models of cognition and their 
neuronal correlates, as measured by non-invasive imaging 
techniques. 

Brief Description of the Speakers 
In the following a brief description of the symposium 
speakers is given. 
 
Dr. van Gerven is an assistant professor at Radboud 
University Nijmegen. He is principal investigator of the 
Computational Cognitive Neuroscience lab and works at the 
interface between machine learning and cognitive 
neuroscience. In the past, van Gerven developed new 
paradigms for brain-computer interfacing based on covert 
spatial attention and developed new Bayesian techniques for 

structural and functional connectivity analysis. His current 
research focuses on the development of statistical 
approaches for understanding distributed representations in 
the human brain. 
 
Dr. Ghebreab is an assistant professor at the University of 
Amsterdam, and head of Studies Social Sciences at the 
Amsterdam University College. His research combines 
computational and neural analysis of everyday visual 
scenes, and aims at understanding what visual information 
evokes what perceptual and emotional experiences. He 
teaches several courses on these topics and leads the Brain 
& Technology Amsterdam lab (BeTA lab).  
 
Dr. Hawkins is a postdoctoral fellow at the Amsterdam 
Brain and Cognition Center, University of Amsterdam. His 
research focuses on developing and testing computational 
and mathematical models of cognitive processes, in 
particular decision-making. He completed his PhD in 
experimental and mathematical psychology at the 
University of Newcastle, Australia. He then commenced a 
postdoctoral position at the University of New South Wales, 
Australia, where he used computational approaches to study 
judgment and decision-making phenomena.  
 
Dr. Borst is a postdoctoral researcher at the Department of 
Artificial Intelligence, University of Groningen. His 
research focuses on new neuroimaging analysis techniques, 
with the goal of providing additional constrains for 
cognitive computational models. He obtained his PhD in 
cognitive modeling at the University of Groningen. During 
his PhD research, he developed computational models of 
behavioral and neural data of multitasking. Afterwards, he 
performed post-doctoral research in the lab of Prof. John R. 
Anderson at Carnegie Mellon University, where he focused 
on new analysis methods for EEG data. 
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Probing Cortical Representations of Naturalistic 
Stimuli with Deep Learning (Marcel van Gerven) 

Recent advances in machine learning have shown that deep 
learning achieves state-of-the-art performance in visual 
object recognition. In this talk I outline how we used deep 
learning to disentangle the functional organisation of the 
cortical visual stream. Our results show that downstream 
areas code for features that are also represented in deeper 
layers of artificial neural networks. Furthermore, the 
outlined framework can be used as a high-throughput 
method for analysing how individual stimulus features are 
represented across the cortical sheet as well as for 
estimating voxel-level receptive fields. I argue that the 
marriage of statistical machine learning with cognitive 
neuroscience yield new insights into human cognition that 
cannot be easily achieved via more conventional 
approaches. 

FMRI Evidence for Face Recognition by Visual 
Words (Sennay Ghebreab) 
 
Neuroimaging evidence has shown that a network of face 
sensitive brain regions underlies the ability of humans to 
grasp a person’s gender, age, race and mood in a single 
glance. The mechanism to represent faces remains unclear, 
however. Bag-of-words are effective in the field of 
computer vision for learning to recognize an object by its 
type. In this model, a word represents small, mutually 
similar patches. Images are represented as bags of words by 
counting the occurrence of each of the thousands different 
words. We examined the relation between two 
representations of face images based on a Bag-of-words 
model and fMRI-responses to these images. The first 
representation is the similarity distance to the cluster of 
faces, which we refer too as ordinate bag-of-word 
representation. The second is the similarity distances with 
respect to face sub-clusters (males, females, Asians, 
Africans, Caucasians, children, adults and seniors). Results 
reveal neural sensitivity in the core-face network (FFA) to 
ordinate and in the extend face network (aITG) to 
subordinate bag-of-word face representations. We provide 
evidence for bag-of-words as a simple yet effective model 
for face representation in the brain, possible applicable to 
generic visual object recognition as well. 

Behavioural and Neural Evidence for Urgency in 
Decision-Making (Guy Hawkins) 
Most modern accounts of perceptual decision-making 
assume that evidence is accumulated for one choice option 
over another until the balance of evidence reaches one of 
two decision boundaries, triggering a choice. Decision-
making models have typically assumed fixed decision 

boundaries where the amount of evidence required to trigger 
a decision does not change with time. A more complicated 
assumption has recently gained popularity in some 
neurophysiological accounts of decision-making: collapsing 
boundaries, where decisions are triggered by less and less 
evidence as time passes. Such dynamic decision boundaries, 
often interpreted as implementing rising “urgency signals”, 
have attractive normative properties but have not been 
stringently tested against data. To this end, I will provide an 
overview of a large-scale analysis of behavioural data from 
previously published human and non-human primate 
studies. We found that the use of dynamic decision 
boundaries depends on task-specific paradigms or 
procedures, such as extensive task practice or delayed 
feedback protocols. I will also discuss the neural correlates 
of urgency in decision-making using an expanded judgment 
task that induced dynamic decision boundaries in some 
participants but not others. The amount of urgency evident 
in individual subject decision strategies was linked with 
BOLD activity, to investigate the neural bases of urgency. 
We conclude that various paradigms and procedures can 
lead decision makers to adopt qualitatively different 
decision strategies, and individual differences drive the 
extent to which one uses urgency-related decision strategies.  

Using fMRI data to Constrain a Cognitive Model of 
Working Memory in Multitasking (Jelmer Borst) 
 
Cognitive models are notoriously hard to evaluate. One 
important requirement for models is that they should be able 
to predict data of new experiments. However, even if 
models are capable of predicting reaction times and 
accuracy data, their complexity often exceeds constraints 
provided by behavioral data alone. To provide additional 
constraints, researchers have turned to neuroscience. A 
prime example of this is the ACT-R cognitive architecture. 
After a development based on behavioral and eye-tracking 
data that extends back to the 1970s, in 2003 a mapping was 
developed from components of the architecture to brain 
regions. Since then, models developed in ACT-R predict the 
fMRI BOLD response in several regions of the brain, and 
can thus be tested and constrained by fMRI data. In this 
talk, I will show how this approach led us to re-evaluate a 
model of working memory use in multitasking. Although 
our initial model matched behavioral data perfectly, a 
subsequent fMRI experiment indicated that the assumptions 
underlying the model were incorrect. We adapted the model 
to both capture the behavioral data, as well as the 
neuroimaging data. On the basis of this example, I argue 
that neuroimaging data can provide valuable constraints for 
cognitive models. 
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Abstract 

In their fourth year, most children start to understand that 
someone else might have a false belief, which is different 
from the reality that the children know. The most studied 
experimental task to test this development is called the first-
order false belief task. What kind of prior cognitive skills help 
children to pass the false belief task? There are hundreds of 
correlational studies that have shown that language and 
executive functions (such as inhibition and working memory) 
play a role. Moreover, several training studies have shown the 
importance of language and inhibition in the development of 
false belief reasoning. However, to the best of our knowledge 
there has been no training study (with normally developing 
children) to investigate the role of working memory strategies 
in the development of false belief reasoning.  

We present here a computational cognitive model to 
investigate transfer from working memory strategies to false 
belief reasoning. For this reason, in addition to the false belief 
task, we constructed two tasks that children encounter in their 
daily life: a pencil task (simple working memory) and a 
marble task (complex working memory). Our simulation 
results confirm our hypothesis that there is more transfer from 
the marble task to the first-order false belief task than from 
the pencil task to the first-order false belief task, because of 
the more complex working memory strategies that appear to 
be necessary in the false belief task. The results of our 
simulations suggest conceptual predictions to be tested 
experimentally. 

Keywords: Theory of Mind; False Belief Reasoning; 
Working Memory; Transfer; Cognitive Modeling; Actransfer. 

 
Introduction 

Children’s development of reasoning about other people’s 
representational mental states such as beliefs, desires and 
knowledge has been one of the most studied areas in 
developmental psychology. In order to conclude that an 
agent has such a theory of mind (ToM, Premack & 
Woodruff, 1978), Dennett (1978) argued that it is necessary 
to test whether the agent can correctly attribute a false belief 
to another agent. Since then, the explicit false belief task 
(Wimmer & Perner, 1983) has become one of the most 
commonly used tasks that verbally tests children’s ToM. In 
the explicit first-order false belief task, children are required 
to make and report a decision about another person’s mental 
state while they know the real situation, which happens to 
be different from the other person’s false belief. Various 
studies have shown that children cannot pass the explicit 

first-order false belief tasks until the age of four (Wimmer 
& Perner, 1983; Wellman, Cross & Watson, 2001).  

One of the most commonly studied explicit first-order 
false belief tasks is called the unexpected location change 
task. In this task the story goes more or less as follows: 
‘Sally and Anne are in the room. Sally puts her chocolate 
into the basket. After that, she leaves the room. Anne takes 
the chocolate from the basket and puts it into the box and 
she also leaves the room. Later, Sally comes back to the 
room.’ The first-order false belief question is “Where will 
Sally look for the chocolate?” If a child correctly reasons 
about Sally’s mental state, s/he reasons that because Sally 
did not see Anne taking the chocolate from the basket and 
putting into the box, Sally will look for the chocolate in the 
place where she last saw it—thus, the child would answer 
that Sally will look in the basket. 

Interestingly, until the age of 4, children make systematic 
errors by reporting the real location of the chocolate, which 
is the box in the above story. This phenomenon is called 
‘reality bias’ (Mitchell et al., 1996). Previous studies of the 
explicit false belief task showed that 3-year-old children’s 
accuracy is around 30%, 4-year-olds’ accuracy is around 
50%, 6-year-olds’ accuracy is around 80%, and finally 
around the age of 8, children’s performance is at ceiling, 
similar to adults’ performance (Wellman, Cross & Watson, 
2001). According to the ‘reality bias’ view, in order to give 
correct answers, children should inhibit their own response 
and take into account others’ perspectives.  

What kind of cognitive skills are required for children to 
overcome their ‘reality bias’ and pass the explicit first-order 
false belief task? It is a matter of debate whether the 
development of first-order ToM is purely a matter of 
conceptual change. In fact, it has been shown that other 
cognitive factors contribute to the development of first-order 
false belief reasoning. Several studies have examined the so-
called ‘far transfer’ of skills by training children with 
different cognitive tasks and investigating whether 
children’s performance on the first-order false belief task 
has improved or not after the training. Those studies 
revealed that there is indeed a far transfer of skills from 
language (Hale & Tager-Flusberg, 2003) and inhibition 
(Kloo & Perner, 2003) to first-order false belief reasoning. 
We believe that the working memory strategies that children 
use also contribute to the development of false belief 
reasoning. The important role of working memory for first-
order false belief reasoning has already been shown by 
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correlational studies (Gordon & Olson, 1998; Hughes, 1998; 
Keenan, Olson, & Marini, 1998). Moreover, we have 
evidence for a significant effect of the complex working 
memory task but not the simple working memory task in 
second-order false belief reasoning (Arslan, Hohenberger, 
&Verbrugge, submitted). However, there has so far been no 
experimental training study focused on the role of working 
memory strategies in the development of first-order false 
belief reasoning.  

Training studies need more time and effort than 
correlational studies. For this reason, constructing 
computational cognitive models to predict what kind of 
skills might be transferred to another domain (far transfer) is 
an effective way of designing an appropriate training study. 
There have been a few computational models of the 
development of explicit false belief reasoning (Wahl & 
Spada, 2000; Triona, Masnick & Morris, 2002; Bello & 
Cassimatis, 2006; Hiatt & Trafton, 2010; Arslan, Taatgen & 
Verbrugge, 2013). However, none of those models are 
aimed to predict and explain far transfer from daily life 
tasks to explicit false belief reasoning.  

In the current study, we aim to investigate the possible 
transfer of cognitive skills from working memory strategies 
that children use in their daily-life tasks to first-order false 
belief reasoning by constructing a computational cognitive 
model that helps us to make more precise predictions. To 
investigate the role of working memory strategies, we 
modeled one simple working memory task (the pencil task) 
and one complex working memory task (the marble task) 
together with the first-order false belief task. The pencil and 
marble tasks were inspired by Brain Quest game cards for 
children of ages 5 to 6 (http://www.brainquest.com/) and 
they differ from each other in terms of the complexity of the 
working memory strategies required to solve them (see the 
sections “A cognitive model of the pencil task” and “A 
cognitive model of the marble task” for details). We 
hypothesized that there would be more transfer from the 
marble task to the first-order false belief task than from the 
pencil task, because of the more complex working memory 
strategies required by the marble task, which are also 
necessary in the false belief task.  

In order to model transfer from the pencil and the marble 
tasks to first-order false belief reasoning, we modeled the 
tasks using Actransfer (Taatgen, 2013). Actransfer 
implements the primitive elements theory (Taatgen, 2013) 
of the nature and transfer of cognitive skills.  Actransfer 
builds on the symbolic computational cognitive architecture 
Adaptive Control of Thought–Rational (ACT-R; Anderson, 
2007). The Actransfer architecture uses ACT-R modules, 
buffers and mechanisms such as production compilation 
(Taatgen, 2002). 

The primitive elements theory (Taatgen, 2013) breaks 
down the complex production rules typically used in ACT-R 
models into the smallest possible elements (PRIMs) that 
move, compare or copy information between modules. 
There is a fixed number of PRIMs in the Actransfer 
architecture. When PRIMs are used often over time, 

production compilation combines them to form more 
complex production rules. While those PRIMs may have 
some task-specific elements, PRIMs also have task-general 
elements that can be used by other tasks. Transfer occurs if 
two tasks have common task-general elements: One task can 
benefit from another trained task because of the already 
compiled production rules that are learned through 
production compilation. Taatgen (2013) showed the 
predictive power of Actransfer by modeling a variety of 
transfer experiments such as text editing (Singley & 
Anderson, 1985), arithmetic (Elio, 1986), and cognitive 
control (Chein and Morrison, 2010). 

In the following sections, we will explain our Actransfer 
models in detail, present the results of the simulations and 
discuss our findings. 

 
A Cognitive Model of the First-order False 

Belief Task 
Our Actransfer model for the first-order false belief task was 
inspired by Arslan, Taatgen and Verbrugge’s (2013) ACT-R 
model and Wierda and Arslan’s (2014) Actransfer model of 
first- and second-order false belief reasoning. A simulated 
storyteller presents the first-order false belief story to our 
model. The way we implemented this is by updating the 
perceptual buffer every 4 seconds with new story facts. For 
each picture in the story, the storyteller tells what happens in 
that particular picture. The model “listens” to the story and 
stores what happened in each picture in its declarative 
memory. The pictures that have actions related to changing 
the location of the object of interest are chained together in 
chronological order. Adding a pointer that refers to the 
previous picture fact realizes the chaining of the picture 
facts. Also, all related action facts are linked in a similar 
manner with the corresponding picture fact.  

At the end of the story, the storyteller presents the model 
with a first-order false belief question (‘Where will Sally 
look for the chocolate?’). First, the model creates a first-
order chunk in declarative memory that represents the first-
order false belief question (“Where will Sally look for the 
chocolate?”). Next, the model creates a zero-order chunk 
that represents the corresponding zero-order question 
(“Where is the chocolate?”) by breaking up the first-order 
false belief question. The model keeps a reference to the 
zero-order chunk in working memory, which in turn has a 
pointer towards the first-order chunk. After the question is 
presented, the model uses two strategies to reason about the 
question. The first strategy is a memory strategy in which 
the model always tries to retrieve a picture fact that has an 
action related to the object’s location change. It then looks 
at that picture when remembering facts about it, such as 
“Anne put the chocolate into the box”. The second strategy 
is a perception strategy, which is used whenever the model 
has forgotten the story facts. The model looks at each 
picture in detail and extracts the story facts from the picture. 
Below, we present the details of these two strategies 
(memory and perception) in detail. 
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Figure 1. The order of the pictures that the false belief model attends in memory and perception strategies 

 

The memory strategy 
The memory strategy is the first strategy that the model 
uses. The model tries to retrieve what was the last picture in 
which an action happened that was related to the location of 
the object. If it retrieves that picture fact, it then tries to 
remember what exactly happened in that picture (for 
example, a location change of the chocolate). If the model 
successfully remembers that Anne put the chocolate into the 
box, it puts the location of the chocolate (“the box”) in its 
working memory and then tries to recall the question. First, 
the zero-order question is retrieved by the reference that is 
kept in working memory. If the zero-order chunk does not 
point to a first-order chunk, the model gives an answer by 
reporting the location from its working memory (“the box”). 
However, in this particular task, the actual question put to 
the model is the first-order false belief question. 

Thus, the model then tries to recall the first-order question 
(“Where will Sally look for the chocolate?”). If it retrieves 
the first-order question, it checks whether the person in the 
question performed the action in that picture. Because it was 
not Sally but Anne who put the chocolate into the box and 
Sally is absent in the picture, the model tries to retrieve 
another picture fact at which another action towards the 
object happened and again it tries to recall what exactly 
happened in that picture (Figure 1). This process continues 
until the person who moved1 the chocolate is the same 
person who is mentioned in the question. 

If the model’s run-time passes a preset threshold, the 
model stops reasoning and answers whatever it currently has 
in working memory. In this way, we simulate that the model 
gives up for whatever reason (for example, it takes too long 
or it gets distracted). As a result, the model will at first give 
either no answer at all or a zero-order answer. Note that this 
is because the model first stores the most recent location of 
the chocolate in its working memory, which corresponds to 
the zero-order answer (“the box”). When the model reaches 
the part of the story where the first-order answer (“the 
basket”) can be found, this location will be stored in 
working memory and the model starts giving the correct 
first-order answer. 

                                                             
1 We used the action of moving the chocolate, but the model 

could also easily be adapted for seeing. 

The perception strategy 
In our behavioral study (Arslan, Verbrugge, Taatgen, & 
Hollebrandse, 2014), we have successfully trained 5-6 year 
old children to pass the second-order false belief tasks. We 
experienced that on most occasions, children look back in 
the pictures. Similarly, our model uses the perception 
strategy by looking at the pictures in more detail if it fails to 
apply the memory strategy because it has forgotten some of 
the facts of the story as told by the storyteller. In the 
perception strategy, the model first focuses its attention at 
the most recently seen picture and inspects whether there is 
an action related to the salient object in the picture. If there 
is a person present in the picture, it checks whether this 
person performed an action or not.  Subsequently, it creates 
a new action fact about the picture in memory and starts to 
reason with those newly created chunks in the same way as 
in the memory strategy.  

Note that both the perception strategy and the memory 
strategy use almost the same mechanism for reasoning about 
the question. The difference is that the irrelevant pictures for 
finding the answer are skipped in the memory strategy, 
whereas every picture has to be inspected in the perception 
strategy (see Figure 1). This is because the memory strategy 
broke down, and the model cannot immediately recall 
Picture 4 and subsequently Picture 2 of the false belief story 
(see Figure 1) at which there are actions related to the 
location of the object. 

A Cognitive Model of the Pencil Task 
As we mentioned above, we modeled one simple working 
memory task, the pencil task, and one complex working 
memory task, the marble task. In the former task, the goal is 
to count the total number of yellow and green pencils in a 
group of blue, red, yellow and green pencils (Figure 2). We 
modeled this task as follows. The model first looks at a 
pencil that is in its perceptual buffer. If the color of the 
pencil is blue or red, it focuses its attention to another 
pencil. This procedure is repeated until the model finds a 
yellow or green pencil. It then initializes counting by 
retrieving a counting fact from its declarative memory and 
copying the retrieved number to the working memory. It 
keeps on searching pencils until it finds another yellow or 
green pencil. When it finds one of those, the counter in 
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working memory is updated by retrieving the next counting 
fact. After attending all pencils, the model reports the total 
number of yellow and green pencils. As becomes clear from 
this explanation, this task does not need any complex 
working memory strategies. It simply uses one slot in the 
working memory buffer and it updates that slot whenever it 
is necessary. 

 
Figure 2. The pencil task (simple working memory) 
A Cognitive Model of the Marble Task 

The goal of this task is to find, out of a small number of 
bags of marbles, the two bags that contain the same number 
of marbles of the same color (Figure 3). Our model uses a 
strategy that focuses on one color in a bag and counts that 
color of marbles in each bag until finding a bag that shares 
the same number of that color. We assume that this is one of 
the strategies2 that children use in general. Because we are 
interested in comparing a complex working memory 
strategy with a simple one, the strategy that we used for 
modeling will suffice for our purposes. 

The model starts by looking at the first bag and retrieving 
a color fact from its declarative memory to count the 
marbles of that color. For example, if the model retrieves 
the color red, it copies red to one of four working memory 
slots. At the same time it copies the identity of the bag 
(Bag-1) in another working-memory slot to report it back 
when necessary. Then, it looks at the first marble that is in 
its perceptual buffer, which is blue in our example. Since 
blue is not the same as the color that is in working memory 
(red), the model focuses its attention to another marble and 
repeats that procedure until it finds a marble that matches 
the color in working memory. After it finds a red marble, it 
initializes counting by requesting the retrieval of a counting 
fact from its declarative memory and copying the retrieved 
number to a third working memory slot. The model then 
updates that counting slot if it attends another red marble.  

Once all marbles of the current color in the current bag 
(Bag-1) are counted, the model tries to remember if it has 
already seen another bag that has the same number of 
marbles of the same color. In the example, because it is the 
first bag, the model cannot remember a bag that has the 
same number of red marbles and focuses its attention on 

                                                             
2 Another possible strategy would be focusing on a bag and 

counting the number of marbles of all its colors, and repeating this 
procedure until another bag has the same number of a color with 
the bag in focus. Because both strategies use similarly complex 
working memory strategies, this would probably not change the 
simulation results of transfer. 

another bag to continue to count the red marbles. It carries 
out the same procedures for the second and the third bags.  

After counting all the red marbles in all bags and not 
remembering any bags that have the same number of red 
marbles, the model creates a new working memory chunk 
by emptying all its slots except the slot that has the current 
color (red). This process also consolidates all information 
present in working memory and thus creates a new chunk in 
declarative memory that can be retrieved later on—
effectively it remembers which bags it has seen with how 
many marbles of a given specific color. 

 Later, it repeats the procedures above by retrieving 
another color from its declarative memory. Let’s say the 
color blue is retrieved this time. The model counts the blue 
marbles in the first and second bags, and checks if they have 
the same number of blue marbles. Because this is not the 
case, it moves its attention to the third bag and counts the 
blue marbles. At this point the model can successfully 
retrieve the first bag with the same number of blue marbles, 
which is 1, from its declarative memory. Finally, it gives an 
answer by reporting the first and third bag.  
 

 
Figure 3. The marble task (complex working memory) 

Results 
In order to investigate transfer from the simple working 

memory task (pencil) and the complex working memory 
task (marble) to the first-order false belief task, we ran 
simulations in three conditions. In the first condition (FB-
only), we ran 100 simulations of a child doing the first-order 
false belief task 100 times (thus, a total of 100 × 100 = 
10,000 trials were simulated).  

In the second condition (Marble-FB), we first ran the 
marble task for 10,080 minutes (24 hours in 7 days) in 
ACT-R’s time. The model would perform as many trials as 
it could possibly do within that time. Subsequently, the 
model performed 100 trials of the first-order false belief 
task. This condition was also simulated 100 times, 
simulating 100 children.  

In the third condition (Pencil-FB), we followed the same 
protocol as in the second condition but first we ran the 
pencil task instead of the marble task. Table 1 shows the 
mean and the standard deviations of the number of 
simulations for each task. As can be understood from Table 
1, the model could squeeze more trials of the pencil task 
than trials of the marble tasks into the 10,080 minutes. After 
all, each trial of the marble task, in which several numbers 
of objects need to be compared, takes much more time than 
the pencil task, which just involves counting an easily 
recognizable subset of objects. Therefore, the model has 
much more previous experience as expressed in number of  
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Figure 4. The results of the simulations of 100 trials averaged over 100 runs representing 100 children. The FB-only 

condition represents 100 trials of false belief task simulation only. The Marble-FB condition represents 100 trials of false 
belief task simulation after 10,080 minutes (ACT-R time) of training on the marble task. The Pencil-FB condition represents 
100 trials of false belief task simulation after 10,080 minutes (ACT-R time) of training on the pencil task. 
 
trials in the pencil task before we run the false belief task 
model compared to if it is first trained with the marble task. 
However, as mentioned above, the amount of exposure as 
expressed in seconds is equal for both tasks. 

 
Table 1. The mean and the standard deviations of the 

number of simulations for each task 
 

Task Mean Standard 
Deviation 

FB-Only 100 0 
Marble-FB 217 8.6 
Pencil-FB 850 21.0 

 
Figure 4 shows the results of the simulations. In the FB-

only condition, in which the model starts without any prior 
knowledge other than the PRIMs as described in the 
Introduction, the first-order false belief task model gives the 
zero-order answer (“reality bias”) by reporting the real 
location of the chocolate (i.e., “the box”) until around the 
60th trial. After that, it gives the correct answer for the first-
order false belief question (i.e., “the basket”).  

In the Marble-FB condition, in which the first-order false 
belief task model experienced the prior practice of the 
marble task, the model starts to give the correct answer 
much earlier, around the 15th trial. Finally, in the Pencil-FB 
condition, the model starts to give the correct answer for the 
first-order false belief question around the 35th trial, which 
is earlier than in the FB-only condition, but later than in the 
Marble-FB condition. 

Discussion 
Our goal was to investigate the role of working memory 

(WM) strategies in the development of first-order false 
belief reasoning. In order to achieve this goal, we modeled 
two real life examples, the pencil task and the marble task, 
corresponding to a simple and a complex working memory 
strategy, respectively, by using the cognitive architecture 
Actransfer.  

In agreement with the previous behavioral studies that 
have shown the correlation between working memory and 
the development of first-order false belief reasoning 
(Gordon & Olson, 1998; Hughes, 1998; Keenan, Olson, & 
Marini, 1998; see Arslan, Hohenberger & Verbrugge, 
forthcoming for second-order false belief reasoning), our 
results show that having an experience with tasks that need 
working memory strategies contribute to this development. 
Because more complex working memory strategies are 
needed in our first-order false belief task model than a 
simple strategy that needs to just update the WM, we 
predicted that there would be more transfer from the marble 
task (complex working memory) to the first-order false 
belief task than from the pencil task (simple WM) to the 
first-order false belief task. The results confirm our 
hypothesis.  

The first-order false belief task model learns to pass the 
task faster when it has a prior experience of a task that needs 
simple or complex WM strategies. This result is 
straightforward, as we compare the simulations with prior 
knowledge to a model that has no prior experience at all. 
More interestingly, the model that was first trained in the 
marble task, which required complex working memory 
strategies, mastered the first-order false-belief task much 
faster—even though the model was able to do fewer trials of 
the marble task in a given time period (Mno of simulations =217, 
SD= 8.6) than the model that was first trained in the pencil 
task, which required simple WM strategies (Mno of simulations 
=850, SD= 21.0). Note that the amount of exposure to both 
models was similar in terms of time, as stated above.  
Together with the experimental training studies that we 
mentioned in the Introduction, our work implies that passing 
false belief tasks is not a skill acquired through maturation, 
but by experience. 

Future directions 
Although the amount of exposure-time in the Marble-FB 

and the Pencil-FB conditions was the same, one could argue 
that it is the general complexity of the marble task (complex 
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working memory), which causes the transfer to the false 
belief task. In addition to comparing the marble task to the 
pencil task (simple working memory), including a third task 
that has the same complexity as the marble task but that 
does not require complex working memory strategies might 
be a better control condition. Also, finding a task to model 
that has the same complexity as the first-order false-belief 
task but without the need of working memory might be 
worthwhile. 

The results of our simulations suggest conceptual 
predictions that should be tested experimentally in 
experiments with 3-4 year old children. 
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Abstract
We propose a computational architecture of human joint ac-
tion that accounts for interactions between higher- and lower-
level coordination processes. A proof-of-concept implemen-
tation of the architecture is used to model the social Simon
task, a well known experimental task that reveals an interplay
between higher- and lower-level processes. We show that our
model is able to generate results aligned with human perfor-
mance data for four task configurations. This work contributes
to an understanding of mechanisms involved in joint actions.
Keywords: Joint Action; Computational Cognitive Model.

Introduction
Coordination during joint actions typically requires collabo-
rative planning as well as fine-grained alignment of move-
ments. Two musicians performing together have to agree on
the pieces they are going to perform and on the parts each
of them is going to play. During their performance, however,
they synchronize their movements to a level of detail that goes
well beyond the specification of this overall plan.

Philosophers have long analyzed higher-level collaborative
planning processes based on propositional attitudes such as
(joint) intentions, plans, goals, and beliefs (e.g. Bratman,
1992; Tuomela, 2000).

Notions of shared intention have also underpinned inves-
tigations by psychologists (e.g. Pacherie, 2011), though em-
pirical psychological research has put much emphasis on the
role of lower-level mechanisms of coordination in joint ac-
tion such as direct perception-action links (e.g. Wolpert et
al., 2003; Haazebroek et al., 2011) and it has been noted that
integrative perspectives in psychology that represent the inter-
play between higher- and lower-level coordination processes
are less well studied (Knoblich et al., 2011). Psychological
studies suggest that coactors develop shared task represen-
tations, i.e. they tend to represent their partners’ part of the
joint action even if this is not required for successful perfor-
mance (Sebanz et al., 2005), but there remains debate about
the nature and detail of what is shared (Knoblich et al., 2011).

Complementing these philosophical and psychological
perspectives, a large body of computational work formalizes
models of joint action and collaborative planning, (e.g. Grosz
& Kraus, 1996; Rao & Georgeff, 1995; Tambe, 1997) as well
as models of lower-level coordination processes, (e.g. Hur-
ley, 2008; Wolpert et al., 2003). Although these latter models

often seek to explain the emergence of higher-level coordi-
nation from lower-level processes, they are not as powerful
in representing collaborative plans as are the former models
based on higher-level propositional attitudes.

Computational approaches to cognitive modelling can play
many roles as discussed by Sun (2009). In particular, compu-
tational cognitive models of joint action can inform applied
research on human-robot interaction (e.g. Haazebroek et al.,
2011; Vesper, 2013, p. 146), a motivation we share.

Multilayer computational cognitive models have been
studied for some time (see Thagard, 2012), and examples are
mentioned in related work below. We build on such work
to pose a specific set of building blocks that can account for
observed phenomena in joint action. We describe a computa-
tional architecture that includes interactions between collab-
orative planning based on propositional attitudes and lower-
level coordination processes. In gathering evidence in sup-
port of the proposed architecture, we draw on theoretical and
empirical work on human joint action. We provide a proof-
of-concept implementation and simulate a particular experi-
mental task—the Simon task (Simon & Rudell, 1967)—that,
together with its social variant (Sebanz et al., 2005), has re-
vealed interactions between higher-level planning and lower-
level coordination processes. We demonstrate that our model
can account for empirical results obtained from different con-
ditions of the Simon task.

Next we describe our architecture. We then describe its
(partial) implementation as a model for the social Simon
task, present our analysis and a short comparison with related
work, and briefly conclude the paper.

Architecture
Figure 1 shows an overview of our architecture, which is
composed of two levels. At the lower perception-action
level perceptual input is received from the environment and
mental action representations are translated into muscular
movements. Shared representations for perception and action
based on common coding theory (Prinz, 1997) support the en-
gagement in joint actions. At the upper intentional level prac-
tical reasoning operates on higher-level mental attitudes. The
distinction between these levels is not crisp and only adopted
to guide the discussion and not to make strict distinctions.
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EnvironmentInput
Feedback Loop

Motor commands,
action effects

Figure 1: The levels of the architecture. Rectangles denote repre-
sentations, rectangles with rounded corners denote processes. Solid
lines show the feedback loop at the perception-action level. Dashed
lines represent information flow.

Two Memory Systems
We employ a dual-process model of a fast, automatic, and
subconscious mode of processing and a slow, controlled, and
conscious mode of processing. Following common practice
(Smith & DeCoster, 2000), we assume that the first mode
of processing operates on a sub-symbolic memory and the
second mode of processing operates on a symbolic memory.
Symbolic memory and its processing mode enable the pro-
cesses of the intentional level. Sub-symbolic memory and
its processing mode enable the processes of the perception-
action level. Via interactions between these two memories,
intentional and perception-action level and thereby higher-
level and lower-level coordination processes interact.

Building on connectionist models (e.g. Rumelhart, Mc-
Clelland, & PDP Research Group, 1986), sub-symbolic mem-
ory is composed of so called features, each of which has a cer-
tain activation level at any point in time. Activation spreads
between features via inhibitory and excitatory connections.
Hence, this memory encodes associations between features,
and processing exercises these associations by propagating
activation. The current activation pattern constitutes a kind of
working memory. Learning adjusts connections between fea-
tures based on how often they are activated simultaneously.

Symbolic memory consists of representations in a language
that allows for symbolic reasoning. Processing on this mem-
ory amounts to logical inference.

Symbols in symbolic memory are represented by sets of
features in sub-symbolic memory. Activating a set of features
representing a symbol affects the truth value of that symbol
in symbolic memory. However, only those symbols whose
features are sufficiently activated are available for reasoning.
This constitutes another kind of working memory and allows
perceptual context, which is encoded by activated features,
to influence which information is accessible for higher-level
reasoning. Inferring a formula by symbolic reasoning causes
corresponding features in sub-symbolic memory to be acti-
vated, which can lead to further activation of features. Map-
pings between symbols and features are subject to learning.

Actions

An action is represented by a motor command that produces a
movement and by its expected perceptual action effects. Both
motor commands and action effects are represented by feature
sets in sub-symbolic memory. In symbolic memory, these
feature sets are represented by symbols. This enables ac-
tion representations to be shared between the intentional and
perception-action levels. In sub-symbolic memory, different
action representations can have overlapping features. Like-
wise, representations of action effects and perceptual input
can have overlapping features, as postulated by Prinz (1997).
Because the features of the motor command and of its ef-
fects are activated at the same time frequently, there is a bi-
directional association between motor command and effects
in sub-symbolic memory. Consequently, an activation of fea-
tures associated with the effects of an action also activates
the associated motor command and vice versa. This allows
for a translation between action effects and motor commands
and the planning of actions in terms of their effects. Further-
more, the same action representation can be activated multi-
ple times, yielding an increased activation level; and multiple
action representations can be activated at the same time.

Perception-Action Level

We adopt a control system perspective to perception and ac-
tion for the perception-action level (Hurley, 2008; Wolpert et
al., 2003). Two types of internal models are distinguished: In-
verse models determine the motor command required to cause
particular effects. Forward models predict the effects of mo-
tor commands. Inverse and forward models are implemented
by associations between features in sub-symbolic memory.

An appropriate composition of inverse and forward models
enables the actor to deal with basic motor control without the
involvement of any higher-level cognition. We consider the
set-up depicted in Figure 2. We assume that input received
from the environment causes an activation of features in sub-
symbolic memory.

The inverse model translates effects into a motor command
given the current input, which specifies the preconditions that
the motor command has to satisfy. In basic execution mode,
the effects correspond to a goal state that the control system is
to achieve (point 2 in Figure 2). The execution of the activated
motor command acts on the environment, in turn affecting the
input to the inverse model. An internal forward model esti-
mates the effects of the current motor command, supporting
the inverse model in its control task. When the inverse model
fails to control for the error between the input and goal state,
control returns to the intentional level to correct for that error.

The inverse model can be used to generate motor com-
mands (3) for different goal states (2). The forward model
can then be used to make predictions for the effects (1) of
these motor commands (4). This prediction can also be ap-
plied to another actor’s actions. In line with common coding
theory (Prinz, 1997), we assume that the observed effects of
others’ movements activate corresponding action effect fea-
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Figure 2: Control and information flow at the perception-action
level. Rectangles depict representations, rectangles with rounded
corners depict processes. Solid lines represent control flow and
dashed lines show the points at which information exchange with
the intentional level happens.

tures, causing the respective motor command to be activated
via the inverse model. When the extracted motor command
(3) is used as an input to the forward model (4), action sim-
ulation is obtained, which allows to predict the other actor’s
movement (1) and infer their intentions at a basic level. Given
sufficient activation, copying of the other actor’s movements
results, which facilitates synchronization and imitation. A
side-effect is that any input can lead to the activation of action
effect features. This represents the interference of observed
and planned actions postulated by common coding theory.

Intentional Level
The intentional level implements practical reasoning based
on higher-level mental attitudes such as beliefs, goals, and
intentions and builds on the perception-action level.

Practical reasoning employs means-end reasoning and in-
tention inference (using symbolic reasoning and action sim-
ulation). Practical reasoning determines the construction of
joint intentions and enables, for example, social factors to
modulate whether shared task representation are constructed.
A joint intention is a mental attitude that links the coactors’
intentions and practical reasoning to each other’s actions and
to the overall joint action. Joint intentions drive collabora-
tive planning towards the goal of the joint action (Bratman,
1992). Action representations consist of effects (end) and
motor commands (means) as described previously. Goals and
intentions are arranged in a hierarchy of alternating levels. A
goal corresponding to action effects and an associated inten-
tion referring to an action that corresponds to a motor com-
mand form the lowest level of this structure. This represents
the integration of the perception-action and intentional lev-
els. At higher levels of the hierarchy intentions refer to action
plans instead of primitive motor commands.

Goals, intentions, and beliefs are attributed to particular
actors, which contrasts with feature activations. If we assume
that joint intentions follow the same structure as individual

(a) Stimulus-response
compatibility

(b) (c) Stimulus-response
incompatibility

Figure 3: Stimulus-response compatibility and incompatibility in
the Simon task. In (a), the stimulus appears on the side of the button
that is to be pushed. In (b), the stimulus appears on the other side.
Note that buttons are not colored in the actual task.

intentions (hierarchies of goals and plans), they integrate well
with the practical reasoning of individual actors.

The Simon Task
In the individual Simon task a subject pushes one of two but-
tons (left or right) depending on a non-spatial attribute of a
stimulus object appearing on a screen. The non-spatial, task-
relevant stimulus attribute is typically the color of this object.
For example, a subject could be instructed to push the left
button when the object is green and the right button when the
object is red. It turns out that reaction time increases if spa-
tial, task-irrelevant attributes of the object are incompatible
with spatial features of the expected response (push left or
right button). The spatial, task-irrelevant attribute is typically
the location of the object on the screen. For example, the ob-
ject can appear on the left or right side of the screen and be
either on the same side as the button that is to be pushed or
on the other. In the first case, we talk about stimulus-response
compatibility and about stimulus-response incompatibility in
the second case (Figure 3). The increase in reaction time in
the stimulus-response incompatibility condition is called the
Simon effect (Simon & Rudell, 1967). The Simon effect is
absent when the subject performs only one part of the task.

In the social Simon task, two subjects carry out the Si-
mon task together, i.e. each subject is responsible for one
of the two stimulus-response mappings (task rules). A task-
irrelevant spatial attribute referring to the other subject’s ac-
tion leads to an increase in reaction time similar to the one
in the individual Simon task (Sebanz et al., 2005). Such an
increase in reaction time does not occur if the subjects carry
out their parts of the task individually. This suggests that sub-
jects corepresent their coactor’s action in the joint task (action
corepresentation). The representation of the coactor’s action
can be activated by a compatible stimulus feature, causing an
action conflict (i.e. a situation where the inappropriate action
receives activation which needs to be suppressed to allow the
correct action). Consequently a Simon effect is observed.

An increase in reaction time is also observed when a stim-
ulus calls for both subjects to carry out an action at the same
time (task conflict). The interpretation is that a subject also
corepresents the task rule of the partner (task corepresenta-
tion). If the subject corepresents their coactor’s task rule, the
associated action is activated when the stimulus triggers that
rule’s precondition. Like with the action conflict, a task con-
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Conditions
Setup No Conflict Action Conflict Task Conflict Action and Task Conflict
Left subject’s task green → left green → left right → left left → left
Right subject’s task red → right red → right red → right red → right
Stimulus color/location red/right red/left red/right red/left

Table 1: The experimental conditions of the social Simon task. By green → left we mean that the subject reacts to a green stimulus by
pushing the left button. In the action-conflict condition, there is an action conflict for the right subject. The parts of each task rule activated
by the stimulus either because of the relevance to the rule’s precondition or an overlap with the features of its action are printed in bold.

flict is not observed when the subject performs its part of the
task individually. Action and task corepresentation can af-
fect task performance in isolation as well as simultaneously.
Results show that the reaction time increase due to task con-
flicts is larger than the one due to action conflicts. If action
and task conflict occur simultaneously, reaction time is more
than the sum of the reaction times when action and task con-
flict occur in isolation. Table 1 lists the different experimental
conditions and the conflicts they evoke for the right-hand side
subject. The no-conflict and action-conflict conditions mirror
the same conditions in the individual Simon task.

For a recent review of research involving the Simon task,
and its social variant, refer to Dolk et al. (2014).

Model and Analysis
We describe an implementation of those parts sufficient to
model the (right-hand side) subject in the individual and so-
cial Simon tasks based on our architecture. We compare the
Simon effect in our simulations with empirical data.

Sub-symbolic and symbolic memory provide representa-
tions of stimulus features (green color, red color, left position,
right position) and of the effects and motor commands of the
two available actions (push left and push right). Beliefs and
goals of agents and the effects of actions are represented with
propositional logic. Figure 4 displays the mapping between
the elements of both memories and the associations between
features in sub-symbolic memory. We assume mapping and
associations have been established by some means a priori.
To prevent clutter, we do not show here symbols and features
referring to stimulus color.

Sub-symbolic memory contains feature sets representing
the goal (action effects) of perceiving the left button being
pushed (l,u1,u2) and the right button being pushed (r,v1,v2).
Via threshold units, both feature sets forward activation to
respective features representing the motor commands achiev-
ing these goals (x1,x2,x3 and y1,y2,y3). This represents the
inverse model. Motor command features are part of a fully re-
current auto-associative connectionist network in which acti-
vation settles into that previously learnt pattern which is clos-
est to the current input (Rumelhart et al., 1986). By prior
learning, strong associations were created between the fea-
tures of the same motor command. Hence, input to both mo-
tor commands leads to the respective feature sets competing
for activation. The activation pattern requires some time to
settle to a stable state. The feature s represents a stimulus,

Pushed-Left push-left push-right Pushed-Right

l

u1

u2

x1

x2

x3

r

v1

v2

y1

y2

y3

s

z1 zn· · ·

Left-Stim. Right-Stim.

Figure 4: Elements of symbolic and sub-symbolic memory and
their relationships. At the intentional level, rectangles denote
literals in symbolic memory, diamonds denote actions. At the
perception-action level, circles denote features in sub-symbolic
memory. Dashed lines show associations between features and sym-
bols, and solid lines with arrows show associations between different
features. The threshold symbol indicates that activation through this
unit is only propagated if it exceeds a certain threshold.

whose activation together with the feature for right (r) or left
(l) or features representing color (not shown in the figure)
represents the perception of a stimulus attribute. Note that
the features for right and left (r and l) are both part of a set
of features representing action effects and a set of features
representing a stimulus attribute. This amounts to the com-
mon coding of actions and observations. Note that high-level
action representations push-le f t and push-right are not avail-
able a priori but obtained by employing the inverse model.

Features in sub-symbolic memory can receive activation in
four ways: (1) when a belief, goal, or intention is created (at-
titude representation); (2) when a stimulus is perceived (stim-
ulus perception); (3) when the intentional level employs the
inverse model at the perception-action level by providing a
goal state to retrieve an appropriate motor command (action
planning); (4) when the intentional level invokes the execu-
tion of a primitive action (action execution). Feature activa-
tions in sub-symbolic memory due to stimulus perception are
translated into corresponding symbols in symbolic memory.

Only together, attitude representation and stimulus percep-
tion generate enough activation on the features representing
the action effects Pushed-Le f t (Pushed-Right) so that this ac-
tivation is propagated to the features representing the motor
command push-le f t (push-right). In Figure 4, this is repre-
sented by threshold units. For example, representing a goal
which refers to Pushed-Le f t is not sufficient for activation to
be propagated to the features of push-le f t. Likewise, acti-
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vating the le f t feature is not sufficient to activate the features
of push-le f t. Thereby the agent is able to represent and plan
with goals without executing an action. We assume that ac-
tivation due to action planning and execution is sufficient to
overcome this threshold, which enables action planning based
on inverse models and the execution of motor commands. A
motor command is executed once sufficient activation is pro-
vided and its features settle into a stable pattern.

The intentional level is driven by a modified BDI inter-
preter that implements practical reasoning based on goals,
intentions, and beliefs (Rao & Georgeff, 1995). Means-end
reasoning can be based on symbolic reasoning (as is standard)
or the inverse model at the perception-action level can be em-
ployed to retrieve a motor command for a given goal state.
An agent annotates each goal and intention with the actor(s)
that is (are) supposed to hold that attitude. A joint intention
consists of a goal that has multiple actors and of its subordi-
nate intentions and goals. An agent can plan for coactors but
does not act on intentions that it is not the sole actor of.

There is an individual and a social task. In the individual
task, there is a no-conflict (NoC) and an action-conflict (AC)
condition. The social task adds a task-conflict (TC) and a
both-conflicts (TCAC) condition. All conditions can be setup
so that only one part of the task is represented (no corepre-
sentation) or both parts (corepresentation). Corepresentation
is the default but was manipulated by Sebanz et al. (2005) in
the individual and by Hommel et al. (2009) in the social task.

A top goal GoalA(SimonTask) is provided to the agent
where A is the set of agents performing the task, e.g.
{you,me}. The agent is equipped with a complex action
SimonTask, which can be performed to achieve the top goal
and itself evokes subgoals according to the experimental con-
dition, e.g. Goal{you}(Green-Stimulus ⇒ Pushed-Le f t) and
Goal{me}(Red-Stimulus ⇒ Pushed-Right). The first subgoal
means that if the stimulus is green, the left button is to be
pushed by the other agent.

In the action-conflict condition, the agent adopts the top
goal and means-end reasoning creates an intention to perform
the SimonTask action with the other subject. This leads to the
adoption of the above mentioned subgoals. With corepresen-
tation the subgoal for the other subject is represented. By
representing subgoals, activation is added to the correspond-
ing features of symbols (i.e. Green-Stimulus, Red-Stimulus,
Pushed-Le f t, Pushed-Right). This is what corresponds to
action and task corepresentation according to Sebanz et al.
(2005). Both the other subject’s task (encoded in the subgoal)
and action (via action effects) is corepresented. However, no
activation is propagated to motor command features yet.

A red stimulus is represented on the left. This leads to
an activation of the features s and l and the feature repre-
senting red. Now the feature set representing Pushed-Le f t
has sufficient input to have activation leak over into the
features representing the push-le f t action. Also, corre-
sponding propositions (Red-Stimulus and Le f t-Stimulus)
are then made true in symbolic memory. Now, the sub-

goal Goal{me}(Red-Stimulus ⇒ Pushed-Right) needs to be
achieved because Red-Stimulus is true and Pushed-Right
false. Means-end reasoning employs the inverse model to ob-
tain an action that can achieve Pushed-Right, which we call
push-right but which was not explicitly available to the agent
before. By using the inverse model, activation is added to the
feature sets representing Pushed-Right and push-right.

An intention is created to execute push-right, which further
adds to the activation of the features representing that action.
Then activation is provided to the push-right features to ex-
ecute that action but only after the recurrent motor command
network settles into a stable activation pattern. Perceptual in-
put of pushing the button then increases the activation of the
Pushed-Right features, so that the proposition is made true
and the subgoal of this agent deemed achieved.

The time until motor command features settle to a stable
activation pattern is an estimate of the response time and
hence of the Simon effect, c.f. Haazebroek et al. (2011).
Any activation on the incorrect response (push-le f t for the
right-hand side subject) increases this time. In the action-
conflict condition, the left-side stimulus adds activation to
the feature l, which is shared with the features represent-
ing Pushed-Le f t and hence provides further activation to the
features of push-le f t. In the task-conflict condition, means-
end reasoning for the other subject’s task via the inverse
model adds onto the activation of the features representing
the push-le f t motor command.

We performed a parameter estimation for this model
against the empirically observed reaction times in the differ-
ent conditions of the Simon task. The goal was to maximize
the correlation between the relative reaction times observed
empirically and the ones observed in our model. The term
“relative” here refers to the differences of reaction times be-
tween the conditions, reflecting that the Simon effect is an in-
crease of reaction time compared to a baseline condition (the
no-conflict condition). Note that the reaction time observed
in the no-conflict condition is comparable to the reaction time
in all conditions without corepresentation (in the individual
and social task); and the observed reaction times in the social
no-conflict and action-conflict conditions are comparable to
those in the individual task. Therefore the four experimental
conditions presented here implicitly represent 12 conditions.

Figure 5 shows the relative reaction times obtained empir-
ically and from the parameter set (9 parameters) that maxi-
mizes the correlation between empirical and simulated data.
By all reasonable means, this match is very close. In fact, we
found a large set of parameters that achieve a correlation of
0.95 or more, which we cannot show here due to space con-
straints. Suitable parameters cover a significant portion of the
parameter space, which suggests that the model is not overly
sensitive to any of its parameters.

Related Work

MOSAIC (Wolpert et al., 2003) is a computational model of
motor control that relies on forward and inverse models sim-
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Figure 5: Relative reaction times using the parameter set that
maximizes the correlation between empirical and simulated
data. Simulated data points are regression-adjusted to the em-
pirical data. Empirical data drawn from Sebanz et al. (2005).

ilar to our perception-action level. In contrast to our inten-
tional level, MOSAIC explains higher-level (collaborative)
planning with a hierarchy of control modules.

SCM (Hurley, 2008) is a description of motor control at
an intermediary level between neural-level mechanisms and
higher-level reasoning. SCM predicts how neural-level mech-
anisms enable higher-level ones, in particular those for joint
action such as imitation and mind-reading. Our motor control
models at the perception-action level borrow from SCM.

HiTEC (Haazebroek et al., 2011) is a cognitive architec-
ture of the interplay between perception and action based on
common coding theory. Representations of stimuli and ac-
tion effects share the same set of features. The architecture
has been used to represent the Simon task. Without inten-
tional mechanisms, however, higher-level modulations such
as social factors cannot easily be represented.

Conclusion
The cognitive mechanisms underlying joint action are not yet
well understood. We describe a computational architecture
of human joint action that incorporates an interplay between
higher- and lower-level coordination processes and have re-
produced results of four conditions of the social Simon task.
Our model is consistent with the referential coding account
of Dolk et al. (2014), that provides a novel approach to an-
alyzing the Simon effect. While explorations with computa-
tional models cannot directly shed light on human cognition,
c.f. (Sun, 2009), our demonstration contributes to analyses of
potential building blocks for mechanisms involved in coor-
dination in joint action – whether it be in purely human, or
human-robot interaction contexts.
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Prinz, W., & Liepelt, R. (2014). The joint Simon effect: a
review and theoretical integration. Frontiers in Psychology,
5.

Grosz, B. J., & Kraus, S. (1996). Collaborative plans for
complex group action. Artificial Intelligence, 86(2), 269–
357.

Haazebroek, P., Dantzig, S. van, & Hommel, B. (2011). A
computational model of perception and action for cognitive
robotics. Cognitive Processing, 12(4), 355–365.

Hommel, B., Colzato, L. S., & Van Den Wildenberg, W. P. M.
(2009). How social are task representations? Psychological
Science, 20, 794–798.

Hurley, S. (2008). The shared circuits model (SCM): How
control, mirroring, and simulation can enable imitation, de-
liberation, and mindreading. Behavioral and Brain Sci-
ences, 31(1), 1–22.

Knoblich, G., Butterfill, S., & Sebanz, N. (2011). Psycholog-
ical research on joint action: Theory and data. In B. Ross
(Ed.), The psychology of learning and motivation (Vol. 54,
pp. 59–101). Burlington, MA: Academic Press.

Pacherie, E. (2011). Framing joint action. Review of Philos-
ophy and Psychology, 2(2), 173-192.

Prinz, W. (1997). Perception and action planning. European
Journal of Cognitive Psychology, 9(2), 129–154.

Rao, A. S., & Georgeff, M. P. (1995). BDI agents: From
theory to practice. In Proceedings of the first international
conference on multi-agent systems (pp. 312–319).

Rumelhart, D. E., McClelland, J. L., & PDP Research Group.
(1986). Parallel distributed processing. MIT Press.

Sebanz, N., Knoblich, G., & Prinz, W. (2005). How two
share a task: Corepresenting stimulus–response mappings.
Journal of Experimental Psychology, 31(6), 1234–1246.

Simon, J. R., & Rudell, A. P. (1967). Auditory S-R compat-
ibility: The effect of an irrelevant cue on information pro-
cessing. Journal of Applied Psychology, 51(3), 300–304.

Smith, E. R., & DeCoster, J. (2000). Dual-process models
in social and cognitive psychology: Conceptual integration
and links to underlying memory systems. Personality and
Social Psychology Review, 4(2), 108–131.

Sun, R. (2009, June). Theoretical status of computational
cognitive modeling. Cognitive Systems Research, 10(2),
124–140.

Tambe, M. (1997). Towards flexible teamwork. Journal of
Artificial Intelligence Research, 7, 83–124.

Thagard, P. (2012). Cognitive architectures. In K. Frankish &
W. Ramsay (Eds.), The Cambridge Handbook of Cognitive
Science (p. 50-70). University Press.

Tuomela, R. (2000). Collective and joint intention. Mind &
Society, 1(2), 39–69.

Vesper, C. (2013). Acting together: Mechanisms of in-
tentional coordination. Unpublished doctoral disserta-
tion, Radboud Universiteit Nijmegen. Available from
http://hdl.handle.net/2066/112295

Wolpert, D. M., Doya, K., & Kawato, M. (2003). A unify-
ing computational framework for motor control and social
interaction. Philosophical Transactions of the Royal Soci-
ety of London. Series B: Biological Sciences, 358(1431),
593–602.

111



Metacognition in the Prisoner’s Dilemma 
 

Christopher A. Stevens (c.a.stevens@rug.nl), Niels A. Taatgen (n.a.taatgen@rug.nl), Fokie Cnossen 
(f.cnossen@rug.nl) 

Department of Artificial Intelligence, Nijenborgh 9 
9747 AG Groningen, The Netherlands 

 
 

Abstract 

In this paper, we show ACT-R agents capable of metacognitive 
reasoning about opponents in the repeated prisoner’s dilemma.  
Two types of metacognitive agent were developed and compared 
to a non-metacognitive agent and two fixed-strategy agents. The 
first type of metacognitive agent (opponent-perspective) takes the 
perspective of the opponent to anticipate the opponent’s future 
actions and respond accordingly.  The other metacognitive agent 
(modeler) predicts the opponent’s next move based on the previous 
moves of the agent and the opponent. The modeler agent achieves 
better individual outcomes than a non-metacognitive agent and is 
more successful at encouraging cooperation.  The opponent 
perspective agent, by contrast, fails to achieve these outcomes 
because it lacks important information about the opponent.  These 
simple agents provide insights regarding modeling of 
metacognition in more complex tasks. 

Keywords: Theory-of-mind; Metacognition; Prisoner’s 
Dilemma; ACT-R 

Metacognition in Two-Person Games 
Humans can reason about the minds of others and 

predict their behaviors, a metacognitive ability known as 
theory of mind (Premack & Woodruff, 1978).  A question of 
great current interest is why humans evolved this ability.  
One possible reason is that theory of mind allows people to 
understand and predict the actions of others (McCabe, et al., 
2000).  People can use this ability to determine whether 
another person is likely to be cooperative or competitive.  
Theory of mind might also be used to learn the strategy of 
an opponent and devise an appropriate counter-strategy 
(Hingston et al., 2007).   

The prisoner’s dilemma is a task that embodies the basic 
conflict between cooperation and competition often found in 
real-world interactions.  It is often used to study how 
various strategies may help or harm an individual’s or 
group’s chances of survival (Axelrod, 1980; Wedekind & 
Melinski, 1996; Nowak & Sigmund, 1993).  However, very 
little is known about how metacognition impacts 
performance in this task.  In the present work, we develop 
two cognitive agents that embody different metacognitive 
strategies.  We then compare the performance of these 
agents against an existing, non-metacognitive agent 
(Lebiere, Wallach, & West, 2000) and two normative 
strategies (tit-for-tat: Axelrod, 1980; win-stay-lose-shift: 
Wedekind & Melinski, 1996).   

 
 

The Prisoner’s Dilemma 
The prisoner’s dilemma is a 2 x 2 game in which players 

must choose to cooperate with their opponent (move B) or 
to defect (move A).  This results in one of four possible 
outcomes.  The following is a typical payoff matrix for the 
prisoner’s dilemma game. 

If both players consistently choose to cooperate, then they 
both will enjoy a positive payoff.  However, cooperation is 
risky, because both players have a temptation to defect.  If 
the opponent defects when a player cooperates, the 
cooperating player will lose a large number of points.  
Defection also carries risks.  When there is more than one 
round, opponents may retaliate by defecting in later rounds.  
The optimal strategy is not obvious and depends on the 
opponent.  Therefore, reasoning about an opponent’s goals 
and predicting their future behavior should provide an 
advantage (Hingston et al., 2007).  To determine if this is 
true, we developed two cognitive agents that represent 
different strategies for metacognitive reasoning. We then 
tested these agents against fixed strategies and a non-
metacognitive model. 

The ability to reason about others may have implications 
not only for individual outcomes, but also for collective 
outcomes.  De Weerd, Verbrugge, and Verheij (2013) 
developed agents with different levels of metacognitive 
ability and pitted them against one another in a negotiation 
game.  They found that agents that could reason about their 
opponents’ beliefs obtained both greater rewards for 
themselves and found opportunities for greater collective 
rewards.  In a similar way, metacognitive abilities may 
improve cooperation in the prisoner’s dilemma.  
Metacognitive agents may have an easier time predicting 
their opponents, allowing them to know when cooperation is 
possible. 

To evaluate the metacognitive agents presented here, we 
used a previous agent developed by Lebiere, Wallach, & 
West (2000) as a baseline.  This agent is built within the 
ACT-R cognitive architecture (Anderson et al., 2004).  The 
agent provides a good fit to human data, but it is not 
metacognitive because it bases its decisions only on the 
immediate payoffs of its previous moves.  It does not 

 Player 2 
 
 
Player 
1 

 Cooperate 
(B) 

Defect 
(A) 

Cooperate (B) 1,1 -10, 10 
Defect (A) 10, -10 -1, -1 
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attempt to learn its opponent’s strategy or explicitly reason 
about its opponent.  For this reason, we hereafter refer to it 
as the self-payoff agent. 

We present two types of metacognitive agent: opponent-
perspective and modeler.  The opponent-perspective agent is 
inspired by the simulation theory of mind (Gallese & 
Goldman, 1998; Meltzoff, 2007), which states that people 
reason about the mental states of another by adopting the 
other’s perspective.  On every trial, the agent computes the 
move that it would make if it was the opponent and then 
selects its own move accordingly.  

The modeler agent is inspired by opponent-modeling 
agents in the multi-agent systems literature (e.g. Hingston et 
al., 2007) as well as models of sequence learning in ACT-R 
(Lebiere & West, 1999). An opponent-modeler agent 
develops a mental model of the opponent’s strategy over 
time and attempts to predict the opponent’s next move 
probabilistically. Hingston et al. (2007) present an 
opponent-modeler that can successfully play the prisoner’s 
dilemma against a variety of other agents.  However, this 
agent is not a cognitive agent, and does not attempt to 
capture the flexibility or variability of human behavior. Our 
modeler agent extends this approach by using the 
declarative memory system of ACT-R to create a 
cognitively plausible, dynamic model of its opponent that 
can be rapidly updated to handle new information. This 
approach should be helpful for adapting to new opponents 
or strategy shifts in current opponents.   

Simulations 
In the following simulations, we use an instance-based 

learning approach to allow the agents to adapt to their 
opponents (Logan, 1988).  In this approach, the outcomes of 
previous trials are encoded as chunks in declarative 
memory.  The agents then attempt to predict outcomes or 
opponent behaviors by retrieving a chunk from memory that 
matches the current situation.  By updating the contents of 
declarative memory, the agents can adapt their strategies to 
suit their opponent.   

The likelihood of retrieval of a chunk in ACT-R is 
determined by its activation level.  The more frequently and 
recently a chunk has been used, the more active it will be.  
For all simulations, we used the full (non-optimized) 
learning equation of ACT-R: 

 

𝐵! = ln 𝑡!!!
!

!!!

+   𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐 0, 𝑠  

 
In this equation, n is the number of presentations of chunk 

i.  tj is the time since the jth presentation.  A presentation is 
either the creation of a chunk or a retrieval of that chunk.  d 
is the rate of activation decay.  By default this is set to 0.5.    
The rightmost term of the equation represents noise added to 
the activation level.  s is an ACT-R parameter that 
determines the standard deviation of the noise.  For all 
simulations reported here, we use an s value of 0.25, 

consistent with the value used in Lebiere, et al.’s (2000) 
model.  

In the following simulations, we compare the 
performance of the two metacognitive agents to the self-
payoff agent.  The aim was to determine whether 
metacognitive reasoning can give an agent more robust 
performance across a variety of agents.  To do this, we 
played all three of these agents against the self-payoff agent 
and two fixed-strategy agents.  We hypothesized that the 
metacognitive agents would have better overall performance 
across all opponents because of their greater adaptability. 

The strategies of the fixed-strategy agents were based on 
two normative strategies found in the prisoner’s dilemma 
literature: tit-for-tat (TFT; Axelrod, 1980) and win-stay-
lose-shift (WSLS) (Nowak & Sigmund, 1993).  Both of 
these strategies have been shown to provide robust 
performance against a variety of opponents. There are 
several variations of the tit-for-tat strategy, but all of the 
variations tend to copy the previous move of their opponent.  
We used a strict TFT strategy that always copied the 
previous move of the opponent.  The WSLS strategy, by 
contrast, continues to make the same move until it loses 
points, then it changes moves.   

The Self-Payoff Agent 
This agent is a replication of the model reported in 

Lebiere, et al. (2000).  It was originally designed to account 
for behavior in the prisoner’s dilemma task without 
resorting to notions of altruism or to long-term payoff 
calculations.  It does not attempt to explicitly reason about 
its opponent or predict its opponent’s behaviors.  Instead, it 
predicts the most likely payoff of each of its possible 
moves.  Then it selects the move associated with the highest 
payoff.   

The self-payoff agent remembers the previous rounds of 
the game using four declarative memory chunks.  Each 
chunk represents one of the four possible outcomes of the 
game. 

 
A1-A2 isa outcome move1 A move2 A payoff1 -1 payoff2 -1 
A1-B2 isa outcome move1 A move2 B payoff1 10 payoff2 -10 
B1-A2 isa outcome move1 B move2 A payoff1 -10 payoff2 10 
B1-B2 isa outcome move1 B move2 B payoff1 1 payoff2 1 

 
The four outcomes are A1A2, A1B2, B1A2, and B1B2.  

The first letter of the pair represents player 1’s move and the 
second letter represents player 2’s move.  The move1 and 
move2 slots represent the moves chosen by players 1 and 2 
respectively.  The payoff slots contain the number of points 
both players receive.  In every round, the model creates a 
new outcome chunk in the goal buffer.  When the model 
selects its move, it records it in the move1 slot.  At the end 
of the trial, the opponent’s move and the resulting payoffs 
are also recorded in this chunk.  

The self-payoff model uses the relative activation levels 
of these four chunks to determine the most likely outcome 
of a given move.  It does this by using a set of four 
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production rules.  The first two productions retrieve two 
outcome chunks, one in which move1 is A and one in which 
move1 is B.  The remaining productions then select move A 
if payoff A is higher or move B is payoff B is higher. 

The self-payoff agent provides a good fit to human data 
both in the prisoner’s dilemma and in other 2 x 2 games 
(Lebiere et al., 2000).  It can account for cooperative 
behavior because the A1-A2 and B1-B2 chunks should 
become more active over time (as long as the opponent is 
not a consistent defector).  When these chunks are more  
active than the other two chunks, the agent determines that 
cooperation is more profitable than defection.   

The Opponent-Perspective Agent 
The opponent-perspective agent is an adaptation of the 

Lebiere et al. (2000) model that attempts to predict the 
opponent’s move by deciding which move it would take in 
the opponent’s place.  The opponent-perspective agent 
stores the same information in memory as the self-payoff 
agents. But instead of determining its own most likely 
outcomes, it predicts the most likely outcomes for its 
opponent.  It then predicts that its opponent will select the 
move with the highest payoff.  Based on this prediction, it 
selects an appropriate response.   

Due to the nature of the prisoner’s dilemma, there is not 
an optimal countermove for each possible opponent move.  
Regardless of an opponent’s move, defecting will always 
lead to a higher immediate payoff than cooperating.  
Therefore, we designed these agents to use an imitative 
strategy.  That is, the agent will do what it thinks the 
opponent is going to do this round.  If the opponent’s 
behavior can be successfully predicted, then the agent will 
be able to find opportunities for cooperation without being 
exploited. 

The perspective model uses the same declarative chunks 
and production rules described above.  However, its 
production rules instead compare the opponent’s payoffs 
rather than its own payoffs.  Based on this comparison, the 
model will predict the opponent’s next move and select the 
same one.   

In principle, this agent should be able to perform well 
against the self-payoff agent and the normative strategies.  
The metacognitive agent uses the same payoff calculation as 
the self-payoff agent, and this should make it easier to 
predict the self-payoff agent’s moves.  The TFT and WSLS 
agents calculate their moves differently, but they are all 
based on the same principle of cautious cooperation.  When 
the opponent cooperates and punishes defection, these 
agents will tend to cooperate more.   

The Modeler Agent 
The modeler agent represents a different form of 

metacognition than the opponent-perspective agents.  The 
modeler attempts to build a mental model in declarative 
memory to predict the opponent’s most likely next move 
based upon their previous moves.  Unlike Hingston et al.’s 

(2007) opponent-modeler, the modeler makes a specific 
prediction about the move the opponent is going to make in 
the current round. Also, because it makes use of ACT-R’s 
declarative memory system, the modeler weighs information 
from more recent rounds more heavily than less recent 
rounds.  This should afford the agent greater flexibility in its 
behavior.   

Unlike the opponent-perspective agent, the modeler does 
not make any assumptions about the specific strategy used 
by the opponent.  Instead, it tracks how the opponent 
responds to each of the four possible outcomes in the game 
(double-defect, defect-cooperate, cooperate-defect, and 
double-cooperate).  It then predicts that the opponent will 
make the same move after the outcome appears again.   

The memory structure of the modeler agent is different 
from that of the self-payoff and opponent-perspective 
agents.  The model does not start with any predefined 
chunks, but after every trial, it will create a new chunk like 
the following example: 
 
SEQUENCE0 isa sequence move1 A move2 B next-move A 
 

Move1 represents the player’s move and move2 
represents the opponent’s move.  Next-move represents the 
opponent’s move on the following round.  This chunk 
represents an instance in which the agent defected and the 
opponent cooperated; in the next round, the opponent 
responded with a defection.   

Before deciding on a move, the modeler agent will 
retrieve a previous instance that matches the current 
situation.  For example, after a double-cooperation round, 
the modeler will attempt to retrieve a chunk in which both 
move1 and move2 are B.  Based on this retrieved chunk, it 
will predict the opponent’s next move.  Like the opponent-
perspective agent, the modeler will select the same move 
that it thinks its opponent is going to select.  If this 
prediction turns out to be incorrect, the modeler will create a 
new chunk to reflect the correct prediction and store it in 
memory.  If the modeler fails to retrieve a similar instance, 
it will select a move randomly. 

Simulation Results 
Fifteen simulations were run.  The self-payoff, opponent-

perspective, and modeler agents were all played against all 
other agents.  Each simulation consisted of 1000 runs of 100 
trials.  Results were averaged over the runs.  A summary of 
the performance can be found in Tables 1 and 2. 

Self-payoff 
The self-payoff agent behaved consistently with the 

version previously reported (Lebiere et al., 2000).  When the 
self-payoff agent plays against itself, some runs are strongly 
cooperative (A1A2 = 4%; B1B2 = 92%) and in others there 
is no cooperation at all (A1A2 = 96%; B1B2 = 0%).  
However, when all of the runs were averaged together, the  
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self-payoff agent demonstrated an overall tendency to 

play aggressively.  Overall, the self-payoff agent defected 
on 73% of the trials.  Given the design of the agent, it may 
seem peculiar that it has such a strong tendency to defect.  
Reinforcing the A1A2 chunk should make the cooperate  
move more appealing (because cooperating may yield +1 
rather than -1).  The answer to this puzzle may lie in the 
agent’s prediction process.  Each time the agent retrieves an 
outcome, that outcome is reinforced in declarative memory, 
even if it never occurs.  In other words, the expectations of 
the agent are self-reinforcing.  If the agent frequently 
retrieves the B1A2 chunk by chance, the B1B2 chunk may 
never have a chance to become sufficiently active. 
Moreover, cooperation is fragile because two conditions 
must be met for the model to select cooperate. The model 
must believe that defection will be punished (A1A2 > 
A1B2) and that cooperation will not be exploited (B1B2 > 
B1A2).  If the opponent cooperates too frequently, then the 
agent will attempt to exploit it.  If the opponent defects 
when the agent tries to cooperate, it will quickly retaliate.   

Against TFT, the self-payoff agent earned a low negative 
individual score and combined score.  The TFT agent 
swiftly and consistently punishes defection, but it will only 
cooperate again after its opponent has cooperated.  This 
results in a loss for the self-payoff agent, making it less 
likely to cooperate in the future.   

The self-payoff agent earned a very high score against 
WSLS, but it did so by exploiting WSLS’s cooperation.  
The average score of the WSLS agent was very low.  This is 
probably due to the self-payoff agent’s strong tendency to 
defect.  When the opponent defects, the WSLS agent loses 
points and therefore switches strategies.  As a result, the 
WSLS agent essentially became a random decision agent 
because it lost points regardless of its move.  This constant 
switching made the WSLS agent extremely vulnerable to 
exploitation.   

Opponent-Perspective 
The opponent-perspective agent performed the worst of 

the three agents.  In terms of individual outcomes, it earned 
the lowest score against the self-payoff and modeler agents.  
It performed the best against the WSLS agent, but only  

 
because it tended to exploit the WSLS agent’s cooperation.   

The self-payoff agent heavily exploited the opponent-
perspective agent, often defecting when the opponent-
perspective agent cooperated (B1A2 = 12%).  This 
happened mostly on runs in which the self-payoff agent 
very rarely cooperated.  On these runs, the opponent-
perspective agent’s A1A2 chunk and A1B2 chunk were 
both highly active (because both outcomes are very 
frequent).  The B1A2 and B1B2 chunks, on the other hand, 
only receive activation from the internal predictions of the 
model. This sometimes causes the B1B2 chunk to become 
highly active, leading the agent to predict cooperation. To 
make matters worse, when the opponent-perspective model 
chose to cooperate, it reinforced the A1B2 chunk of the self-
payoff agent, reinforcing its tendency to defect.  As a result, 
the rate of mutual cooperation was quite low. 

 Against the TFT agent, the performance of the opponent-
perspective agent was very similar to the self-payoff agent.  
It showed a slight tendency to exploit the TFT agent (A1B2 
= 5%).  And, like the self-payoff agent, the rate of mutual 
cooperation was low.  The reason why the opponent-
perspective agent is not exploited by the TFT agent is 
because the TFT agent will always answer a cooperation 
with a cooperation.  So when the TFT agent does 
unilaterally defect, the opponent-perspective agent has the 
opportunity to do the same next round.   

Like the self-payoff agent, the opponent-perspective agent 
had a strong tendency to exploit the WSLS agent.  The two 
most common outcomes were mutual defection (A1A2 = 
38%) and unilateral defection by the opponent-perspective 
agent (A1B2 = 38%).  The high activation of the A1B2 
chunk caused the opponent-perspective agent to predict that 
the WSLS agent would never cooperate because it lost 
points so frequently as a result of doing so.    

Modeler 
The modeler agent, by contrast, did succeed in both 

achieving more favorable outcomes for itself and learning to 
cooperate with other agents when possible.  The modeler 
obtained higher scores than both other agents against the 
self-payoff and the TFT agents.  It also demonstrated a high 
positive score against the WSLS agent without exploiting it. 

Agent 1 

Agent 2 

Self-payoff Opponent – 
perspective Modeler TFT WSLS 

Self-payoff -56 (±7) 27 (±13) -19 (±6) -58 (±3) 250 (±7) 
Opponent-perspective  -147 (±11) -37 (±22) -67 (±4) -56 (±3) 335 (±11)  

Modeler -46 (±4) -61(±4) -1 (±5) 9 (±6) 103 (±1) 

Agent 1 
Agent 2 

Self-payoff Opponent-perspective Modeler TFT WSLS 
Self-payoff 13 (±1) 10 (±1) 29 (±2) 11 (±2) 53 (±2) 
Opponent-perspective - 7 (±1) 13 (±2) 13 (±2) 19 (±2) 
Modeler - - 45 (±2) 51 (±3) 97 (±.1) 

Table 1. Individual Scores of Agent 1 (95% confidence intervals in parentheses) 

Table 2: Percentage of Joint Cooperation Trials  (B1B2) (95% confidence intervals in parentheses) 
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The modeler agent does not achieve perfect prediction 
against the self-payoff agent.  In fact, when the modeler 
plays against the self-payoff agent, the self-payoff agent 
achieves a higher score.  However, the modeler is more 
successful at encouraging the self-payoff agent to cooperate.  
This improves the collective score and explains why the 
modeler scores more points when it plays against the self-
payoff agent than the self-payoff agent does when it plays 
against itself.  In addition, the modeler agent is able to 
predict the self-payoff agent well enough that it can avoid 
the heavy exploitation suffered by the opponent-perspective 
agent. 

 The modeler agent achieves the highest rates of 
cooperation of all three agents, demonstrating that the agent 
can quickly learn when cooperation with an opponent is 
possible.  By a large margin, the modeler agent obtains the 
most mutually cooperative trials.  There is room for 
improvement, however.  The joint score of the modeler 
against the TFT agent is far from the ideal 200 points.  This 
is because early defection from the TFT agent can lead the 
modeler agent to expect defection and respond in kind.  This 
is not so with the WSLS agent, which changes to 
cooperation after a mutual defection. 

Discussion 
The fundamental problem for the player in the prisoner’s 

dilemma is knowing when the opponent can be trusted.  Our 
simulations suggest that metacognitive reasoning, if done 
appropriately, can help to solve this problem. Only one of 
the metacognitive agents we tested demonstrated an 
advantage over a non-metacognitive agent. The modeler 
agent was successful both in increasing its own individual 
gains and in discovering opportunities for cooperation with 
opponents. The opponent-perspective agent, however, was 
not able to achieve better outcomes for itself or find 
opportunities for cooperation. 

Overall, the modeler agent is the best of the metacognitive 
agents because of its ability to flexibly adapt to different 
opponents.  Against cooperative agents, it will quickly learn 
to cooperate and achieve positive scores.  Against 
aggressive agents, it will learn to play defensively and 
defect most of the time.  In addition, he modeler agent 
demonstrates one example of how metacognition may work 
to improve collective outcomes as well as individual 
outcomes.  In interactions like those in the prisoner’s 
dilemma, uncertainty can be a major obstacle to 
cooperation.  Metacognitive reasoning may help to make 
other agents more predictable.  When agents can be 
confident that their partners will cooperate, they may be 
more willing to cooperate themselves. 

However, the modeler agent has several important 
limitations.  One current limitation of the modeler agent is 
that it represents a very simple theory of mind because it 
does not represent the opponent’s declarative knowledge or 
beliefs.  These were not necessary for the present purposes 
because of the simplicity of the task, but modeler agents in 
more complex tasks will likely require such representations.  

An additional limitation is that it does not consider the 
relative payoffs of its choices.  Rather, it imitates the 
opponent.  This makes sense in the prisoner’s dilemma, 
where unilateral choices (AB and BA) are generally avoided 
by agents because of severe costs.  But it may not extend 
well to other tasks.  This limitation could be addressed by 
making the model make three predictions: (1) the 
opponent’s move on the current trial and (2) the opponent’s 
response to each of the agent’s possible moves. The model 
could then select the move that will lead to the highest 
immediate and future payoffs.  The same declarative chunks 
used by the model to predict the opponent’s current move 
could also be used to predict how the opponent will respond 
to the agent’s current move.  

The present simulations, together with those of Kennedy 
and Krueger (2013), highlight important challenges in 
modeling theory of mind.  A “like me” agent (Meltzoff, 
2007) may fail if the agent has access only to one strategy or 
a small number of strategies.  This prevents the agent from 
considering that the opponent may be approaching the task 
in a different way.  Kennedy and Krueger used a “like me” 
approach to develop a theory-of-mind agent that could play 
a voluntary trust game.  This agent computed that it could 
achieve the highest average score by defecting.  Believing 
that the opponent would reach the same conclusion, the 
agent always defected.  Our opponent-perspective model 
shares a similar weakness. Because the short-term payoffs 
are skewed in favor of defection, both agents predict that 
their opponents will have a strong tendency to defect.  In 
our simulations, this prevented the opponent-perspective 
agent from predicting the behavior of the more cooperative 
agents (TFT and WSLS). These results do not mean that 
taking the opponent’s perspective is not helpful.  But it may 
be necessary for agents to have access to a larger set of 
strategies so that they can find one that resembles the 
opponent’s behavior. For example, if a model had two 
strategies (e.g. one cooperative and one aggressive), it could 
make predictions for the opponent’s behavior based on both 
strategies. It could then select its own strategy based on 
which one was a better fit to the opponent’s behavior.   

A further challenge in constructing “like me” agents for 
2-person games is tracking stochasticity in an opponent’s 
behavior.  Human performance in many of these games 
contains varying degrees of noise (Lebiere & West, 1999). 
Even if an agent has access to the same memory structure 
and decision rules as an opponent, that agent may still have 
difficulty tracking moment-to-moment variations.  The 
opponent-perspective agent had a difficult time predicting 
the behavior of the self-payoff agent because it did not have 
access to its trial-by-trial predictions.  On some runs, the 
self-payoff model’s B1A2 chunk became active very early 
on by a series of chance retrievals, making it very unlikely 
to cooperate.  However, the opponent perspective model did 
not know this, and still predicted that the self-payoff model 
would cooperate. 

Opponent modeling, as opposed to the “like me,” 
approach, is a more flexible strategy for a theory of mind 
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agent.  Such agents are not limited by their own repertoire 
of strategies, and can successfully predict a wider range of 
opponents.  In some cases, this approach may also be more 
cognitively efficient because it does not require mentally 
simulating the opponent’s decision process.  These agents 
may be especially powerful in situations in which opponents 
can change strategy without warning.  If the agent has an 
adaptive declarative memory system, it could quickly 
update its mental model of the opponent and counteract the 
new strategy.   

However, opponent modeling is not without drawbacks.  
It may be harder to implement such a strategy in more 
complex tasks.  In the prisoner’s dilemma, there are only 
two possible behaviors and an opponent’s behavior is 
completely visible.  When a greater number of behaviors is 
possible, it may be more difficult for an agent to determine 
which opponent behaviors are relevant.  

These simulations do not address how well the model 
behavior replicates human behavior, nor does it show how 
the models would perform against humans.  Playing against 
humans would provide a much stronger test for the modeler 
agent, as humans are likely to employ a variety of strategies 
and change strategies as the game progresses. We are 
currently planning an experiment in which we will collect 
this data.  Of particular interest here is whether the modeler 
will be as successful in encouraging humans to cooperate as 
it is with the TFT and WSLS agents.   

The work shown here demonstrates that metacognitive 
reasoning about an opponent can improve outcomes both for 
oneself and for one’s opponent in the prisoner’s dilemma.  
By learning an opponent’s strategy, an agent can determine 
if it is safe to cooperate, or if it is better to defect.  This 
increases the probability that the agent and its partner will 
discover a stable, mutually beneficial outcome.  
Metacognition also helps an agent detect and defend itself 
against cheaters.  However, players should beware to avoid 
assuming that all opponents will play the game the same 
way they do.  We expect that these benefits extend not only 
to other simple games but also to more complex scenarios.  
It remains for further work to discover how metacognitive 
reasoning can be best employed to achieve success in these 
other tasks.  

Metacognitive reasoning about an opponent’s behavior 
can provide an advantage in the repeated prisoner’s 
dilemma.  The ability to predict an opponent’s next move 
helps to determine when it is safe to cooperate and when 
one should defect.  This suggests that performance even in 
simple games may benefit from developing a theory of mind 
about one’s opponent.  
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Abstract

We introduce the Contextual Multi-Armed Bandit task as a
method to assess decision making in uncertain environments
and test how participants behave in this task. Within an ex-
perimental paradigm named Mining in Space, participants see
4 different planets that are described by 3 different binary el-
ements (the context) and then have to decide on which planet
they want to mine (which arm to play). We find that partic-
ipants adapt their decisions to the context well and can best
be described by a Contextual Gaussian Process algorithm that
probability matches according to expected outcomes. We con-
clude that humans are well-adapted to contextualized ban-
dit problems even in potentially non-stationary environments
through probability matching, a heuristic that used to be de-
scribed as biased behavior. We argue that Contextual Bandit
problems can provide further insight into how people make de-
cisions in real world scenarios.
Keywords: Decision Making, Active Learning, Exploration-
Exploitation, Contextual Multi-Armed Bandits

Introduction
A Contextual Multi-Armed Bandit (CMAB) task is a task in
which an agent is confronted with mutliple options (“arms”
of a bandit) out of which one can be chosen. The context
describes the currently available information that can be uti-
lized to choose the best arm to play (Li et al., 2010). This
scenario is a good model for many real world problems; from
choosing what to eat, to buying clothes in a shop, all the way
to finding the right person to befriend; many situations re-
quire us to make the right choice in a given context without
the chance to actually observe the outcome of unchosen op-
tions, constantly trading-off between exploration (trying out
new things) and exploitation (maximizing expected reward).
Therefore, contextual bandit tasks might help to shed light on
how we make contextual decisions in general and on how we
integrate information into our decisions in particular.

Despite a vast amount of research on multi-armed bandit
tasks (Steyvers et al., 2009), little is known about partici-
pants’ behavior in experiments involving contextual bandits.
This is remarkable given that contextual bandits provide us
with a scenario in which, instead of treating learning and de-
cision making distinctively, participants have to learn a func-
tion that maps a context to outcomes and then act according
to their predictions of these. In that sense, contextual bandit
tasks could be seen as a quintessential scenario of everyday
decision making.

In what follows, we will introduce the contextual multi-
armed bandit task (CMAB) and probe how participants perform
in one simple version thereof. The experimental task can be
approached as both a contextual bandit as well as a so-called
restless bandit (in which the average rewards associated with

the arms vary over time) by ignoring information, but is de-
signed such that only taking the context into account will
lead to above chance performance. We will show that hu-
mans are able to learn well within the CMAB and are best de-
scribed by sensitive exploration-exploitation behavior based
on probability matching decisions to the estimated outcomes
of non-parametric Bayesian models (Srinivas et al., 2009).
These models do not try and learn one particular parametric
structure, but rather a distribution over different generating
mechanisms in a given environment. Moreover, probability
matching (also called Thompson sampling) offers a simple yet
powerful way to balance exploration and exploitation in de-
cisions, especially in non-stationary environments. The main
contributions of this paper are threefold:

1. We introduce the CMAB as an experimental paradigm and
emphasize its importance for psychological research.

2. We model human context learning as non-parametric: in-
stead of relying on an arbitrary set of parametric candidate
models, participants seem to learn in a way that represents
distributions over generating mechanisms.

3. We show that participants apply a behavior best-described
by Thompson sampling/Probability Matching. This behav-
ior has often been referred to as biased and erroneous fal-
lacy. However, it turns out to be a satisfyingly sensible
strategy in dynamic environments (see Agrawal & Goyal
2012, for further details).

Definitions and Models
Contextual Bandit Problems
Consider a game in which, in each round t = 1, . . . ,T , an
agent observes a context s

t

2 S from a set of S contexts and
has to choose an action a

t

2 A from a set of possible actions
A. The agent then receives a payoff y

t

= f (s
t

,a
t

)+ e
t

. It is
the agent’s task to take those actions that produce the high-
est payoff. As the expected payoff depends on the context,
the agent has to learn the underlying function f ; sometimes,
this may require the agent to choose an action which is not
expected to give the highest payoff, but which might provide
more information about f , thus choosing to explore rather
than exploit. As the different actions are normally described
as playing a bandit’s arm and the context provides informa-
tion that might help to find the right arm to play, these games
are called Contextual Multi-Armed Bandit tasks.

Different models can be used to learn in a contextual bandit
setting. The models applied here broadly fall within two cat-
egories: context-blind and contextual models. Context blind
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models ignore the provided context completely and only learn
based on direct feedback of the chosen arms. Contextual
models do take the context into account and therefore are gen-
erally expected to perform better than context-blind models.

We will first describe a general choice rule, then the context
blind models, and afterwards the parameterization of the two
used contextualized models (linear and Gaussian Process re-
gression) before then describing two different decision rules
that can be used for the contextual models.

Choice rule
In the psychological task considered later, the context s

t

at
time t will be the same for all arms, while the function that
maps the context to the (expected) payoff of the arm will
vary over arms. The task is therefore to learn functions f

k

for each arm that map the context to the payoff and then
choose the arm with the highest expected payoff while con-
stantly trading-off between exploration and exploitation. To
do so, the models proposed here produce n different values
q1,t ,q2,t , . . . ,qn,t to compare between the n different arms at
a time point t given the current context s

t

by some learned
function f

k

that matches the context s

t

to the considered arm
k:

q
k,t = f

k

(s
t

) (1)

This could be the mean predicted outcome for every arm or
any other value as described below. In order to transform
these values to a probability of picking a given arm arm

j

, the
values are transformed by a softmax rule with inverse tem-
perature parameter g as in Equation 2.

p(arm
t

= k) =
exp{g q

k,t}
Ân

i=1 exp{g q
i,t}

(2)

Context-blind Models
Context-blind models ignore the context completely and only
respond to the observed outcomes of arms over time.

Random choice The most simplistic context-blind model
is a random choice. This model picks every arm with equal
probability p(arm

t

= k) = 1/#arms. As this model does not
learn over time, it will provide a baseline against which all
the other models can be compared.

µ-tracking The other context-blind model is based on sim-
ple mean tracking.

q
k,t = µ̂

k,t =
1
n

t

Â
t=1

darmt=k

yt (3)

where darm
t

=k

= 1 if arm k is chosen at time t and 0 otherwise.

Contextual Models
The contextual models learn the functions f

k

that map the
context to the (expected) payoff for each arm. Here, we will
consider two contextual models: linear and Gaussian Process
regression.

Linear Regression Linear regression is a simple approach
to learn each function f

k

that relates the contexts s

t

to an
output f

k

(s
t

). Each context s

t

has values on a total of m at-
tributes, i.e., s

t

= (s1,t , . . . ,sm,t). The regression model learns
a linear function of the context attributes:

f̂

k

(s
t

) = b0 +
m

Â
i=1

b
i

s

i,t + e
t

(4)

Let s1:t = (s1, . . . ,st

) denote all the contexts encountered at
time t. The regression model is estimated from s1:t and then
used to predict new outcomes for each arm given a new con-
texts at t + 1. Once the new output has been chosen, the re-
gression model is updated and then used for the next trial with
new contexts. As this is a parametric model, it assumes that
participants approach the problem in a way that only allows
for linear effects of the context. In order for the regression
approach to not suffer from matrix deficiencies, 10 pseudo-
observations were created from a Normal distribution with
N (50,10).

Gaussian Process Regression Another class of models is
non-parametric. Instead of postulating one concrete paramet-
ric form (e.g., a linear one) out of an infinite set of possi-
ble forms (a choice that, without any further knowledge, is
arbitrary), non-parametric models implicitly assume that the
function can be represented by an infinite number of parame-
ters and let the data speak directly by the means of Bayesian
inference. One example of a non-parametric model in the
functional domain is a Gaussian Process.

A Gaussian Process (henceforth GP ) is a collection of ran-
dom variables from which every finite marginal distribution
is multivariate Gaussian. We define a mean function m(x) and
the covariance function k(x,x0) of a process f (x) as

m(x) = E[ f (x)] (5)
k(x,x0) = E[( f (x)�m(x))( f (x0)�m(x0))] (6)

A Gaussian process then can be expressed as

f (x)⇠ GP
�
m(x),k(x,x0)

�
. (7)

Even though many different covariance functions exist,
within all the examples and calculations presented here the
squared exponential covariance function with a length scale
l will be used.

cov
�

f (x
p

), f (x
q

)
�
= k(x

p

,x
q

) = exp
✓
�
|x

p

� x

q

|2

2l

◆
(8)

The lengthscale l was estimated by using gradient descent.
In the noisy situation that will be analyzed in all of the

upcoming situations, the covariance can be written as follows

cov = (y
p

,y
q

) = k(x
p

,x
q

)+s2
n

d
pq

, (9)

where d is Kronecker’s d, which is 1 if p = q and 0 otherwise.
Suppose we have collected observations y

t

=
[y1,y2, . . . ,yt

]> at inputs x
t

= {x1, . . . ,xt

}, y

t

= f (x
t

) + e
t

,
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e
t

⇠ N (0,s2), then the posterior over f is a GP with mean
m

T

(x), covariance k

T

(x,x0), and variance s2
T

(x):

m

T

(x) = k
T

(x)>(K
T

+s2I)y
T

(10)

k

T

(x,x0) = k(x,x0)�k
T

(x)>(K
T

+s2I)�1k
T

(x0) (11)

s2
T

(x) = k

T

(x,x) (12)

where k
T

(x) = [k(x1,x), . . . ,k(xT

,x)]> and K
T

is the positive
definite kernel matrix [k(x,x0)]

x,x02A

T

. The GP is used in the
same fashion as the linear model by always using all the con-
texts and observed outcomes up to time point t in order to
make predictions for time point t + 1. Therefore, a GP for
every arm over time will be estimated given the observed con-
text as shown in Equation 13.

f̂

j

(s)⇠ GP
�
m(s),k(s,s0)

�
. (13)

As a Gaussian Process is a non-parametric model for func-
tion learning, its application represents the assumption that
participants do not a priori expect one parametric form of a
function, but rather learn the form by the observed data over
time. The Gaussian Process was initialized by the use of 10
pseudo-observations as in the regression approach described
before.

Sampling strategies
Let us now look at the different algorithms that can be used to
apply the two contextual models in a CMAB. Sampling strate-
gies here mean different ways by which one could come up
with a choice of an arm, given the estimated expected out-
comes at a given time.

Upper Confidence Bounds The upper confidence bound
algorithm estimates a trade-off between the current expected
value and the variance per arm and optimistically picks the
arm with the highest upper confidence bound. This algorithm
has been shown to perform well in many real world contex-
tual bandit tasks (Krause & Ong, 2011). The way a UCB-
sampling agent would select an arm is described in Algorithm
1.

Algorithm 1 Upper Confidence Bands Sampling
Require: Context s; Models M

j,t�1
for t = 1,2, . . . ,T do
Choose arm⇤

jt

= argmax µ(M
j,t�1(s))+1.96s(M

j,t�1(s))
Sample y

t

= f (arm⇤
jt

)+ e
t

Update M
j,t�1 ! M

j,t

end for

The trade-off is based on a confidence interval approxima-
tion based on a normal distribution and therefore the trade-off
parameter is set to 1.96, marking the 95% confidence interval.
The UCB-algorithm can be seen as a selection strategy with
an exploration bonus, where the bonus depends on the confi-
dence interval of the estimated mean return. As we will need
probability estimates to model participants choices later on,

the estimates for arm⇤
jt

were fed into the softmax equation
described above.

Thompson Sampling Thompson sampling chooses each
arm according to the (subjective) probability that it provides
the highest payoff out of all the available arms, given the con-
text (May et al., 2012). This is a form of probability match-
ing. The algorithm can be implemented by sampling for each
arm a payoff according to the learned models of the arms,
and then choose the arm with the highest sampled payoff.
Even though this model seems very simplistic, it can perform
reasonably well in contextual bandit tasks and can describe
human choices in (non-contextual) restless bandit tasks well
(Speekenbrink & Konstantinidis, 2014). Whereas psychol-
ogy has looked at probability matching as an inferior strategy
of decision making for a long time, it has been shown to per-
form well in many restless bandit tasks and can easily adapt
to changing environments as it still keeps on exploring other
options over time.
An agent following the Thomson sampling algorithm would
pick the next arm as described in Algorithm 2.

Algorithm 2 Thompson Sampling
Require: Contexts s1:T ; Models M

j

for t = 1,2, . . . ,T do
for arm

k,t ,k = 1, . . . ,n do
Sample y

⇤
k,t�1 ⇠ M

k,t�1(st

)
end for
Choose arm

t

= argmax
k

y

⇤
k,t

Sample y

t

= f (arm
t

)+ e
t

Update M
j,t�1 ! M

j,t

end for

Main advantages of Thompson sampling are (1) that it does
not rely on additional parameter tuning, and (2) that it can
adapt to many diverse environments. The probability of an
arm to be chosen was calculated as shown in Equation 14.

p(arm
t

= k) = p(8 j 6= k : y

⇤
k,t � y

⇤
j,t) (14)

This means that each arm is predicted to be chosen by its
probability to produce the highest outcome at a given time.

Summary of all models
Taking all of the models (context-blind and contextual) and
choice rules together results in the models shown in Table 1.

Class Algorithm Description
Context- Random Picks at random
blind µ-tracking Picks tracked mean
Linear UCB Picks upper confidence band

Thompson Probability matching
Gaussian UCB Picks upper confidence band
Process Thompson Probability matching

Table 1: Summary of all used models

120



Experiment : Contextual Bandit Task
The experiment was designed to test if participants are able
to learn in a contextual bandit task. It used a relatively simple
description of the context s and the different arms. Within
this first CMAB experiment we focused on a task with three
binary context variables that could either be on (+) or off (-)
and 4 different arms.

Contextual Bandit setting
The outcomes of the different arms in dependency of the con-
text are shown in Equations 14-17.

y1,t = 50+15⇥ s1,t �15⇥ s2,t + e1,t (15)
y2,t = 50+15⇥ s2,t �15⇥ s3,t + e2,t (16)
y3,t = 50+15⇥ s3,t �15⇥ s1,t + e3,t (17)
y4,t = 50+ e4,t , (18)

with e
k,t ⇠ N (0,5). This means that each arm reacted dif-

ferently to the context s

t

= (s1,t ,s2,t ,s3,t) through linear func-
tions, producing an outcome f

k

(s
t

)+e
k,t as described before.

For all different contexts, the probability of being + was set
to p(s

j,t = +) = 0.5. The different arms were deliberately set
up such that all the expected values are the same, E[y

k,t ] = 50
over time in order to avoid first order stochastic dominance
of context-blind choices1. This means that the only way to
gain higher values than the individual bandits’ averages is by
learning how the different factors influence the arms within
every trial. The context-blind strategies therefore would not
perform better than chance. Moreover, introducing an arm
that only returns the overall mean with some added noise
(Arm 4) helps us to distinguish even further between contex-
tual and context-blind models. As context blind models only
take the outcome into account, they should prefer Arm 4 as
it produces the same mean over time, but exhibits less vari-
ance and therefore second order dominates all the other arms.
Contextual models on the other hand should (at the end) al-
most never select Arm 4 as taking the context into account
will generally lead to better outcomes than the simple mean
alone.

Methods
Participants 47 participants (26 males, age: M = 31.9,
SD = 8.2) were recruited via Amazon Mechanical Turk and
received $0.3 plus a performance-dependent bonus of up to
$0.5 as a reward. None of the participants were excluded
from the remaining analysis.

Design Participants were told that they had to mine for
“Emeralds” on different planets. Moreover, it was explained
that at each time of mining the galaxy was described by 3
different environmental factors, “Mercury”, “Krypton”, and
“Nobelium”, that could either be on (+) or off (-) and had
different effects on different planets. Participants were told
that they had to maximize the overall production of Emeralds

1Situations only containing - or + were not used

over time by learning how the different elements influence the
planets and then picking the planet they thought would pro-
duce the highest outcome, given the currently available ele-
ments. It was explicitly noted that different planets can react
differently to different elements. The total number of trials
was fixed to be 150 and the experiment was well-received on
Mechanical Turk.2
Notice that this task exactly corresponds to the contextualized
multi-armed bandit problem described above, where different
planets represent different arms and different elements rep-
resent the context. This means that a good strategy would
involve a trade-off between learning the 4 different func-
tions describing how the elements influence each planet and
then maximizing the expected outcome by choosing the right
planet (arm) at a given time and context. A screenshot can be
seen in Figure 1.

Figure 1: Screenshot of the Experiment

Which planet corresponded to which of the pay-off func-
tions described above was assigned randomly before the start
of the experiment.

Analysis All models were fitted by maximum likelihood.
We assessed the ability for each of the 6 models to predict
participants’ choices over all trials and calculated Akaike’s
“An Information Criterion” (AIC) by finding the best in-
verse temperature parameter g through a combination of
golden section search and successive parabolic interpolation
provided by the R-function optimize for all continuous
outcomes (the UCB and the µ-tracker) or by using the
estimated probabilities directly (for Thompson sampling).
The AIC here is based on the log-likelihood of the predicted
probabilities for eah chosen arm over all trials.

Hypotheses
Based on our conjectures above, we hypothesized the follow-
ing 3 findings a priori:

2Search for Eric Schulz on Turkopticon
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1. Participants will be able to learn how the context depends
on the outcomes and therefore will be generally better de-
scribed by contextual than by context-blind models.

2. Instead of one particular parametric strategy, participants
will approach the problem in a non-parametric way allow-
ing them to potentially learn different types of functions, if
need arose. Therefore, participants will be better described
by the Gaussian Process than by the linear model.

3. Instead of maximizing output by a deliberate mean-
variance trade-off, participants approach dynamic deci-
sion making problems by utilizing a probability match-
ing heuristic. Thus, they will be better described by the
Thompson sampling choice rule than by the Upper Confi-
dence Band approach.

Results
Figure 2 shows the raw data for each participant over all 150
trials.
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Figure 2: Obtained payoff for each participant at each trial.

In Figure 2, participants are ordered in ascending order ac-
cording to their mean overall performance. It can be seen
that almost all participants received higher payoffs towards
the end. Moreover, some participants (the top half) seem to
learn the functions very well and then consistently produced
high scores over time. In the lower half, however, there are a
few participants who do not seem to learn the functions too
well.

Most participants also performed better than chance (an av-
erage score of higher than 50) as is displayed in the histogram
of average rewards per participant shown in Figure 3.
Indeed, performing a simple t-test against µ = 50 confirmed
that most participants performed above chance with t(46) =
7.17, p < 0.01.
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Figure 3: Average payoff per round. More participants per
count are marked by a lighter blue.

Even though some participants performed below chance,
we did not exclude any of them from the analysis described
next as we did not want to bias our results in favor of the
contextual models. The overall performance of all models is
shown in Table 2.

Table 2: Average AIC, standard deviations, and the number
of participants best fit by the different models.

Model AIC

mean

AIC

SD

#best
Random 415.9 0 5
µ-tracking 412.9 5 6
Linear-UCB 387.8 34 4
Linear-Thompson 383.0 46 15
GP-UCB 389.4 34 3
GP-Thompson 381.6⇤ 42 18⇤

The 5 participants that were best described by the Random
model were also among the participants who performed at
chance level as shown in Figure 3.
It can clearly be seen that the contextual models described
participants behavior better than the two context-blind mod-
els. Taken together, only 7 participants were best described
by the context-blind models, whereas 40 participants were
best described by the contextual models.

The Gaussian Process models described more participants
best than the linear regression models (21 vs. 19). Even
though this is only a small difference, it is evermore surpris-
ing as the linear model here would be the best description of
the underlying system a priori – the task is a linear system
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after all. What this tells us is that instead of approaching the
problem with a fixed parametric representation in mind, par-
ticipants might indeed apply a learning strategy that is more
easily adaptable to other scenarios than a linear one. Lastly,
more people were described best by the probability matching
algorithm of the Thompson sampler than by the expectation-
variance-trade-off calculation of the UCB (33 vs. 7). This
indicates that participants seem to apply this heuristic. Proba-
bility matching has been described as rather dumb in the past.
However, in situations where the goal is to trade-off between
exploration and exploitation, this heuristic is actually a smart
strategy as it keeps exploring while at the same time generat-
ing high outcomes (Agrawal & Goyal, 2012).

That participants actually do learn over time while also
sticking to some exploratory behavior can be see in Figure 4.

Score

Trials

Figure 4: Density of outcome over participants per round.

As participants learn over time, the density for higher scores
goes up and the density for lower scores goes down.

Discussion and Conclusion
We have introduced the Contextual Multi-Armed Bandit task
as a new paradigm to assess participants’ decision making in
uncertain environments. Within this task, participants were
able to learn the underlying structure well and took the pro-
vided context into account. Overall, most participants per-
formed above chance and were best described by a GP-based
Thompson sampling algorithm. That participants were best
described by a Gaussian Process seems to suggest that –
instead of having one specific parametrized representation of
the environment– people learn by the means of general effec-
tive strategies that can potentially adapt to new or changing
environments if required. However, future studies will have
to replicate this findings in other domains. The good perfor-
mance of the Thompson sampler fits well into past findings

as Speekenbrink & Konstantinidis (2014) found that Thomp-
son sampling predicts participants’ choices well in a restless
bandit task. Moreover, this means that probability match-
ing, a behavior that used to be frowned upon as irrational,
provides a sensitive strategy that people might actually ap-
ply in exploration-exploitation scenarios. In conclusion, all
of our three main hypotheses were confirmed. This research
can only be seen as a first step into research on contextual
bandit problems. Future studies could try to assess how peo-
ple behave in scenarios where more context is given either
by creating a multi-context environment (for example, one
context per planet) or by providing continuous context vari-
ables (for example, values between 0 and 10). Another option
could be to assess how participants learn in a multi-context-
multi-function environment, that is an environment where the
different contexts relate to arms in different ways. As we
have found that Thompson sampling can provide a good de-
scription of participants’ behavior and Thompson sampling
is known to be well-adapted towards dynamically changing
environments, a future experiments could try to model partic-
ipants’ behavior in dynamic tasks, where the reward structure
changes over time or with the number of times a given option
has been chosen.

Here, we have introduced a comparison between a linear
model and Gaussian process in what can essentially be de-
scribed as an active learning task. However, in future experi-
ments we aim to try and compare even more elaborate models
within this context. Using an active learning domain as a plat-
form for model comparison might be another useful approach
to decide among models from a list of seemingly endless con-
testants (Schulz et al., 2014).
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Abstract 

Surprise is a ubiquitous phenomenon that is implicated in 
many areas of cognition, from learning, to decision making, 
to creativity. For example, it has recently been proposed as a 
trigger for learning in robotic agent architectures. This paper 
describes a novel cognitive model of surprise based on the 
idea that surprise is fundamentally about explaining why the 
surprising event occurred; events that can be explained easily 
are less surprising than those that are more difficult to 
explain. Using explanations that people have produced, this 
surprise model builds a directed graph of explanations that 
link the setting and outcome of a given scenario, and uses this 
graph to predict surprise ratings. Simulations are reported 
which show that the model’s performance corresponds 
closely to the psychological evidence, as measured by 
people’s ratings of different surprising scenarios. 

Keywords: surprise; explanation; cognitive; judgments 

1. Introduction 

The phenomenon of surprise has been intensively 

researched since Darwin’s time, perhaps because it involves 

an interesting mixture of emotion and cognition. Though 

surprise clearly involves an emotional reaction (often 

accompanied by a startle response), it also seems to serve a 

strategic, cognitive goal, as it directs attention to explain 

why the surprising event occurred and to learn for the future 

(e.g., Ranganath & Rainer, 2003). Originally conceived of 

as a “basic emotion” (e.g., Darwin, 1872; Ekman & Friesen, 

1971; Izard, 1977; Tomkins, 1962), more recently surprise 

has been re-appraised as a cognitive state because, unlike 

most emotions, it can be either positively or negatively 

valenced (Ortony & Turner, 1990).  

In Artificial Intelligence, Macedo, Cardoso, Reisenzein, 

Lorini, and Castelfranchi (2009) have argued that any agent 

operating in a changing and imperfectly known environment 

needs a surprise mechanism to survive. Specifically, 

surprise is considered an essential requirement in robotic, 

agent architectures to identify learning events (e.g., Macedo, 

Reisenzein, & Cardoso, 2004).  

In Cognitive Psychology, theories of surprise fall into two 

identifiable camps, the “expectation” and “sense-making” 

approaches. Expectation theories focus on the properties of 

surprising outcomes, characterizing them as low-probability 

events, disconfirmed expectations, schema-discrepant 

events or events of contrasting probabilities (e.g., Meyer, 

Reisenzein, & Schützwohl, 1997; Reisenzein & Studtmann, 

2007; Teigen & Keren, 2002, 2003). Sense-making theories 

stress the importance of understanding and integrating the 

surprising event, a task often carried out retrospectively 

rather than predictively (e.g., Kahneman & Miller, 1986; 

Maguire, Maguire, & Keane, 2011). While this theoretical 

opposition is real, they may actually be complementary, 

addressing different classes of events (see section 1.1). 

The current paper focuses on sense-making aspects of 

surprise, where the sense-making process is cast as 

explanation formation; people’s perception of surprise is a 

metacognitive estimate of the cognitive work involved in 

explaining a surprising event (see Foster & Keane, 2013). 

Stated simply, some surprises are more surprising because 

they are harder to explain. Though both are surprising 

events, it is more surprising to hear that an X-Factor teen 

contestant has died, than it is, unfortunately, to hear that 

Amy Winehouse has died (given her pre-history of 

substance abuse), because the former is harder to explain 

than the latter (although, as surprise is a subjective 

experience, this can depend on the individuals level of 

knowledge surrounding each event). Traditionally, 

explanation is seen as playing a role in building causal 

models or predictive schemas to deal with future events 

(Heider, 1958; Lombrozo & Carey, 2006). However, apart 

from having a predictive role when a new situation is 

initially encountered, explanation may also serve to help 

people decide how information should be weighted or how 

attention should be allocated, as events occur (Keil, 2006). 

In the remainder of this section, before presenting our model 

of surprise, we briefly consider broad categories of 

surprising events, and previous models proposed from 

probabilistic and sense-making perspectives. 

1.1 Categories of Surprising Events 

The theoretical division between expectation and sense-

making accounts of surprise may reflect a different 

emphasis on two broad classes of scenario. Some scenarios 

invite the formation of definite expectations, whereas others 

do not. For example, if a coin is tossed in the air, it is 

reasonable to develop the expectation that it will come down 

as either heads or tails. If someone is running a race, it is 

reasonable to develop expectations that they will win (or 

lose). However, if you are sitting at home watching TV, you 

are unlikely to develop the expectation that a rock will come 

through the window. If you are watching a teenage X-Factor 

contestant singing on TV, it is not reasonable to develop the 

expectation that they will die an hour from now. Indeed, 

many everyday scenarios are probably ones in which people 

do not generate expectations for every possible outcome of 

the scenario before-the-fact. As Ortony and Partridge have 
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noted: “It is not realistic to suppose that a system with goals 

and tasks to perform is at the same time randomly spawning 

inferences about unrelated and improbable possibilities” 

(p.107, 1987).  

As we shall see in the following sections, this distinction 

between two broad classes of surprising event – those that 

are prior-expectation-inviting and those that are not prior-

expectation-inviting – is important, as the latter present 

specific issues for probabilistic accounts that do not arise for 

sense-making interpretations of surprise. 

1.2 A Probabilistic Model of Surprise 

Most of the existing computational models of surprise are 

framed from the expectation-disconfirmation perspective 

rather than the sense-making one (see, e.g., Bae & Young, 

2008; Lorini & Castelfranchi, 2006, 2007; Macedo & 

Cardoso, 2001; Macedo et al., 2004; Baldi & Itti, 2010). For 

example, Baldi and Itti’s (2010) Bayesian theory of surprise, 

mathematically defines surprise as the effect that an event 

has on an observer; specifically, surprise is defined as the 

distance between prior and posterior belief distributions (see 

also Itti & Baldi, 2006, 2009). They have shown this theory 

of surprise to work well in predicting human gaze by 

computing surprise over images and video stimuli in a 

computer vision system using a neural network architecture. 

However, Itti and Baldi (2009) note that a consistent 

definition of surprise (using a Bayesian framework), must 

involve prior and posterior distributions to capture 

subjective expectations. So, for this theory prior beliefs (i.e., 

expectations) necessarily need to be computed so that the 

change between prior and posterior belief distributions can 

be calculated. As such, the theory cannot account for 

instances of surprise in which expectations are not 

computed in advance.  

Many other probabilistic models recognize that this 

“missing-expectations problem” needs to be addressed. For 

instance, Bae and Young (2008) employ the notion of 

postdictability in their model of surprise in narratives. That 

is, often in a narrative there is a “hidden truth” revealed at 

the end of a story that resolves some surprising event, where 

this resolution essentially involves an after-the-fact 

explanation step. Similarly, Macedo and Cardoso (2001; 

Macedo et al., 2004) draw on both the cognitive-

psychoevolutionary model of surprise and Ortony and 

Partridge’s (1987) distinction between active and passive 

expectations to model surprise. Passive expectations are 

those that cause the agent to be surprised after-the-fact; 

cognitive attempts to retrospectively construct what they 

could have expected to happen. However, they still rely on 

expectations, and, as such, are distinct from more sense-

making, explanation-based proposals for surprise. 

At present, it is not wholly clear how the missing-

expectation problem might be best handled within the 

probabilistic framework. What can be said is that, at the 

very least, it requires some “retrospective machinery” to 

recover what expectations should have been adopted, after-

the-fact. As we shall see, these issues do not arise for sense-

making accounts, as they fundamentally operate in a 

retrospective way; they typically see surprise as a process of 

resolving some inconsistency after the event occurs. 

1.3 A Sense-Making Model of Surprise 

We know of only one fully-implemented computational 

model adopting the sense-making perspective; that 

developed by Maguire, Costello and Keane (2006), based on 

Grimes-Maguire and Keane’s (2005) theory of 

Representation-Fit (see also Maguire et al., 2011). It 

conceptualizes surprise as a representation-fitting process of 

integrating surprising events with existing schemas, as 

opposed to a process of expectation disconfirmation. Their 

model consists of two parts: an integration stage and an 

analysis stage, utilizing many ideas from Connell and 

Keane’s (2006) Plausibility Analysis Model (PAM). The 

integration stage links each event in a scenario with those 

that have happened already so that a current, coherent 

representation is formed, and a total incoherency score for 

the scenario is created, based on the ratio of linked concepts 

to unlinked concepts. Then, the analysis stage involves a 

systematic assessment of this representation; calculating the 

surprise for a given event. For this assessment, the model 

detects factors that are both directly supportive of the 

surprising event, and those that are vaguely supportive of it. 

Using WordNet (cf. Miller, 1995) as a foundation for their 

knowledge base, they showed this model of surprise to be 

consistent in predicting people’s surprise ratings for a series 

of short stories with predictable, neutral, and unpredictable 

outcomes. However, this approach could, possibly, be 

linked with an expectation account, as degree-of-expectation 

could be seen as a function of this incoherency score. 

Having reviewed the main issues in previous theories and 

models of surprise, in the remainder of the paper we 

advance a new sense-making model, the Explanatory 

Analysis Model of Surprise (EAMoS) based on Foster and 

Keane’s (2015) Metacognitive Explanation-Based (MEB) 

theory of surprise. Like Maguire et al.’s (2006) model, the 

present model focuses on several studies of surprise in 

discourse (see Maguire et al., 2011; Foster & Keane, 2013, 

2015). Hence, before presenting the model, we briefly 

review this empirical evidence. 

2. Recent Evidence on Surprise  

There is now a considerable body of empirical work on 

aspects of surprise in discourse (e.g., Grimes-Maguire & 

Keane, 2005; Gendolla & Koller, 2001; Maguire et al. 2011; 

Foster & Keane, 2013). This work makes use of simple 

stories describing surprising events, presented to people 

before asking them to judge the surprisingness of the 

outcome. So, for example, for the story in Table 1, people 

would typically read the key sentences one at a time, before 

being shown the outcome and asked to rate its 

surprisingness. This research has revealed several 

interesting aspects of surprise behavior. For instance, Foster 

and Keane (2013) have recently shown that some surprising 

events may be “known” or “less-known”; that is, some 
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surprising events may have “ready-made” explanations for 

them, whereas others do not (see also Schank, 1986). 

Imagine, one day you are walking home and discover that 

your wallet is missing from the pocket of your jeans. You 

would be surprised, but also have some ready explanations 

for what might have occurred (e.g., “Could it have been 

robbed?”, “Might I have dropped it?”). Now, imagine you 

are walking home and discover that your belt is missing 

from the waist of your jeans. Again, you would be 

surprised, but few explanations present themselves (the only 

one we could think of, eventually, was leaving one’s belt in 

the security area at the airport). So, here, a small change in 

the object mentioned in the outcome (i.e., wallet or belt) 

subtly changes the activated knowledge, altering the ease 

with which the surprise is resolved. 

 

 
 

Figure 1: Mean surprise judgments across scenarios for both 

levels of Outcome-Type (known vs. less-known) (Foster & 

Keane, 2013, Experiments 1 & 2) with standard errors. 

 

Foster and Keane (2013) operationalized this known/less-

known dimension for these story materials using (i) a pre-

test sorting task by an independent group of participants and 

(ii) Latent Semantic Analysis (LSA) coherence scores (cf. 

Landauer & Dumais, 1997). They showed that these 

different classes of outcomes either eased or inhibited the 

process of explanation and, respectively, reduced or 

increased the experienced surprise associated with the 

scenario (as measured by surprise ratings). Importantly, 

Foster and Keane also asked participants to explain the 

surprising outcomes; thus providing data about the range of 

possible explanations used (data that forms the basis for the 

current simulations). The procedures in the Foster and 

Keane (2013) experiments were similar. In both, 

participants were asked to read nine stories and to judge the 

surprisingness of their outcomes. The participants in one 

condition (explanation) were asked to produce the first 

explanation they could think of for why the outcome may 

have occurred, before rating it for surprise; in a second 

condition (comprehension), participants were asked to 

answer two simple comprehension questions about the 

scenario before rating it for surprise. In both experiments 

participants rated their surprise on a scale from 1-7, with 1: 

not surprising and 7: very surprising. As predicted, Foster 

and Keane (2013) found main effects for the known/less-

known dimension (see Figure 1). These are the results 

modeled in the following simulation. 

3. Presenting EAMoS: An Explanatory 

Analysis Model of Surprise 

The current novel sense-making model, EAMoS, is based 

on the MEB theory of surprise (Foster & Keane, 2015). 

EAMoS takes a different, simpler approach to previous 

models of surprise, focusing on the structure of the set of 

explanations for a given surprising event. We posit that 

every surprising scenario has an explanatory structure, 

consisting of a space of putative explanations that link the 

outcome to its preceding setting (see also Leake, 1991; 

Schank, Kass, & Riesbeck, 1994), and that surprise is 

resolved by building an explanation to relate the setting to 

the outcome. The shape of the explanation space for a given 

scenario determines whether it will furnish explanations that 

emerge easily (i.e., almost as in “normal” comprehension) 

or whether this requires more concerted cognitive effort (at 

the extreme, even involving conscious problem solving).  

   Following these proposals, the present model 

conceptualizes the explanation space as a graph of the set of 

explanations for the surprising event, and analyses the 

structure of this graph to predict the surprisingness of the 

outcome. Note, the model has no mechanics for generating 

explanations per se; but rather builds its graph from 

provided text descriptions of people’s explanations gathered 

in previous experiments. 

Table 1: Sample scenario used by Foster & Keane (2013, 

Experiments 1 & 2). 

 

Setting 
Rebecca is on the beach. 

She goes for a swim in the water 

Outcome 

Known Less-Known 

After she dries herself off 

she notices that her skin 

has turned red. 

After she dries herself off 

she notices that her skin 

has turned turquoise. 

 

2.1 How EAMoS Works 

Operationally, EAMoS takes scenarios consisting of pairs of 

setting and outcome inputs (e.g., see Table 1), and 

explanations that were produced for these scenarios by 

groups of participants in previous empirical work (Foster & 

Keane, 2013). No changes were made to these explanations 

before they were read in to the model, aside from the 

correction of some spelling mistakes. EAMoS uses these 

explanations to build an explanation graph; that is, a 

directed graph, G, from setting to outcome (e.g., see Fig. 2). 

It then outputs a surprise rating for the outcome described in 

the scenario.  

 

2.1.1 Phase One: Populating the Explanation Space The 

model itself first reads in the setting of the scenario for 

which it is judging surprise, followed by the explanations 

and the outcome in question. These settings and outcomes 

are pre-processed (i.e., punctuation, capitalization, and stop 
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words
1
 are removed, and stems/root-forms are determined 

where appropriate), and represented as single nodes (see 

Fig. 2). The explanation text-strings are processed in more 

detail: The explanations used to populate G are pre-

processed, but otherwise are used as given by people. After 

this pre-processing step, G is built as the set of nodes; every 

entity in each explanation string that remains after pre-

processing becomes a node in G. For each node, a directed 

edge is added to the graph for (i) every pair of consecutive 

entities in an explanation, (ii) from the setting to the first 

entity, and (iii) from the last entity to the outcome. 

 

 
 

Figure 2: Simplified explanation structure produced by 

EAMoS for the known variant of the Rebecca scenario (see 

Table 1) using only four explanations. 

 

If two entities in different explanation strings are the same 

(such as “water” in the simple explanation structure 

demonstrated in Fig. 2), then they are represented as a single 

node in G, though the edges between this entity and those 

consecutive to it may differ for the two different 

explanations. So, the explanations “she has been sunburned 

through the water” and “the water was cold” both include 

“water” in their representation in G, but each explanation 

path can be traced distinctly through G from setting to 

outcome. Thus, the relatively simple computational process 

described above produces G, which encodes the 

approximate relationship and overlap among all the entities 

in the provided explanations for each outcome.  

 

2.1.2 Phase Two: Calculating Surprise EAMoS’s analysis 

takes as its core input two variables from G to represent the 

explanatory structure of that scenario: (i) the number of 

edges, and (ii) the number of nodes. It also counts the total 

                                                           
1 Default English stop words list used: www.ranks.nl/stopwords 

number of given entities (Given Information; Total GI) 

provided in the setting and outcome, and the number of 

given entities that are used as nodes in G (GI Used). 

EAMoS uses these variables, scaled by the number of 

explanations included in the building of G, to calculate 

surprise by applying a function that ascertains the difficulty 

of explaining the outcome, shown in Figure 3. Theoretically, 

this function is based on MEB’s idea that surprise is based 

on explanation; the structure of the explanation space is an 

approximation for how easy or difficult this process will be. 

Surprise increases as the ratio between edges and nodes 

increases. Surprise decreases when more of the given 

entities are used in explanations. This is scaled by the 

number of explanations that were used to populate G. 
 

 

 

Figure 3: The surprise function used by EAMoS. 

2.2 Model Simulation and Evaluation 

To evaluate the model, we compared the surprise ratings 

that EAMoS produces to the ratings produced by 

participants in two experiments reported by Foster and 

Keane (2013, Experiments 1 & 2). In this simulation, the 

model was run on the exact same scenarios presented to the 

human participants.  

 

2.2.1 Simulation Setup For the purposes of the simulation, 

the mean surprise rating of each scenario was used. The 

model took as input each scenario, built the explanations 

graph for each setting and outcome pair, and produced 

surprise ratings using the formula in Figure 3. These ratings 

were then normalized and translated into a number between 

1 and 7, to allow for direct comparison with human ratings 

from Foster and Keane (2013). The two experiments used 

18 different story scenarios, all of which were used in the 

simulation; the mean surprise ratings for each scenario were 

recovered from the raw data of participant responses. 

 

 
 

Figure 4: EAMoS’s output against human surprise ratings. 

Explanations used: 

1. The water was 

cold.  

2. She is cold.  

3. She has been 

sunburned through 

the water.  

4. She has sunburn. 
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2.2.1 Results and Discussion EAMoS returned surprise 

scores that were highly correlated with the human data (N = 

95) from Foster and Keane (2013), r(16) = 0.771, p = 

0.0002. At a finer level of detail, EAMoS’s surprise ratings 

correlated with the data for both Experiment 1, r(16) = 

0.737, p = 0.0005, and Experiment 2, r(16) = 0.779, p = 

0.0001. A regression analysis confirmed that EAMoS’s 

output could be used to predict human performance in 

surprise ratings, again when the total data set was used, R
2 

= 

0.594, p = 0.0002 (see Figure 4 for a scatterplot of the 

relationship between model output and participant means), 

and individually, for Experiment 1, R
2 

= 0.544, p = 0.0005 

and for Experiment 2, R
2 

= 0.607, p = 0.0001. Next, we 

wanted to see how the model would perform in relation to 

the two levels of Outcome-type, known and less-known. 

Accordingly, we performed an independent measures t-test, 

which revealed a significant difference between the surprise 

ratings produced by the model for known and less-known 

Outcome-types, t(16) = -2.66, p = 0.017, 2-tailed. As 

expected, the model scored the less-known scenarios as 

more surprising (M = 4.36, SD = .764) than the known 

scenarios (M = 3.55, SD = .504). This compares favorably to 

the experimental results and suggests that the model was 

able to represent the different explanation structures 

afforded by the two levels of Outcome-type.  

Table 2: Sensitivity analysis detailing correlations when 

weights are varied for nodes and edges in EAMoS’s 

analyses (**Correlation is significant at <.001). 

 
 Edges 

N
o

d
e
s 

Weights 0% 25% 50% 75% 100% 

0% -.002 -.048 -.047 -.047 -.047 

25% -.180 .775** .772** .771** .771** 

50% -.180 .775** .772** .771** .771** 

75% -.180 .775** .772** .771** .771** 

100% -.180 .775** .772** .771** .771** 

 

2.3 Sensitivity Analysis: Robustness of Model and 

Contribution of Different Variables   

We then systematically varied the weights of the two core 

contributing variables (edges and nodes) to ascertain the 

robustness of the model. Table 2 displays the resulting 

correlations when varying the weights for the number of 

nodes (0-100%) and the number of edges (0-100%). As one 

cannot divide by zero, the top row of the table represents the 

model output if the node variable is removed entirely from 

the formula. As can be seen, when either nodes or edges are 

not taken into account, the correlations are not reliable, 

whereas, as the formula uses both of these variables in a 

ratio relationship, equally increasing the weight attached to 

either of these variables merely scales the variable 

differently and has no major effect on the model’s highly 

significant correlations with human surprise judgments. 

Although the correlations are slightly higher when the edges 

variable is weighted at 25%, we wished to avoid over fitting 

the model to this data set, so have not altered the formula to 

reflect this. Overall, these findings suggest that our 

approach of not weighting the variables separately is a 

succinct and suitable approach. 

3. General Discussion 

Previous models have approached the modelling of surprise 

largely from an expectation-disconfirmation perspective. In 

this paper we have described a computational model of 

surprise that takes the novel approach of using explanation 

structure to predict surprise ratings for a variety of 

scenarios. Simulations have shown a strong correspondence 

between predictions made by EAMoS and participant 

generated surprise ratings, and the model has tested 

favorably for reliability. Although the scenarios used in the 

simulation detailed here have been short, simple textual 

descriptions of events, we believe that the model could be 

extended to predict surprise in more extended discourse, and 

in real life situations – indeed, for any situation in which 

explanations for why the event occurred can be computed .   

One future direction that we are currently implementing is 

to alter the model to predict surprise for individual 

participants, rather than at the group level. Another fruitful 

direction could be to include a semantic knowledge base; 

although the simplicity of this model works well in 

predicting human surprise, allowing the model to match, 

say, “sea” with “water” in explanations for the Rebecca 

scenario described above, may provide even more accurate 

predictions. 

In conclusion, this work has shown that surprise can be 

predicted by a simple analysis of explanations that link 

preceding settings with target surprising outcomes. These 

initial simulations are promising, and even in the simple 

form presented here the model correlates strongly with 

people’s surprise ratings. In addition to providing further 

support for the MEB theory of surprise by illustrating that 

explanation plays a key role in surprise, these results point 

to promising future research directions for surprise that have 

not been previously explored. 
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Abstract

It is well known that working memory performance changes
with age. Two recent computational models of working mem-
ory, TBRS* and SOB-CS, corresponding to two distinct causes
of forgetting, namely time-based decay and interference, are
applied on a set of complex span data produced by young and
older adults. As expected, these models are unable to account
for the older adult data. An investigation on the effect of the
main parameters of these models showed that the poorer per-
formance of older adult does not come from a weaker encoding
of items, or even a longer time spent on distractors, but rather
on difficulties during the free time that immediately follows
each distractor, as well as a higher level of confusion between
items. These results are discussed with respect to the current
theories of working memory and aging.

Keywords: working memory; aging; TBRS; SOB-CS.

Introduction
Working memory is a cognitive construct that describes how
information can be maintained for a limited period of time,
while concurrent processing is also performed. Several com-
putational models of working memory have been proposed in
the last decades. Most of them concern young adults. How-
ever, it is known that working memory tends to decline with
age (Logie & Morris, 2004) for reasons that are not com-
pletely understood. Indeed, several explanations have been
proposed and the question is still under debate. This paper is
an attempt to contribute to the debate by means of a compu-
tational modeling approach.

To this end, we will test two recent theoretical models that
propose two distinct mechanisms to account for forgetting in
working memory: time-based decay and interference. De-
spite a strong opposition between these two models in the
recent literature, we will show that adapting each one to re-
produce older adult data leads to similar conclusions about
the reason of the older adult working memory loss of perfor-
mance.

The first model, named TBRS for Time-Based Resource
Sharing (Barrouillet, Portrat & Camos, 2011) claims that our
difficulty to maintain several items in memory while per-
forming distracting tasks in-between their presentation comes
from the fact that item activation decays with time as soon
as attention is directed towards another item or a distrac-
tor. Hence, according to TBRS, working memory perfor-
mance depends on the cognitive load of the processing task,
which is defined as the proportion of time during which this
task captures attention. This model is supported by several

experiments using a complex span design (e.g. Barrouil-
let, Bernardin, Portrat, Vergauwe, & Camos, 2007; Portrat,
Barrouillet, Camos, 2008; Vergauwe, Barrouillet, & Camos,
2010).

The second model, called SOB-CS for Serial Order in a
Box – Complex Span (Oberauer & Lewandowsky, 2012), has
a completely different point of view. It is based on the idea
that forgetting is not based on decay but rather on the effect of
interference between items or between items and distractors.
The interference from distractors depends on the strength of
their encoding and this strength relies on the novelty of the
to-be-processed items. This novelty varies with the number
of to-be-processed items and their similarity: the more the
number of items, the poorer the recall and the more similar
the items, the better the recall performance.

There has been a strong debate in the literature in the
past years between these two models (Plancher & Barrouil-
let, 2013; Lewandowsky, Geiger, Morrel, & Oberauer, 2010).
It is therefore useful to challenge both models by testing how
they would account for older people data, in particular be-
cause older people present reduce attentional capacities (Luo
& Craik, 2008) but are also more sensitive to interference
(Hasher, Zacks, & May, 1999). We therefore first present the
data that we collected on a complex span task on young and
older people.

Experiment
Procedure and Material

In a serial recall task, participants were presented with 5 im-
ages in-between which they had to read aloud 3 distractor
words. They were then asked to recall the image names in
order. Such a trial was repeated 16 times. In order to study
both a possible interference effect and a time effect which are
markers of SOB-CS and TBRS respectively, we defined two
variables:

- the novelty of distractors which either contain repetitions
(low interference, e.g., duck, duck, duck or duck, duck,
horse) or all distinct (high interference, e.g., duck, plane,
horse);

- the duration in-between distractors, which could be long
(slow pace, one word to read every 2 seconds) or short (fast
pace, one word to read every 1.2 seconds).

130



There were therefore 4 experimental conditions resulting
from two types of novelty of the distractors (repeated vs.
novel words) and two paces of the processing task (fast vs.
slow), with then four trials in each condition. Repeated dis-
tractors are generally three identical words (AAA), but we
also used patterns in which only two are identical and the
third one different (called ABA, ABB or AAB), in order to
prevent participants from anticipating the distractor.

Participants
20 young participants (12 females; mean age = 21.62;
SD = 2.51) and 20 healthy older participants (13 females;
mean age = 71.92; SD = 5.18) voluntarily took part in this
experiment.

Results
As expected, the two populations behave differently. Older
participants recalled fewer images (2.80) than younger partic-
ipants (3.78), F(1,38)=27.77, p<.001. An interesting finding
is that older adults did not spend more time to process dis-
tractors (489 ms in average) compared to young adults (527
ms). Their worse recall performance therefore does not come
from a longer time spent on distractors.

We now present two sets of simulations performed on two
computational models that are able to simulate a working
memory trial, TBRS* and SOB-CS. Each model is exposed
to 5 items during 1500 ms each. In-between each presenta-
tion of items, three distractors are presented during a specific
duration that corresponds to the time actually spent by partic-
ipants for reading a distractor word. Models then simulates
the recall phase at the end of each trial. When asked to recall
an item at a given position, models could, exactly like par-
ticipants, recall the correct item, recall a wrong one or even
do not recall anything if none of them is activated enough in
memory.

TBRS*
Description
TBRS* (Oberauer & Lewandowsky, 2011) implements the
verbal theory (Barrouillet et al., 2011) which assumes that
the core component of working memory is attention. If at-
tention is directed towards an item, its activation value is
increased and the activation values of all other items is de-
creased. TBRS* is based on a two-layer connectionist net-
work. One layer is composed of nodes representing the items
to be memorized and the other layer encodes the sequential
position of items. Each position is coded by a subset of posi-
tion units, so that two adjacent positions share a proportion of
P units. Memorizing is modeled as a process of connecting
positions with items, by Hebbian learning (Anderson, 1995).
The strength of the increase of any connection weight (w)
depends on a strength value (η) and it is bound by an asymp-
tote L, defined in such a way that the total activation strength
of an item is always between 0 and 1: ∆w = (L− w)η.
The strength depends on the time t devoted to encoding as

well as a stochastic parameter r modeling human variability:
η = 1− e−r.t with r = N (R,s2).

For instance, if the sequence of letters to be memorized
is KZFP, K is first encoded which results in strengthening
the links between item K and the nodes coding for position
1. When attention is captured by another task, like reading
a word in our case, those values w decrease according to an
exponential function: w(t) = w0.e−D.t .

When attention is redirected towards the memory task, a
refreshing process takes place and leads to an increase of the
w values. All positions are successively considered, starting
with the first one, and the most activated item at each position
is retrieved and refreshed. In order to simulate retrieval errors,
a Gaussian random noise, defined by its standard deviation ,
is added to each item node before the best one is selected.

This refreshing process cycles until a new activity requires
attention.

To pursue our example, when Z is encoded, activation val-
ues between the node representing Z and the node represent-
ing position 2 are strengthened (while in the meantime, the
activation values of K are decreased). If there is time for re-
freshing, it is alternately done between the items retrieved at
position 1 (K if there is no retrieval error) and the one at po-
sition 2 (Z in most cases).

Comparison to experimental data
TBRS* was run1 5 000 times on each experimental condi-
tion (slow or fast pace repeated or unrepeated distractors)
for young and older adults, using the default parameters sug-
gested by Oberauer & Lewandowsky (2011). Since TBRS*
does not model interference between distractors, the experi-
ment was simulated by computing the durations of processing
distractors according to the different patterns of repetition di-
cussed previously: AAA, ABA, ABB, AAB and ABC. The
only difference between young and older adult simulations
comes from the variability of the time used by participants
to process a distractor, as mentioned previously. Results are
presented in Table 1.

As expected, it turned out that the model reproduces quite
well the young adult performance but it cannot account for
the older adult data.

Several TBRS* parameters could be tuned to better re-
produce the lowest performance of older adults, representing
thus possible causes of forgetting in WM. We investigated the
effects of the level of noise (σ) which controls the amount of
retrieval errors, the decay rate (D), the encoding strength (R)
and the duration for refreshing an item in the refreshing cy-
cle (Tr). We performed a grid search in this 4-dimensional
space and computed for each point the root mean square er-
ror (RMSE) between each model score under the 4 condi-
tions and the averaged experimental data. We then studied
the effect of each parameter by performing a projection on
the parameter dimension, and analyzing the evolution of the

1data and model codes that have been used in this work are avail-
able on the first author webpage
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Table 1: Mean number of items recalled in each condition, for
young and older adults (observed/Data and simulated/TBRS*
and SOB-CS). Both models used default parameters.

FAST PACE
Low Interference High Interference
Young Older Young Older

Data 3.51 2.55 3.69 2.88
TBRS* 3.51 3.52 4.33 4.32
SOB-CS 3.64 3.67 3.57 3.59

SLOW PACE
Low Interference High Interference
Young Older Young Older

Data 3.90 3.04 4.03 2.73
TBRS* 4.19 4.18 4.43 4.40
SOB-CS 3.98 3.99 3.97 3.99

average RMSE.
Figure 1 and 2 show the average RMSE as a function of

various values for the noise σ and he duration of atomic re-
freshing Tr, for both young and older adults.

Figure 1: RMSE between TBRS* simulation and data as a
function of the noise parameter σ.

It turned out that the models better fit the older adult data
for a higher level of noise (0.08) compared to the young adult
data for which the best RMSE is for a low level of noise,
coherent with the default value of 0.02 proposed by Oberauer
& Lewandowsky (2011) for young adults. The higher that
noise, the more likely retrieval errors. This could be the sign
of a weaker inhibition ability for the older population or a
higher sensitivity to interference.

The duration for refreshing a single item during free time,
in the refreshing loop, also needs to be adjusted to reproduce
the older adult data. That parameter was set to an average
value of 80 ms in the original model, which, for instance,
permits to make a full cycle of refreshing the five items in
about 400 ms.

The best RMSE for young adults is now obtained for a
value of 40ms, half the default value of the original model

Figure 2: RMSE between TBRS* simulation and data as a
function of the duration of atomic refreshing Tr.

but coherent with Portrat & Lemaire (in press) which showed
that this value has to be decreased if the model has an atten-
tional focus size of only one item at a time. As expected,
the best RMSE based on the older adult data is obtained for
a much higher value of about 200 ms for refreshing a single
item, which is 5 times the duration of the young adult model.

However, we could not find any difference between young
and older people concerning the rate of encoding strength,
nor a significant difference between decay rates.

To summarize, two parameters need to be adjusted to fit
older adult performance. First, the noise during retrieval for
refreshing or recall has to be increased. Second, the dura-
tion for refreshing a single item during the free time available
in-between processing steps has also to be substantially en-
larged.

One interesting finding of that simulation is therefore that
the older population would not suffer from a lack of encoding,
but rather from difficulties in taking advantage of the free time
that occurs after each distractor, either because of inhibition
difficulties or defaults in managing interference (parameter
σ) or because it takes time for them to refresh items (param-
eter Tr). We now present the second model that we used to
simulate our data .

SOB-CS
Description
SOB-CS (Oberauer & Lewandowsky, 2012) assumes that
working memory limitation is due to interference between to-
be-maintained items or between items and distractors. This
model is also based on a two-layer connectionist network that
associates a distributed item representation with distributed
position markers. Contrary to TBRS*, item representation is
distributed in order to reproduce interference between items,
distractors and both according to their similarity. For in-
stance, if items are highly similar they share patterns across
the same set of units, and inversely, different items are repre-
sented with very different patterns.

Memory is maintained by standard Hebbian learning (An-
derson, 1995): ∆W = ηe(i).W where W = vi pT

i represents
the weight matrix connecting the ith position markers pi with
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ith item representation vi and ηe(i) represents the encoding
strength which depends on the time spent to encode (te), the
rate of encoding R and the item’s novelty A(i) by means of
ηe(i) = A(i)(1− e−te.r). Item’s novelty reflects the degree of
mismatch between the expectation (computed as W.pi) and
the actual item. The higher the novelty, the stronger the en-
coding.

SOB-CS assumes that, during the processing step, distrac-
tors are encoded in the same way as items such as
∆W = ηe(i,k).di,k.pT

i where di,k represents the distractor k
following item i and ηe(i,k) is the encoding strength of the
distractor. That is the reason why a distractor following item
i creates interference on this item. Because of the item’s nov-
elty notion, repeatedly processing the same distractors pro-
duces less interference than does processing different distrac-
tors.

After each processing step, more or less free time is avail-
able which allows restoration of an unimpaired memory state.
The removal of the distractor has been modeled by Hebbian
antilearning : ∆W =−ηr(i,k).di,k.pT

i where ηr(i,k) is the an-
tilearning strength which depends on the free time t f , the rate
of removal r of representations from working memory and
the asymptotic value Ω(i,k).

Finally, for the recall step, the position markers are used as
cues to determine which items to recall. For instance, to re-
call the ith item, the vector position pi is considered to com-
pute v′i = W.pi, which is the distorded version of the origi-
nal vector vi. To retrieve this original item vi within all the
candidates item of the list, the model computes all the prob-
abilities of recalling an item j depending on the similarities
s(v′i,v j) = e−c.D(v′i,v j)

2
with c, the discriminability parameter

and D the euclidian distance between v′i and v j. Before each
recall item, a Gaussian noise with a standard deviation No is
added to represent output interference.

Comparison to experimental data
As previously described for the TBRS* simulation, we first
simulated the young and older adult data, with the default
parameters suggested by Oberauer & Lewandowsky (2012),
using also 5000 runs for each condition. As in TBRS*, the
difference between young and older adult simulation comes
from the variability of the time used by participants to pro-
cess a distractor. However, contrary to TBRS*, the fact that
distractors are repeated or not in the experiment is taken into
account by SOB-CS. Results are presented in Table 1. Like
TBRS*, SOB-CS reproduces more accurately the young adult
performance than the older adult one.

Hence, we studied the effect of four parameters proper to
this model to better fit the performance of older adult: the en-
coding rate (R), the removal rate (r), the standard deviation
(No) of the Gaussian noise added to each weight in W after
recall of each item and the discriminability (c) between re-
call candidates which controls the level of confusion between
retrieval candidates.

Figures 3, 4 and 5 show the average RMSE as a func-
tion of the various values for the removal rate (r), the dis-

criminability (c) between recall candidates and the standard
deviation No of Gaussian noise respectively for both young
and older adults. The model better fits the older adult data
for a lower discriminability (0.9) compared to young adult
data for which the optimal RMSE value appears to be much
higher, even higher than the default value (1.3) proposed by
Oberauer & Lewandowsky (2012). With lower values of c,
similarity falls off less steeply with distance, so that the most
similar candidate is less clearly discriminated from the less
similar ones. In accordance with a decline in inhibition with
aging (Hasher & Zacks, 1988 ; Hasher, Zacks, & May, 1999),
this lower discriminability for old people could explain more
intrusion errors that have been found in the recall of older par-
ticipants (e.g. Carretti, Cornoldi, De Beni, & Palladino, 2004
; Hedden, & Park, 2001).

Figure 3: RMSE between SOB-CS simulation and data as a
function of the removal rate strength r.

Figure 4: RMSE between SOB-CS simulation and data as a
function of the discriminability parameter c.

We also observed that the model simulating older adults
needs more time to remove the previous distractor during the
free time period than the one based on young adults. The
RMSE based on the older adult data is lower for a removal
rate (r) of 0.6 whereas the RMSE based on the young adult
data is lower for a higher removal rate (1.5 or more), coherent
with the default value proposed by Oberauer & Lewandowsky
(2012) for young adults. This result is also in line with the in-
hibition explanation of working memory aging (e.g., Hasher
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Figure 5: RMSE between SOB-CS simulation and data as a
function of standard deviation No of the Gaussian noise.

& Zacks, 1988). Older participants would have difficulties to
suppress irrelevant information in WM.

The output noise parameter No in SOB-CS, which occurs
only in the recall step, has also to be modified for a good
simulation of the older people performance. Increasing the
noise is therefore a good way to simulate older people data.

Finally, as with TBRS*, we could not find any difference
between young and older people concerning the rate of en-
coding strength. An important finding of that second simula-
tion is that the conclusion is exactly the same as with TBRS*
simulation: older population would not suffer from a lack of
encoding, but rather from difficulties in taking advantage of
the free time that occurs after each distractor, either because
of inhibition difficulties or defaults in managing interference
(parameter c and No) or because it takes time for them to re-
move distractors (parameter r).

Discussion
The aim of the present paper is to give more understanding
of working memory aging through the comparison of behav-
ioral data collected on young and old adult with simulations
from two very recent and influential models of working mem-
ory. The first outcome is that they produced results that are
coherent with each other, in spite of their very different the-
oretical foundations. First, it appears that the strength with
which items are encoded does not have to be weaker for the
models simulating older adult performance. We could not
find any difference between young and older adults for the R
parameter in TBRS*. That is exactly the same for the encod-
ing parameter in SOB-CS. This finding tends to indicate that
the lower recall performance of older adults would not be due
to a lack of encoding the to-be-recalled items. However, the
difference between young and older adult performance can be
explained by two kinds of parameters, both controlling what
is happening during the free time following the processing of
each distractor or during recall. The first parameters control
the likelihood of confusion between items when retrieving
one at a given position whereas the second ones controls the
post-distractor processes. In addition, we computed the AIC
for both models using the probability mass functions of re-

calling x items, generated from a binomial model. We found
that the two original models do not differ much: on young
adult data, AICT BRS = 199.03 and AICSOB−CS = 196.02; on
older adult data, AICT BRS = 318.74 and AICSOB−CS = 310.57.

Defaults in the retrieval processes
In the TBRS* simulations, a much higher noise during re-
freshing and recall has to be set to account for the older adult
data. That Gaussian noise, which directly boosts confusion
between items, is added to the activation value of each candi-
date item, each time the model has to retrieve an item before
refreshing it or recalling it. The processes in charge of the re-
trieval of items given a position seems therefore to be affected
for the older adults.

A similar result was obtained from the SOB-CS simula-
tions. The parameter controlling discriminability between
items has to be decreased to account for the older adult data.
A low discriminability produced retrieval errors because the
best candidate can be mixed up with other candidates. This
parameter is highly similar to the noise parameter in TBRS*
because a higher noise added to the activation values of can-
didate items also introduces some confusion between items.

Defaults in the post-distractor processes
The other kind of parameters that has to be changed in the
simulations of older adult data concerns the processes that
appear right after processing a distractor. In the TBRS* sim-
ulations, to simulate older adults data, the model has to spend
5 times more time to refresh a single item than the default
value. It could be that older people needs more time to re-
fresh items but it could also be that they spend time to switch
from processing distractor to maintaining items.

This result is in line with what has to be modified in SOB-
CS, that is the parameter that controls the removal of the pre-
vious distractor, in order to reinstate the correct state of mem-
ory. Once again, this process occurs right after a distractor
has been presented. According to the results of both model
simulations, it is therefore right after the processing phase,
when participants have to switch from a distracting activity
to a process trying to maintain items vivid in memory, that
something goes amiss in older adults.

Theoretical explanations
There are several theories in the literature to explain the lower
working memory performance of older people. In this sec-
tion, we focus on three theories. One strong explanation
comes from a deficit of inhibition control (Hasher & Za-
cks, 1988; Hasher, Zacks, & May, 1999). Older partici-
pants would have difficulties to suppress irrelevant informa-
tion in WM and, in consequence, access to relevant informa-
tion would be reduced. Our simulations are coherent with that
explanation because the processes that have to be altered in
the computational models to account for older adult data are
precisely those at the frontier between processing a distractor
and taking advantage of the free time. And this moment is
when an inhibition process occurs.
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Another explanation that is proposed in the literature (Salt-
house, 1996) suggests that aging goes along with a slower
processing speed. The encoding phases of the two models do
not have to be modified to account for the data, but we can-
not conclude that older people spend as much time as young
people to encode items because of the experimental design:
duration presentation is probably too long (1.5s) to observe
differences of strength encoding at the end of the encoding
phases.

Finally, another hypothesis is linked to the deficit of
switching between storage and processing. According to Ver-
haeghen and colleagues (Vaughan, Basak, Hartman, & Ver-
haeghen, 2008), focus-switching might be a good candidate
for the locus of age differences in WM. In accordance, dif-
ficulties to remove distractors (SOB-CS) or to refresh items
(TBRS*) for older adults could be viewed as a symptom of a
longer switching mechanism between processing and storage
instead of a deficit of inhibition. Similarly, a higher rate of
confusion between items could be the sign of lower accuracy
of the process of switching items in and out of the focus of
attention (Verhaeghen & Basak, 2005).

TBRS* and SOB-CS are concurrent models simulating
working memory in different ways. The present study does
not aim at choosing the best of them. On the contrary, we take
advantage of both of them to investigate the possible causes
for the decline of working memory performance in aging. We
found that, in spite of theoretical divergences between these
two models, simulations tend to the same conclusions: older
people seems to have difficulties of taking advantage of the
free time and more confusion between items. It would there-
fore be interesting in the future to model more precisely that
specific moment where the default seems to occur, which is
the switching between processing and storage.
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Abstract 

We are using an algorithm based on a computational model of 
human memory to optimize the scheduling and repetition of 
individual items within a learning session. The model 
estimates the rate of forgetting for each participant to 
determine the order in which items should be repeated and to 
decide when previous items have been learned well enough to 
introduce a novel item. To improve the model further, we 
conducted an experiment to test how stable the parameter 
estimates are over time and across different materials. We 
have found that estimated rates of forgetting are stable over 
time within one type of material but not across different types 
of material. This finding has important implications for how 
information about a learner should be preserved between 
study sessions.  

Keywords: spacing effect; testing effect; cognitive model; 
learning; parameter stability. 

Introduction 
Fact learning is a big part of learning a new skill. In many 

school curricula, students are evaluated based on how well 
they learned a certain array of facts. With the advance of 
computers into classrooms and workplaces, tutoring systems 
have been developed to help learners master the required 
material. Over a hundred years of memory research have 
singled out two robust effects that developers of such 
systems can use to enhance that goal: the spacing effect and 
the testing effect. By making optimal use of both of them 
and adjusting the system to the individual learner, such 
systems can make learning a lot more efficient. As of now, 
however, most optimizing systems treat each learning 
session in isolation; user-specific characteristics are 
estimated during a learning session to optimize each 
learning session but are not preserved between learning 
sessions. In this study, we investigated to which extend 
user-specific parameters relevant to such a tutoring system 
are stable over time and across different materials to gauge 
to which extent they can be preserved between learning 
sessions. 

The tutoring system used here works by balancing the 
benefits of the spacing and the testing effect. The spacing 
effect describes the finding that performance on tests of 
recall is improved when study time is distributed over 
multiple sessions with time in-between rather than massed 
study (Cepeda, Pashler, Vul, Wixted, & Rohrer, 2006; 
Dempster, 1988). The optimal spacing schedule ultimately 
depends on how much time is available and when the 
material is tested (Cepeda, Vul, Rohrer, Wixted, & Pashler, 
2008). However, it has been shown convincingly that long-
term retention can be increased by spacing items within a 
single learning session (Lindsey, Shroyer, Pashler, & 
Mozer, 2014; van Rijn, van Maanen, & van Woudenberg, 
2009) as well as spacing individual learning sessions 
(Cepeda et al., 2006). 

The testing effect, on the other hand, describes the finding 
that active memory retrieval during practice is more 
beneficial for long-term retention than passive study 
(Karpicke & Roediger, 2008; Roediger & Butler, 2011). 
That is, being forced to retrieve the answer from memory 
leads to better learning than simple re-studying (i.e. looking 
at) the cue-answer pair (Carrier & Pashler, 1992). This 
effect has been studied extensively in the laboratory 
(Cepeda et al., 2008) but also holds in more realistic 
classroom settings (Agarwal, Karpicke, Kang, Roediger, & 
McDermott, 2008; van Rijn et al., 2009). 

Given our knowledge of the spacing and testing effects 
and the quasi-lawful behavior of memory, it seems possible 
to devise a learning schedule that would make optimal use 
of each effect's benefits. This would require balancing two 
seemingly opposing goals: (1) maximizing time between 
repetitions of an item to get the biggest spacing effect, and 
(2) minimizing time between repetitions of an item to make 
sure it can still be retrieved from memory to take advantage 
of the testing effect. Such computer adaptive practice 
models have been developed and have been shown to 
outperform flashcard control conditions (Nijboer, 2011; van 
Rijn et al., 2009).  
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As a starting point for the development of such models, 
Anderson and Schooler (1991) showed that data on memory 
performance (i.e. practice and retention) across time courses 
ranging from seconds to years can be fit nicely by power 
functions. Interestingly, this corresponds closely with 
environmental relationships (Anderson & Milson, 1989). 
That is, the likelihood that people still remember a non-
sense syllable they learned today at a certain point in the 
future (i.e. the original Ebbinghaus data) can be described 
with the same power functions that can be used to describe 
the likelihood of receiving an e-mail  (Anderson & 
Schooler, 1991). This leads Anderson and Schooler (1991) 
to conclude that the human "memory system is adapted to 
the structure of the environment" (p. 400). 

Based on this assumption, it is argued that the practice 
and retention of facts can be approximated using the same 
equations that can be used to describe the behavioral effects 
in the data. Pavlik and Anderson (2003, 2005) developed a 
model that formalizes this process and show how it can be 
used to compute the optimal schedule of practice, taking 
into account the effects of practice, retention, and spacing 
(Pavlik & Anderson, 2008). Their model assumes that there 
is some stable effect based on each individual's rate of 
forgetting and additional effects based on item difficulty. In 
this original work, it is assumed that these effects are stable 
over time and, for the rate of forgetting, across knowledge 
domains/materials. That is, someone's rate of forgetting is 
assumed to be a property of their memory and therefore 
stable, regardless of whether they study vocabulary, 
topographical information, or word definitions. 

The success of such models (Nijboer, 2011; Pavlik & 
Anderson, 2008; Van Rijn et al., 2009) is very promising 
but the stability of participants' rate of forgetting across time 
and knowledge domains has never been demonstrated 
empirically. The goal of the present study is to investigate to 
which extent participants' rate of forgetting varies over the 
course of three weeks as well as across four different types 
of material. 

Methods 

The Model 
The model used in this experiment is based on ACT-R's 

declarative memory equations (Anderson, 2007). In the 
ACT-R framework, each item that is learned is assigned an 
activation value. Activation is highest at the moment an 
item is encountered and then decays as a function of time. 
The activation of an item at any point in time can be 
computed using the following equation: 

 𝐴!(𝑡)   =    (𝑡 − 𝑡!)!!!
!

!!!

 Eq. 1 

According to this equation, the activation of item i at time 
point t depends on all previous time points at which item i 
has been encountered. After each previous encounter j the 
activation associated with that encounter decays with dj, 
which translates to a smaller contribution to the current 

activation if encounter j has occurred long before time point 
t. The rate with which the activation decays after each 
encounter is calculated as follows: 

 𝑑!"   =   𝑐𝑒!!(!!)   +   𝛼! Eq. 2 
In this equation, c is the decay scale parameter that 

determines the relative contribution of the activation 
component. Alpha represents the decay intercept, which 
represents a minimum decay value (and will be used as the 
decay value for the first encounter). This equation has been 
developed by Pavlik and Anderson (2008) to deal with the 
spacing effect. In the ACT-R framework, an activation 
value can be directly converted to an estimated response 
time by scaling the activation and adding a fixed time that 
accounts for non-memory related processes. The following 
equation is used to convert the activation of item i at time 
point t to an estimated reaction time: 

 𝑅𝑇!(𝑡)   =   𝐹𝑒!!!(!) +   fixed  time Eq. 3 
Pavlik and Anderson (2003, 2005, 2008) have shown that 

the three equations outlined here can be used to fit a wide 
range of data from learning-related experiments and can 
account for additional benefits gained through the spacing 
effect. The system has not only been used to describe 
collected data but also to devise a system that predicts, in 
real-time, the order in which items should be repeated to 
yield optimal retention. More recently, Van Rijn and 
colleagues (2009) and Nijboer (2011) have developed the 
system further and showed that a scheduling algorithm that 
compares observed with predicted reaction times (derived 
from an item's estimated activation) leads to even better 
learning than the Pavlik and Anderson (2008) model. The 
same algorithm is used in this study and a graphical 
representation of the procedure is depicted in Figure 1. 

 

 
 

Figure 1: A graphical representation of how the model 
determines the order in which to repeat old and present new 
items. 
 

The algorithm selects the order in which items are 
presented to the learner dynamically and adjusts the order of 
repetitions based on the learner's behavior. This is done as 
follows: The model simulates the activation of all items that 
have already been encountered n seconds from now using 
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the equations described above. If n seconds from now, the 
activation of any item is below the retrieval threshold, that 
item will be presented next (because this indicates that the 
item is about to be). If no item is below the threshold, a new 
item is presented as long as novel items are still available. 
Otherwise, the item with the lowest activation n seconds 
from now is presented. At the time the selected item is 
presented, the model uses the estimated activation of the 
item in the learner's memory to compute the estimated 
reaction time (see Eq. 3). The item's alpha parameter is 
updated by comparing the estimated reaction time with the 
observed reaction time. If the estimated reaction time was 
too slow, this indicates that the estimated activation was too 
low. That, in turn, indicates that the decay value for the 
previous encounter was estimated to be too high. To 
compensate for this discrepancy, the alpha parameter for the 
given item is adjusted in a step-wise procedure to improve 
the model's estimate on the following trial (see Nijboer 
(2011) for details). After the parameter has been updated, 
the model checks whether the learning session should 
continue and then either stops or starts the next repetition. 
The mechanism is depicted graphically in Figure 1. 

Procedure 
Each person participated in the study for three sessions on 

three days, each session spaced one week apart. Within each 
session, there were two blocks. Each block was made up of 
a 20-minute study session, a five-minute distraction task, 
and a test of the studied material that took about five more 
minutes. At the beginning of the first session, each 
participant also completed a short questionnaire regarding 
demographic information (age, gender, nationality, and 
language skills). The five-minute distraction was a simple 
variation of the puzzle game Tetris which participants 
played until they were automatically re-directed to the test 
that concluded each block. 

During a study block, novel items were presented on 
study trials and subsequent repetitions were presented on 
test trials. On a study trial, participants saw both the cue 
and the correct response and had to type in the correct 
response to proceed. On a test trial, participants only saw 
the cue and had to type in the correct response. Feedback 
was provided in both trial types and lasted 0.6 and 4 seconds 
for correct and incorrect answers, respectively. The 
feedback always resembled a study trial and displayed both 
the cue and the correct response. Jang, Wixted, Pecher, 
Zeelenberg, & Huber (2012) have shown that for non-
retrievable items, an additional study trial is very effective 
because participants do not benefit from the testing effect 
(but unsuccessful retrieval attempts can still enhance 
learning (see Kornell, Hays, & Bjork, 2009). Furthermore, 
they showed that four-second study trials yield the highest 
benefit. During the test at the end of each block, participants 
were provided with a list of all possible items and could 
provide their responses in any order they preferred. 

Material 
For each block, a list of 25 items was compiled. The lists 

of items were identical for all participants but during each 
study block, the model randomized the order in which items 
were presented based on their participant numbers. There 
were four types of material that were studied by each 
participant: 

Vocabulary. There were 75 Swahili-English word pairs 
that were taken from Van den Broek, Segers, Takashima, & 
Verhoeven (2014). Swahili-English word pairs are common 
stimuli in vocabulary learning (e.g. Carpenter, Pashler, 
Wixted, & Vul, 2008; Pyc & Rawson, 2010; Van den Broek 
et al., 2014) because most university students do not have 
any prior knowledge. 

Flags. A list of 25 items was compiled from Wikipedia's 
list of sovereign states. The authors strived to pick the flags 
of countries that were not likely to be known by the 
participants, using their own familiarity with the countries' 
flags and a pilot study as a benchmark. 

City Locations. A list of 25 items was compiled by 
searching for smallish cities on Google Maps, making sure 
the cities are more or less evenly spaced across the 
continental United States of America. Cities were picked so 
their names are unique, not too difficult to spell, and do not 
contain information about their geographical location.  

Bio-Psychology Facts. A list of 25 bio-psychology facts 
was compiled from the Glossary in Kalat (2012). The facts 
were chosen so that the answer would always be a single 
word and that there is some variations in how difficult the 
words are to spell. 

Participants 
Of the 76 first-year psychology students from the 

participant pool of the University of Groningen that signed 
up for this study, 71 completed all three sessions and 70 
fulfilled the minimum requirement of having seen at least 
10 unique items in each study block. It was assumed that if 
the participant was not able to perform well enough to be 
presented with at least 10 unique items within a 20-minute 
study block, there would likely be a problem that was 
beyond them being a poor learner so their data was 
dismissed. Participants were also removed when they 
answered less than 25% of the items they had seen during 
the study block correctly on the subsequent test, which 
applied to 3 participants. Of the remaining 67 participants, 
50 were female and the median age was 20 (SDage = 1.73; 
rangeage = [17; 26]). No one indicated familiarity with 
Swahili, 35.8% were Dutch, and 52.2% were German. All 
participants indicated to be fluent in English and gave 
informed consent. 

Results 
Figure 2 summarizes the performance on the final test that 

concluded each block. The black bars in the plot are 
traditional box plots and the white dots highlight the group's 
median. The colored areas are scaled density plots that 
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depict the distribution of each group's values. The data 
suggest that performance was very high overall. Especially 
in the three vocabulary sessions, performance was very high 
for most participants with a little more variation in the other 
blocks. The city location block (CI) seems to have been the 
most difficult followed by the bio-psychology fact block 
(BIO). The overall excellent performance suggests that 
participants actively engaged with the material during the 
study session, which makes us confident that the alpha 
parameters that were obtained during the study sessions 
contain meaningful information about the participants' 
engagement with and acquisition of the studied material. 

 
Figure 2: Performance on the final test across the six blocks. 
SW1 and FL were tested in the first session, SW2 and CI in 
the second session, and SW3 and BIO in the third session. 
The sessions were spaced one week apart. 
 

As described in the sub-section The Model, each item that 
each participant studied is assigned one alpha value. Each 
item starts with an alpha value of 0.3 but then the alpha 
value is adjusted on each repetition of trial, depending on 
how the participant responds to the item and how well that 
response matches up with the model's prediction. To address 
the research question of whether the estimated rate of 
forgetting is stable (1) over time and (2) over materials, we 
looked at the variation in alpha values across time and 
materials. For this analysis, the alpha values of items that 
have been presented at least three times have been included. 
That is, each participant contributed multiple alpha values 
and the exact number depended on how many items that 
participant encountered at least three times within each 
block. 

For the analysis, the alpha values were log-transformed to 
satisfy assumptions of homoscedasticity and normality. The 
aim of the analysis was to check whether alpha scores 
differed across time and materials and whether both factors 
influenced each other in their effect on the alpha values. To 
test this, we used linear mixed-effects model regression with 
dummy coding. The mixed-effects model allows accounting 
for the interdependency between observations due to by-
subject and by-item variation. Three variables were included 
in the model to test our research question: The first variable 
coded the session (that is, the day) on which the blocks were 
completed. This allowed us to check whether there is any 
significant variation over time across all blocks. The second 
variable was coded 0 for blocks in which participants 
studied Swahili words and 1 for those in which non-Swahili 
material was studied. This allowed us to directly compare 
the differences between multiple blocks of learning Swahili 

to non-Swahili blocks. The third dummy was coded -0.5 for 
the flags block (FL), 0.5 for the city location block (CI), and 
0 for all other blocks. This allows us to compare the 
individual blocks (that is, types of material) in more detail. 
The results of the analysis are shown in Table 1. 

 
Table 1: Results of the linear mixed-effects regression.  

 beta SE df | t | p 
intercept -1.394 0.040 112 34.38 <0.001 
session -0.036 0.028 73 1.30 0.198 
SW vs. ¬SW 0.182 0.011 9506 16.50 <0.001 
FL vs. CI 0.364 0.013 9457 27.87 <0.001 
session *  
SW v. ¬SW 

-0.051 0.028 82 1.81 0.074 

 
The alpha scores do not significantly differ between 

sessions (t(73)=1.3, p=0.198). However, the contrasts 
between the Swahili and non-Swahili blocks and between 
the flags and city location blocks significantly influence the 
alpha values (t(9506)=16.5, p<0.001; t(9457)=27.87, 
p<0.001, respectively). More specifically, participants had 
smaller alpha values in the Swahili blocks compared to the 
flag and city location blocks (a decrease of 0.049) indicating 
a faster forgetting rate for the latter two blocks. This effect 
was stronger for the city location block, which is suggested 
by the positive coefficient of the flags vs. city locations 
contrast. Specifically, the forgetting rate increases by 0.109 
in the city compared to the flags block. The interaction 
between the sessions and the contrast Swahili vs. non-
Swahili is not significant (t(82)=1.81, p=0.074). In other 
words, the increase of the forgetting rate in performing the 
flag or city task compared to the Swahili task is independent 
of when (that is, in which session) one performs the task. 

While the regression analysis examined overall effects of 
difference in alpha values, it might also be informative to 
take a closer look at the development of estimated alpha 
values throughout the course of a study session. Figure 3 
shows how the alpha values for each item change as a 
function of time. The items are color-coded (the legend is 
shown at the top of the graph) and it can be seen that each 
item has an alpha value of 0.3 when it is first introduced. On 
each subsequent repetition, the alpha value is adjusted and 
the magnitude of the change depends on the discrepancy 
between the estimated and the observed reaction time. The 
data shown in Figure 3 come from a very good participant 
so that many items end up with an alpha value lower than 
the default they started with. It can be seen, however, that 
there are substantial differences in alpha values within this 
participant, indicating that some items were more difficult to 
learn than others. The peak and frequent rehearsal of the 
25th item is particularly obvious. This pattern was likely 
caused by a series of incorrect responses, which led the 
model to believe that the item was not learned yet, in 
response to which the alpha was corrected upwards step-by-
step. The higher alpha than resulted in a more frequent 
rehearsal (see Figure 1). The plot also makes clear that the 
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model does a good job of interleaving items that were 
learned early in the session with those learned later on.  

 
Figure 3: Development of the alpha values for each item for 
one participant in one block as a function of time. 

Discussion 
In this study, we investigated the stability of individual 

rate of forgetting parameters in a model of optimal fact 
learning. The emphasis is on scrutinizing the stability of the 
parameter values across time and across different materials. 
Knowing more about the circumstances under which a 
learner's estimated rate of forgetting is stable in time and 
across materials will enable us to further develop the model 
by carrying over what we learned about the participant in 
one learning session to the next. 

The results of the analysis demonstrate that the estimated 
rates of forgetting do not differ significantly over time. 
There is a difference in estimated rates of forgetting, 
however, when different types of material are studied. 
Given the non-significant interaction between time point of 
study and type of material, differences between materials 
seem to be independent of time. 

When looking at the data of the performance on the final 
test depicted in Figure 2, one can see that there was a clear 
ceiling effect. The effect is especially pronounced in the 
three Swahili blocks and the block in which participants 
learned flags. This might be considered to be an issue 
because it would facilitate the stability of results within 
those Swahili-learning blocks. It should be noted, however, 
that by using the parameter values that were estimated 
throughout the learning session instead of the results of the 
learning session (test performance), one gets a much more 
fine-grained view on the differences between conditions. 
There is much more variation in estimated rates of 
forgetting than the corresponding results on the test suggest. 
This conclusion is further supported by the fact that there 
was no significant difference across the three sessions (see 
Table 1) even though the comparison did include the blocks 
for which final performance was not at ceiling. In addition 
to that, using the estimated rates of forgetting for each item 
from each block can also serve as a diagnostic tool to get a 
better idea of the inner mechanics of the model and detect 
ways in which the model might not perform optimally and 

why. By plotting the development of the parameters over 
time for a single participant in one of the six blocks (see 
Figure 3) can indicate problems that would not be apparent 
from measures taken at the end of a learning session. 
Therefore, we think an analysis based on the estimated 
parameter values is much more interesting and insightful 
than one based on the performance on the final test. 

As discussed in the Introduction, the model does not 
currently preserve estimated parameter values across 
multiple study sessions. That is, when a learner uses the 
model to study a number of Swahili-English word-pairs and 
then returns to the system the day after and starts another 
study session, the model will revert back to the default 
parameter values at the beginning of the second session. 
This seems both wasteful and inefficient. One would think 
that by observing the learner's behavior in the first session 
and comparing it to the model's estimates (which are based 
on the current parameter values), we have learned 
something about that particular learner. And updating the 
internal parameters of the model dynamically to capture this 
learning-about-the-learner is an essential part of the model. 
Therefore, it would be a logical next step to determine a 
way in which we could preserve what we have learned 
about the learner in the first session. That way, we can give 
the model a head start at the beginning of the second session 
instead of forcing the model to start from scratch.  

The data reported here show that there is substantial 
stability of parameter values over time, especially if the 
same type of material is studied: Swahili vocabulary. We 
reckon it is reasonable to assume that these findings 
generalize to languages other than Swahili. It would be 
interesting, however, to test whether a transfer from Swahili 
to, for example, French is better than the transfer from 
Swahili to bio-psychology. A challenge for the future will 
be to determine the optimal transfer of parameter values 
between sessions that do not deal with the same type of 
material. In this study, we made an effort to devise material 
that is very different from each other (word-pairs (Swahili), 
visual information (flags), topographical information (city 
locations), and factual knowledge (bio-psychology)) but this 
leaves open the question of how similar material has to be to 
still allow smooth transfer of suitable parameter values. 

Conclusion 
The data presented here suggest that participants' rate of 

forgetting varies between materials but is relatively stable 
within a domain over time. This indicates that rate of 
forgetting is not purely a feature of a learner's memory 
system but also influenced by the type of material studied. If 
the same material is studied, though, the data suggest that 
the rate of forgetting is stable over time. Therefore, we 
should be able to improve the model further by carrying 
over what we learned about a learner from one session to the 
next, given that the sessions deal with the same type of 
material. 
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Abstract

This paper explores the role of spontaneous retrieval in
prospective memory, in an agent implemented in the Soar
cognitive architecture. At goal initiation time, spreading
activation causes the goal to be the most activated element in
long-term memory, at which point it is spontaneously retrieved
into working memory and pursued. We show that goal encoding
specificity increases prospective memory performance, while
a lengthier retention interval decreases performance if the
percepts are differentially presented; both trends qualitatively
resemble results described in psychology literature. However, a
large space of possible spontaneous retrieval implementations
remain unexplored, and much work remains to be done before
spontaneous retrieval in a cognitive architecture can be fully
understood.

Keywords: spontaneous retrieval; prospective memory; encod-
ing specificity, cognitive architecture; Soar

Introduction
Prospective memory is the ability to remember to do some-
thing in the future, often while other activities are being
performed during the delay. Such tasks are common in
everyday life: from passing a message to a colleague, to taking
medication before bed, these tasks all require the subject to
perform particular actions (giving the message, swallowing a
pill) under particular conditions (when the colleague is in sight,
at bedtime). One of the main research questions in prospective
memory is how people recall that they have an action to
perform when the goal conditions are met. Two general
classes of strategies have been suggested: monitoring, where
someone deliberately checks if the conditions are satisfied, and
spontaneous retrieval, where the need to act somehow “pops”
into mind. Cognitive architectures are well-suited to create
models of monitoring, since agents created in that framework
have fine deliberate control over the use of memory. The same,
however, cannot be said of spontaneous retrieval strategies, as
they require automatic memory mechanisms, which have thus
far received little attention in cognitive architectures.

This paper presents a preliminary exploration of the
use of spontaneous retrieval for prospective memory. We
implemented an automatic, uncued, activation-based retrieval
mechanism in the Soar cognitive architecture, and demonstrate
that the mechanism provides agents with a robust prospective
memory ability. In an abstract domain that presents agents with
randomly-generated goal conditions, the use of spontaneous
retrieval allows the agent to achieve its prospective goals
across a wide range of environmental and agent parameters.
Furthermore, the performance of the agent changes with

encoding specificity and retention interval length in ways that
qualitatively resemble those of people. This serves as one
step in building a complete model of how people perform
prospective memory tasks, and the factors that must be taken
into consideration when selecting between strategies.

Background
Prospective Memory
Although prospective memory has gotten increasing attention
from psychologists in the last twenty years, the capability is
only defined as a “fuzzy set” of intuitions around “remember-
ing to do something at a particular moment (or time period)
in the future” (emphasis in original) (McDaniel & Einstein,
2007). For clarity, we define a prospective memory task as
represented by the target — the conditions under which the
goal is applicable — and the action, which the agent must take
to achieve the goal. Within this framework, previous literature
has identified the five stages of completing a prospective
memory task (Ellis, 1996). To use message-passing as an
example, the stages are:

Encoding The goal is created and stored in long-term
memory; this occurs when the message is given to the agent
and asked to be passed on to the colleague.

Retention This stage is the delay between the storage of
the goal and when the target conditions are met, such as
between when the message was received and when the
colleague is seen.

Initiation The target conditions of the goal are fulfilled, and
the goal must be retrieved from long-term memory to
working memory. In the example, the colleague is in sight.

Execution The action of the goal is taken; in this case, the
colleague is given the message.

Completion Long-term memory must be changed such that
the goal will not be repeated; that is, when the colleague is
next seen, another attempt to pass on the message would
not be made.

The crux of prospective memory is during the initiation
stage, which hides a knowledge dependency problem (Li &
Laird, 2013a). Since people cannot directly act on knowledge
in long-term memory, the goal must be retrieved for the sight
of the colleague to be considered significant; at the same
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time, since retrieval from long-term memory can only be done
deliberately, the goal is not retrieved without a recognition of
significance in the first place.

The psychology literature identifies two classes of human
strategies to avoid this dependency problem. The first is mon-
itoring, which is characterized by the continual expenditure
of attentional resources (Smith & Bayen, 2004); this can be
modeled by the agent periodically retrieving and checking
the relevance of goals that are related to its current situation,
what is called a preemptive strategy in prior work (Li &
Laird, 2013b). This class of strategies breaks the dependency
cycle by retrieving goals without determining their relevance.
The second category of strategies breaks the cycle the other
way, by removing deliberation in the retrieval of goals; these
require the long-term memory system to signal the agent in
some way. One possibility is to signal that there is a relevant
goal to prompt a deliberate memory search (what is called a
noticing-plus-search strategy), while an alternative is to have
the knowledge of the goal be spontaneously retrieved into
working memory (a true spontaneous retrieval strategy).

These two classes of strategies are not mutually exclusive,
but complimentary. Although early work on prospective
memory debated whether monitoring or spontaneous retrieval
is the better description of human behavior, recent work has
shifted towards determining the factors that influence which
strategy is used for a particular prospective memory task
(Einstein et al., 2005). Monitoring strategies are preferred
when the goal conditions are non-focal or when the goal is
important, while spontaneous strategies are preferred when
the delay is long, when working memory resources are low,
or when the interim task is cognitively demanding (McDaniel
& Einstein, 2007). This suggests that spontaneous retrieval
is more effective than monitoring at completing prospective
tasks when these properties are present in the environment and
the goal. Both strategies are also affected by the encoding of
the goal which, following the encoding specificity principle,
must match the percepts at the time of initiation (Einstein &
McDaniel, 2010).

Although computational models of prospective memory
have been built, they tend to sidestep initiation and focus
on retrieving the correct goal from long-term memory. One
model explored the Intention Superiority Effect (ISE), which
states that unachieved goals are retrieved more quickly than
achieved goals (Lebiere & Lee, 2002). Another model looked
at different accounts of finding the correct goal, and correlates
the timing results to human data (Elio, 2006). Crucially, both
models assume that the agent knows that a goal must be
retrieved, while the difficulty of the initiation stage lies in how
that fact is recognized. Since both models require deliberate
use of memory, they more closely resemble monitoring
strategies. Modeling spontaneous retrievals would require an
automatic memory mechanism, which is discussed below.

Spontaneous Retrieval
Spontaneous retrieval from long-term memory has been
acknowledged since the first studies of memory (Ebbinghaus,

1913). In contrast to deliberate or voluntary retrieval, which
requires executive functions for search control, spontaneous
retrieval is an associative process that requires little to no
cognitive effort, often resulting in memories that overlap in
features with the current situation (Berntsen, 2010). There is
often a distinction between retrieval from semantic memory
(i.e., retrievals of facts) and retrievals from episodic memory
(i.e., retrievals of experiences) (Kvavilashvili & Mandler,
2004; Berntsen, 2008); although it is possible for prospective
memory to use either mechanism, here we focus on retrievals
from semantic memory.

Computationally, designing a spontaneous retrieval mech-
anism requires answering two questions: When is a memory
retrieved? And which memory is retrieved? The answers to
these two questions define a space of spontaneous retrieval
mechanisms, a more thorough exploration of which can be
found elsewhere (Li & Laird, 2015). Here we only note that
there are additional constraints on the second question, namely,
that the retrieved memory should be relevant to the current
situation. In most cognitive architectures, retrieval from long-
term memory requires a description of the features of the
desired memory element. This description ensures that the
retrieved element can be used for further reasoning. With
spontaneous retrieval, however, the agent cannot deliberately
create this description; a different mechanism for ensuring
relevance must be used. One solution is to use a spreading
activation mechanism, such that the knowledge in working
memory influences which long-term memory elements are
highly activated and are thus more likely to be retrieved. Again,
the full space of spreading activation mechanisms is beyond
the scope of this paper.

Implementation in Soar
Soar (Laird, 2012) represents all declarative knowledge as
edge-labeled directed graphs. Knowledge in working memory
is matched by procedural if-then rules, which in turn modify
working memory. In addition to buffers that represent the
perceptual input and motor output of the agent, working
memory also contains buffers that allow agents to access
long-term memory. In particular, a Soar agent can store a
single element (a graph node plus all its outgoing edges)
into semantic memory. Before the current work, the only
mechanism for retrieval from semantic memory was for the
agent to (deliberately) create a cue — a set of features of
the desired memory element. Semantic memory then finds
all elements that contains the entire set of features, and then
places the element with the highest activation into working
memory. This semantic memory element activation is boosted
when the element is stored or is the result of a retrieval (similar
to ACT-R), and decays over time as controlled by a decay rate
parameter.

Spontaneous retrieval extends the capabilities of Soar’s se-
mantic memory. From the perspective of the agent’s interface
to memory, the biggest change is that whenever there is no
deliberate retrieval, semantic memory automatically selects
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an element to be placed into the semantic memory buffer. As
with the bias from deliberate cued retrieval, semantic memory
selects the most highly activated element, with the caveat that
it skips over any element that is already in working memory;
this ensures that spontaneous retrieval is not attempting to
retrieve knowledge that the agent has already retrieved.

To ensure that the spontaneously retrieved memory is
relevant, spreading activation is used to boost the activation
of elements related to the contents of working memory. Our
implementation of spreading activation is different from the
spreading activation in ACT-R (Anderson, 2007). In the latter,
spreading is only a term in determining the bias for retrieval,
but has no long-term effect on a long-term memory element’s
base-level activation. This is undesirable, since this means
spreading is ahistoric — spreading makes an element more
likely to be retrieved at this current time step, but has no effect
on whether it is likely to be retrieved at the next time step.

Instead, we created a spreading activation mechanism that
directly changes base-level activation. The mechanism is
defined by two parameters: what triggers the initial activation
boost occurs, and which elements are affected by the spread.
This strictly subsumes the original activation mechanism of
Soar, which can be cast as a “spreading” mechanism in which
the initial boost is triggered by long-term memory storage
and retrieval, and in which no other element is affected.
Additionally, we added a third trigger: whenever a rule puts a
long-term memory element into working memory, that element
also receives an activation boost. In effect, this allows input
percepts to cause changes in long-term memory activation.
Whereas before only the element itself is boosted, now all
graph-neighbors of that element, and the neighbors of those
elements and so on, also receive a boost in activation, to some
parameterized depth d. Note that these boosts are identical, as
though those elements were themselves retrieved into working
memory. This is not ideal — a boost which decreases with
distance may be more intuitive — but it serves as an initial
attempt at a useful spontaneous retrieval mechanism.

Given this mechanism, a Soar agent that uses spontaneous
retrieval for prospective memory works as follows:

Encoding The goal and its targets and actions are stored into
semantic memory. The goal receives a boost in activation
as a result, but this has little impact on its retrieval later.

Retention The goal is forgotten from working memory. The
semantic memory activation of the goal also decays, but
remains retrievable. When external percepts coincidentally
(partially) overlap with the target, the goal will receive a
boost in activation due to spreading, but in general, the
activation of the goal is low, and is not spontaneously
retrieved. Even if the goal is spontaneously retrieved, the
agent will discover that the goal conditions are not met, and
the goal is ignored.

Initiation At initiation time, all the goal target conditions
are matched. Each individual condition causes a boost
in the activation of the goal; together, these significantly

Figure 1: An example random knowledge hierarchy. See text
for description.

increase the goal’s activation, causing it to be spontaneously
retrieved. A rule then matches the retrieved goal, which
verifies that the conditions of the goals are satisfied. The
agent can then choose to pursue the goal.

Execution The action of the goal is then performed.

Completion Finally, once the goal is fulfilled, the agent
removes the goal from semantic memory. The goal will
never be spontaneously retrieved, and the agent never
pursues that instance of the goal again.

Crucially, this strategy requires the goal to be within
spreading distance of the agent’s perceptions. This may not
always be the case — the conditions of the goal may be
described in abstract terms that do not directly correspond
to perception. There are several ways to prevent this from
occurring. One possibility is to increase the depth limit of
spreading activation; due to the branching factor of semantic
memory, however, this is exponentially costly. Another
possibility is for the agent to encode the goal such that the
conditions more closely match perceptual input; in other
words, to increase encoding specificity. Finally, the agent may
also have additional rules that elaborate on perceptual input
(elaboration rules), building up to to the goal conditions; in
essence, this is generalizing the percepts, and can be thought
of as the flip side of encoding specificity. As we demonstrate
below, these three factors are not independent, and together
they determine whether the goal is boosted and retrieved.

Prospective Memory Domain
In order to evaluate the use of spontaneous retrieval for
prospective memory, a domain was created that represents
prospective memory tasks in the abstract.

To simplify our analysis, we restrict our work to where
the structure of knowledge in long-term memory forms a
recognition hierarchy, or equivalently an ontology with only
has-a relations. For example, the agent may recognize that
an object with four legs and a back is a chair, and that because
there are multiple chairs and multiple tables, that the location
is a classroom. For this domain, we randomly generate such
hierarchies from the bottom up, where the creation of each
lower-level feature has a probability of resulting in a feature
one level up. This process continues until a specified number
of features at a specified height is created; for example, Figure
1 shows a hierarchy of width 2 and height 3. Note that the

144



hierarchy is not a connected graph: lower-level features may
not be part of any higher-level feature.

Within the prospective memory domain, the knowledge
hierarchy determines both the target conditions of goals and
the percepts of the agent. The only input the agent perceives is
from the lowest level of the hierarchy, while a subset of higher
nodes are designated as goals. For example, in Figure 1, if
the square node is a goal, then the agent should perform the
goal action when all the percept-level descendants of that goal
are perceived (shaded). To generate a particular trial for the
agent, the percepts for goals are first inserted into the percept
sequence, with the remaining percepts interpolated using a
noisy random walk.

Before each trial, the knowledge hierarchy is inserted into
the semantic memory of the agent, but without knowledge of
which features are the goals. At each time step, the agent is
presented with features from the lowest level of the hierarchy,
on which elaboration rules would match to create higher-level
features. In addition to percepts, the agent is also presented
with goals and their features (if the goal is the square node
in Figure 1, its features are the diamond-shaped nodes). It
is up to the agent to store the goal into memory, where it
may also encode the goal more specifically by expanding
the intermediate-level features into percept-level features (for
example, linking the goal with the shaded nodes instead).

Within this domain, we are interested in the proportion
of prospective memory tasks completed by an agent using a
spontaneous retrieval strategy. We are interested in several
environmental and agent parameters:

• (*) The specificity of encoding by the agent.

• The maximum spreading depth in semantic memory.

• The highest level of perceptual elaboration.

• (*) The length of the retention stage.

• The average number of conditions in a goal.

• The decay rate of semantic memory.

The parameters marked with asterisks are known to have an
effect on human prospective memory. For encoding specificity,
it is expected that prospective memory performance increases
when the goal encoding matches that of percepts. As for the
length of the retention stage, the longer the interval, the more
likely that a spontaneous strategy is chosen. It is assumed that
this is due to the increased cost of monitoring for long periods,
but that does not preclude the possibility of spontaneous
retrieval performance also changing as a function of this
parameter.

Results
In general, spontaneous retrieval provides a robust prospective
memory ability, allowing an agent to complete an average
of 81.5% (and a median of 90%) of its goals across a range
of parameter settings. We examine the effects of encoding
specificity and retention interval length below.

Encoding Specificity
Encoding specificity, in this case, refers to the target conditions
of the goal that is stored in long-term memory. Instead of
directly storing the features of the goal, the agent instead stores
the goal with its lower-level features; in Figure 1, this means
the goal (the square node) is stored with the shaded nodes
as its conditions instead of the diamond-shaped nodes. This
encoding means the goal is now connected to the knowledge
hierarchy at a lower level than it would be otherwise. Since the
goal is often at the top of the knowledge hierarchy, we denote
the specificity of an encoding by how many levels below the
goal it is linked to; in this example, the encoding specificity
would be 2.

Given this definition of encoding specificity, we perform
initial analysis to determine whether a goal could be sponta-
neously retrieved. For goal at knowledge level g, elaboration
rules that create features up to level e, and a spreading depth of
d, the goal must be encoded at specificity level s that satisfies
the following relationship:

d ≥ g− e− s+1 (1)

That is, the spreading depth must be able to reach from the
highest-level elaborated features to goal conditions (plus an
extra level to spread from the conditions to the goal itself).
Note that the agent cannot complete any goals when d = 0,
since the goal would never receive an activation boost from
spreading (since no spreading occurs). We can additionally
calculate the maximum number of boosts a goal will receive,
assuming the knowledge hierarchy has branching factor b:

min(g, s+d−1)

∑
i=max(1, s−d+1, g−e)

bi (2)

That is, every feature in the levels indicated by the index
would boost the goal, a number which is exponential in the
branching factor. This classification allows us to group agents
across a large parameter space for comparison. The results
here are from exploring 1≥ g≥ 3, 0≥ e≥ 3, 1≥ s≥ 3 and
with d ∈ {1,2} and branching factor of 3.

A number of parameter settings within this space fail in
completing any goals. Upon closer examination, these are
settings where the goal is at least two steps away from the
elaborated features — for example, if elaborations provide
features of level 3 and the goal conditions are encoded at
level 4, thus requiring a two-level spread from elaboration
to condition to the goal. Equivalently, this is when e+ s <
g, or where the right hand side of Equation (1) is two or
more. In these cases, the lower-level features are activated
more frequently, causing them to have higher activation than
the goal and preventing the goal from being retrieved. This
suggests that the activation boosting of a goal is not sufficient
to guarantee its completion.

All other parameter settings allow the agent to complete
goals. The parameter that is most correlated with higher
performance is the specificity of the encoding: every increase
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in specificity results in a higher proportion of goals being com-
pleted. The results in the table below are typical; the numbers
represent the proportion of goals that the agent completed. In
retrospect, this is not surprising: more specifically encoded
goals are linked to more features, which means that there are
more opportunities for the activation of the goal to be boosted.

Table 1: Representative results demonstrating the effects of
encoding specificity. The numbers reported are the proportion
of goals completed.

Elaboration Encoding Specificity
Level 1 2

0 0% 75%
1 70% 80%
2 65% 80%
3 65% 80%

Neither the level of elaboration nor the depth limit for
spreading activation have uniform effect on the agent’s
performance. Although these parameters also effect the
number of times a goal is boosted, the problem is that they
also boost the activation of all other goals in addition to the
goal that is being initiated. As with the low-level features from
above, it is a high relative activation that allows a goal to
be spontaneously retrieved. More specific encodings provide
a large enough boost at initiation for the single goal to be
retrieved, while these other parameters do not.

Overall, these results agree with the psychology literature:
the best goal encoding should match both environmental
parameters (such as how abstract the goal is) and agent
parameters (such as the limit to spreading activation), but that
more specific encodings in general lead to better performance.

Retention Interval
In our initial experiment, none of the retention interval length,
the decay rate of semantic memory, nor the number of goal
conditions had any individual effect; whether a trial lasts 2,000
or 10,000 time steps, or have between 1 and 20 conditions, the
agent performs equally well. Learning from the experiments
with encoding specificity, however, we suspect that this is due
to the “density” of percepts to goals. The features that an agent
perceives during the retention interval are randomly selected,
and may coincidentally be one of the conditions for a goal;
that goal would then receive a small boost in activation. Since
all percepts are equally likely, all goals would receive roughly
equal numbers of activation boosts, meaning no single goal
is particularly highly activated (or particularly un-activated
either).

We can frame this idea into one of “resting activation” —
activation that a goal would have during the retention interval,
which is determined by an equilibrium formed by the increase
in activation due to spreading from random input and the
decrease in activation due to decay. Changes in either would
move the resting activation value; if the decay rate is increased,

or if there is less activation from random input (as would be
the case if the input did not contain target conditions at all),
the resting activation value would decrease. Again, it is not
the resting activation that directly determines the performance
of the agent, but the relative activation of a goal at initiation
time; this is why the decay rate has no effect, since it affects
the activation of all goals. Conversely, if a goal has low resting
activation compared to other goals, the activation spread from
its target conditions may not be sufficient to make it the most
activated element, preventing its spontaneous retrieval.

To demonstrate this, we modified the domain such that
during the retention stage, the conditions of a single goal are
never presented to the agent until initiation. We call this the
Leave One Out percept sequence, as opposed to the Normal
percept sequence. For that goal, there should be much less
activation boosts from spreading as compared to other goals,
leading to a lower resting activation level. In this case, a longer
retention length (as activation decays after the goal is initially
stored) should leave the goal uncompleted.

As expected, the Leave One Out sequence results in much
more variance in the activations of goals. The least activated
goal in a Normal percept sequence is 1.44 standard deviations
away from the mean, while with a Leave One Out sequence,
the least activated goal is 12.1 standard deviations away (the
standard deviations were calculated without the outlier). This
leads to the goal not being retrieved for completion as the
retention interval increases, as show in the table below:

Table 2: The effect of different percept sequences. The
numbers reported are the proportion of goals completed.

Mean Retention Interval Sequence Type
(time steps) Normal Leave One Out

105.7 96.7% 58.3%
125.0 96.7% 55.0%
142.7 97.5% 50.0%
166.2 96.7% 50.0%
194.1 97.5% 43.8%
214.0 96.7% 38.3%
246.3 97.6% 37.6%

This result could be interpreted in two ways. On one
hand, for random percepts, using spontaneous retrieval for
prospective memory suffers no degradations in performance,
which suggests that it may be preferable to monitoring
strategies. On the other hand, goals for which the conditions
are never encountered outside of initiation are unlikely to be
retrieved under the current mechanism, which run counter
to the trends described in psychology literature. We do not
know of any studies which look at the baseline frequencies
of goal conditions, nor of studies which examine human
prospective memory performance where performing the goal
require satisfying multiple disjoint conditions. It is possible
that human performance exhibit similar patterns under such
situations; alternately, a better model may be a hybrid
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strategy where occasional monitoring-like retrievals prevent
the activation of any goal from dropping too low.

Discussion and Conclusion
This paper presented a strategy for completing prospective
memory tasks, by using spontaneous retrieval to bring the
goal into working memory at the right time. This strategy
proves robust across a number of parameters. In particular,
the change in performance over two parameters qualitatively
matches human data: the increased performance when the goal
is encoded more specifically, and the decreased performance
when the retention interval is lengthened (where the conditions
of the goal are presented differentially). These results crucially
depend on the idea that the goal must have higher relative
activation compared to other knowledge in order for the
prospective memory task to succeed. This explains why other
memory parameters have no effect, as they alter the activation
of all goals on an absolute scale, but leave relative differences
unchanged.

At the same time, a major shortcoming of this work is
the unexplored space of both the spreading activation and
spontaneous retrieval mechanisms, as well as in the structure
of knowledge in memory. These results only hold when
spontaneous retrieval is based on activation, when spreading
activation has a hard limit on depth, and when long-term
memory is a hierarchy. It is easy to imagine alternatives: where
spontaneous retrievals are based on analogical mapping, where
the size of the activation boost decays over graph distance as
it spreads, or where long-term memory is a more complicated
graph. None of these parameters can be easily enumerated and
tested, and each requires significant evaluation on its own to
determine the conditions under which they best match human
data or are most useful to artificial agents.

Spontaneous retrieval is an important mechanism for
cognitive architectures: it is necessary to fully model human
prospective memory, and it also serves as a heuristic for when
memory-search guidance knowledge is lacking in artificial
agents. While this work is one step in understanding such
a mechanism, much work remains to be done, and given
that many algorithmic details affect the utility of spontaneous
retrieval, these effects may be better explored using simpler
models before being implemented in a cognitive architecture.
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Abstract
We present Holographic Declarative Memory (HDM), a new 
memory module for ACT-R and alternative to ACT-R’s De-
clarative Memory (DM). ACT-R is a widely used cognitive 
architecture that  models many different aspects of cognition, 
but is limited by its use of symbols to represent concepts  or 
stimuli. HDM replaces the symbols with holographic vectors. 
Holographic vectors retain the expressive power of symbols 
but have a similarity metric, allowing for shades of meaning, 
fault tolerance, and lossy compression. The purpose of HDM 
is  to enhance ACT-R’s ability to learn associations, learn over 
the long-term, and store large quantities of data. To demon-
strate HDM, we fit performance of an ACT-R model that uses 
HDM to a benchmark memory task, the fan  effect. We ana-
lyze how HDM produces the fan  effect and how HDM relates 
to the standard DM model of the fan effect.

Keywords: ACT-R; memory; cognitive modeling; cognitive 
architectures; artificial  general intelligence;  integrated cogni-
tion; holographic reduced representations; vector-symbolic 
architectures

Introduction
Computational cognitive architectures provide the formal, 
unified theories of cognition necessary for cognitive scien-
tists to achieve an understanding of the mind. ACT-R (An-
derson & Lebiere, 1998) is a widely used cognitive architec-
ture that can model diverse aspects of cognition.  As an inte-
grated architecture, ACT-R is a good choice for modelling 
complex tasks. However, the ACT-R Declarative Memory 
system (DM) was designed for modelling the results of psy-
chology experiments and as such presents certain limitations 
for modelling complex, real world behaviour.  In what fol-
lows, we present Holographic Declarative Memory (HDM), 
a new module for the ACT-R cognitive architecture that 
addresses some of DM’s limitations. To help establish that 
HDM can provide the same functionality as ACT-R’s DM, 
we have modelled the fan effect task (Anderson, 1974), ana-
lyzed how HDM generates the fan effect, and used this 
analysis to compare the HDM and DM models.

Holographic Declarative Memory (HDM) replaces ACT-
R’s symbols with holographic vectors. Holographic vectors 
retain the expressive power of symbols but have a similarity 
metric,  allowing for shades of meaning, fault tolerance, and 
lossy compression of stored information.

HDM is based on BEAGLE (Jones & Mewhort, 2007), a 
learning algorithm that models how people abstract the 
meaning of words from their lifetime language experience, 
and DSHM (Rutledge-Taylor, Kelly, West, & Pyke, 2014), a 
model that uses a similar approach to BEAGLE but re-
purposes and extends the algorithm as a general memory 
model. HDM is implemented for Python ACT-R and the 
code for both Python ACT-R and HDM are available 
through GitHub1.  Our intent with HDM is to replicate the 
basic functionality of DM and provide new capabilities.

First, we provide an introduction to holographic models 
of memory and the fan effect. Next,  we detail Anderson and 
Reder’s (1999) ACT-R model of the fan effect. We then de-
scribe HDM and the ACT-R HDM model of the fan effect. 
We contribute a novel analysis  of how holographic models 
produce the fan effect and relate to Anderson and Reder’s 
model. Finally, we outline future work.

Holographic Models of Memory
First proposed by Longuet-Higgins (1968) and Gabor 
(1969), a holographic memory is a type of computational 
associative memory based on the mathematics of hologra-
phy. Holographic memory has been of interest to cognitive 
psychologists because of the following:

(i) Associative memories are content-addressable, allow-
ing for memory retrieval without search.

(ii) Holographic memories can compactly store compli-
cated and recursive relations between ideas.

(iii) Holographic memories have “lossy” storage, which is 
useful for modelling human forgetting.

Cognitive models based on holographic memory can ex-
plain and predict a variety of human memory phenomena, 
such as the serial position curve in free recall (Franklin & 
Mewhort,  2015). Holographic memory has also been used to 
model analogical reasoning (Plate, 2000; Eliasmith & Tha-
gard, 2001) and how humans perform simple problem-
solving tasks such as playing rocks, paper, scissors (DSHM; 
Rutledge-Taylor et al.,  2014) or solving Raven’s progressive 
matrices (Eliasmith, 2013). Knowledge in SPAUN, the 
world’s largest functional brain model (Eliasmith, 2013), is 
represented using holographic memory. 

ACT-R DM is not designed for modelling tasks that in-
volve large databases,  such as language comprehension. 
Conversely, BEAGLE (Jones & Mewhort,  2007) and 

1 A Python ACT-R distribution  with HDM included can be downloaded from <https://github.com/MatthewAKelly/ccmsuite> and the fan 
effect model, which requires Python ACT-R and HDM, can be downloaded from <https://github.com/MatthewAKelly/faneffect>. A guide 
to using Python ACT-R can be found at <https://sites.google.com/site/pythonactr/>.
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DSHM (Rutledge-Taylor, Vellino, & West, 2008) are holo-
graphic models that have been used, respectively, to infer 
word meanings from a corpus and to infer patterns of movie 
preferences from a database of user movie scores.

Holographic memory models have also been previously 
used to model the fan effect.  Specifically, Dynamically 
Structured Holographic Memory (DSHM; Rutledge-Taylor 
et al., 2014; Rutledge-Taylor, Pyke, West, & Lang, 2010) 
has been used to model two versions of the fan effect task. 

Though HDM is based on DSHM, the HDM module for 
ACT-R differs sufficiently from DSHM that it is worth 
demonstrating that HDM can,  in fact, model the fan effect 
task. The differences between HDM and DSHM stem from 
HDM’s integration into ACT-R. As a module for ACT-R, 
HDM makes commitments as to the cognitive structure that 
the memory system is situated in. To interface with ACT-R, 
HDM commits to a particular way of encoding information 
and to a particular way of calculating reaction times that are 
distinct from the DSHM model.

Fan Effect
The fan effect task (Anderson, 1974) is a recognition mem-
ory task. During the study phase of the task, participants 
memorize a set of sentences that vary on some number of 
dimensions.  In the original fan effect task (Anderson, 1974), 
each sentence is of the form “the person is in the location” 
where the person and location vary from sentence to sen-
tence (e.g., “the hippy is in the park”).

Once the participants have the sentences memorized, they 
are given a recognition task. In the recognition task,  some 
sentences are from the study set (targets), and some sen-
tences are novel combinations of the people and locations 
from the study set (foils). Participants are instructed to iden-
tify as quickly as possible which combinations of person 
and location were in the study set and which were not.

The fan of a concept is the number of different sentences 
in the study set that contained that concept. For example, if 
“the hippy is in the park” is the only sentence in the study 
set that mentions the hippy, then hippy has a fan of one. If 
participants learn that there are four people in the park dur-
ing the study phase, then park has a fan of four. 

The fan effect refers to the finding that participants are 
slower to recognize or reject sentences that contain concepts 
that have a higher fan. The more people in the park, the 
slower participants are to decide if the phrase “hippy is in 
the park” was in the study set. Likewise, if participants learn 
that the hippy is in several different locations, they are 
slower to decide if the hippy was in a particular location.

The fan effect illustrates a fundamental principle of hu-
man memory: the availability of a piece of information in 
memory with respect to a cue is a function of the probability 
of that piece of information conditional on the cue.  If the 
participants learn four facts about the park, then given the 
cue park,  each of those facts have only one chance in four of 
being the relevant fact to retrieve. The retrieval time from 
memory will reflect that one in four chance. Conversely, if 
the participants know only one fact about the park, given the 
cue park, retrieval time will be rapid, reflecting the 100% 
chance that the fact will be relevant.

ACT-R’s Declarative Memory (DM)
In ACT-R, knowledge is represented in Declarative Memory 
(DM) as lists of slot:value pairs called chunks. Each slot is a 
task-relevant dimension of the stimulus, such as “colour” or 
“location”. For example, a red square could be described by 
the chunk “colour:red shape:square”. In the fan effect task, 
each sentence is represented by a chunk, e.g., “person:hippy 
place:park”. In Python ACT-R, chunks can also be ordered 
lists of values without slots, “red square” or “hippy park”. 
When the slots are omitted from a chunk, the order of the 
values in the chunk is used as the organizing principle.

Each chunk in DM has an activation. According to Ander-
son's (1991) rational analysis,  the activation of a chunk in 
memory is an estimate of the likelihood of the information 
in the chunk being useful in the current situation. Given a 
cue that describes the current situation, ACT-R retrieves the 
chunk in DM with the highest activation. Activation is a 
sum of a base level activation and a measure of the similar-
ity between the chunk and the cue. Base level activation is a 
measure of how frequently and how recently the chunk has 
been used. For a chunk i, the activation of that chunk, Ai, is

                         (1)

where Bi is the baseline activation of the chunk, n is the 
number of slot-value pairs in the cue, Wj is the attention paid 
to slot-value pair j of the cue, and each Sji is an association 
strength: a measure of the probability that chunk i is rele-
vant given that the cue contains slot-value pair j.

DM can be understood by analogy to a hydraulic system. 
Activation is like water and connections between cues and 
chunks are like pipes. Activation spreads from the cue to the 
chunks in DM. Chunks with stronger associations to the cue 
receive more activation. The chunk that receives the most 
activation is selected and retrieved from memory. The time, 
T,  to retrieve a chunk, i, is a function of the chunk’s activa-
tion, Ai, and two fitting parameters I and F,

                                (2)

The higher the activation, the shorter the retrieval time.
Although ACT-R has a mechanism for learning the asso-

ciation strengths, this has not been tested with the fan effect. 
Instead, each Sji for chunk i and slot-value j is

Sji =S + ln( P(i|j) )

where S is a fitting parameter and P(i|j) is the probability 
that chunk i will be useful given the presence of the concept 
j in the cue. In the fan effect, the chunk i might be “hippy 
park” and j might be park. If there are four people in the 
park then park has a fan of four. The probability that “hippy 
park” is the correct chunk given park is then 1/4 or, more 
generally, 1/f where f is the fan.

In the fan effect task, the experimental design is supposed 
to control for frequency and recency effects, and so the 
ACT-R model of the fan effect assumes all chunks have the 
same baseline activation, Bi,  and thus baseline activation can 
be removed from the equation.
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In Anderson and Reder’s (1999) ACT-R model of the fan 
effect,  reaction time for correctly identifying a target as be-
longing to the study set is calculated in milliseconds with 
the parameters S = 1.45, Wj = 1/3, I = 845, and F = 613. The 
target retrieval time for the fan effect model works out to be:

T = 239 fperson1/3 fplace1/3 + 845

where fperson is the person’s fan and fplace is the place’s fan. 
This model provides a good fit to participant reaction times 
to targets in the fan effect task, r = 0.95 (see Figure 1).

Holographic Declarative Memory (HDM)
In Anderson and Reder’s (1999) ACT-R DM model of the 
fan effect, it is necessary to set the correct association 
strength Sji for each concept j and chunk i. However, Holo-
graphic Declarative Memory (HDM) produces the fan effect 
by learning the study set. The association strengths are not 
explicitly programmed. The studied items are presented to 
HDM as ACT-R chunks. HDM uses holographic reduced 
representations (Plate, 1995), a technique for instantiating 
and manipulating symbolic structure in high-dimensional 
vectors. To interface with ACT-R, HDM translates chunks 
into vectors, and vectors into chunks.

In HDM, a value is represented by a vector of n numbers 
randomly sampled from a normal distribution. These ran-
domly generated vectors are referred to as environment vec-
tors.  Any two vectors chosen at random in a high dimen-
sional space will tend to be approximately orthogonal. In 
HDM, angles indicate degrees of similarity. Orthogonality 
indicates complete dissimilarity. If we wanted to represent 
values with intrinsic similarity (e.g., brother and sister) we 
could choose non-orthogonal vectors, but for the purposes 
of modelling the fan experiment, we assume that the persons 
and locations are dissimilar.

In HDM, a slot is represented by a random permutation: a 
randomly selected reordering of a vector’s elements.  A slot-
value pair is represented by reordering the elements of the 
value vector by the slot permutation. 

Information storage in HDM is based on BEAGLE (Jones 
& Mewhort, 2007) and DSHM (Rutledge-Taylor et al., 
2014). HDM is a concept-based memory system. Rather 
than storing chunks per se, HDM stores relationships be-
tween concepts,  i.e., the values from an ACT-R chunk. Each 
concept is represented by two vectors: an environment vec-
tor econcept that represents the percept of that concept, and a 
memory vector mconcept that stores the relationship between 
that concept and other concepts.

As information storage in HDM differs from DM, so too 
does the process of retrieval. To recall from DM, DM is 
given a retrieval cue that is a description of a chunk and DM 
retrieves a chunk that matches that description. Conversely, 
in HDM, a cue is a question,  represented by a vector, and 
HDM retrieves the concept that best answers that question. 

A memory vector for a concept, mconcept, stores a list of 
questions to which HDM knows, from experience, that the 
concept is a candidate answer. When cued, that is, posed a 
question, HDM selects the memory vector with the greatest 
similarity to the cue and gives as answer the concept repre-
sented by that memory vector.

In Python ACT-R, a cue may contain the value question 
mark,  ‘?’, to indicate a ‘wildcard’,  that is, an unknown 
value. DM can retrieve more than one unknown value at a 
time because it is retrieving a complete chunk. Whereas in 
HDM, each unknown value requires a separate retrieval 
because HDM retrieves a value rather than a chunk (though 
we are open to the possibility that these retrievals could be 
performed in parallel). A chunk used as a cue for recall in 
HDM must contain exactly one ‘?’ to indicate the concept 
(i.e., value) that HDM should retrieve.

Memory Encoding and Recall with Slots
In HDM, there are two ways to structure knowledge corre-
sponding to the two kinds of chunk in Python ACT-R: lists 
of values or unordered lists of slot-value pairs. We first dis-
cuss storing unordered slots-value pairs in HDM.

To store in HDM the chunk “colour:red shape:square 
size:large”,  we update the memory vector for each concept 
in the chunk: mred, msquare, and mlarge. To update the memory 
vector for red, mred, we need to construct a vector represent-
ing the relationship between the concept red and all other 
concepts in the chunk and then add that vector to mred. In 
other words, we need to describe the set of questions for 
which red is an appropriate answer given “colour:red 
shape:square size:large” and add those questions to mred. 
Those questions are “What colour is it?”,  “What colour is 
the large thing?”, “What colour is the square?” and “What 
colour is the large square?”.

The question “What colour is it?” can be represented by 
the chunk “colour:?”,  “What colour is the large thing?” by 
the chunk “colour:? size:large”, and “What colour is the 
large square?” by “colour:? size:large shape:square”.

When the cue is translated into a vector, the ‘?’ becomes 
the placeholder (Jones & Mewhort, 2007). The placeholder, 
denoted by Φ, is a vector used to encode all associations 
and thus serves as a universal retrieval cue. The placeholder 
is randomly generated like an environment vector. Using the 
placeholder, the cue “colour:?” is translated into the vector 

Figure 1: Real versus simulated reaction times for 
the fan effect from Anderson’s (1974) data and 

Anderson and Reder’s (1999) ACT-R DM model.
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qcolour:? = (Pcolour Φ),  where Pcolour is the permutation repre-
senting the slot colour.

In holographic reduced representations (Plate, 1995), 
there are two ways of combining a pair of vectors to create a 
new vector: + vector addition and * circular convolution. An 
association between concepts is represented by convolving 
together the environment vectors representing those con-
cepts.  Addition is used to superimpose vectors representing 
separate information into a single vector.

The vector that represents the question “colour:? 
size:large” is (Pcolour Φ)*(Psize elarge), i.e., the placeholder 
permuted by colour and convolved with large permuted by 
size. This vector will only match the memory vectors of 
concepts that are colours associated with large objects.

By default, HDM allows for partial matching of cues to 
concepts in memory. To do so, HDM translates each cue 
into a set of questions: the question explicitly specified by 
the cue and all less specific variants of that question. The 
cue “colour:? size:large shape:square” is translated into a 
sum of vectors representing “colour:? size:large 
shape:square” and also “colour:?  size:large”, “colour:? 
shape:square”, and “colour:?”, calculated as follows:

qcolour:? size:large shape:square =
                      (Pcolour Φ) 
 + (Pcolour Φ)*(Psize elarge)

+ (Pcolour Φ)*(Pshape esquare) 
 + (Pcolour Φ)*(Pshape esquare)*(Psize elarge) 

Cues are used both to retrieve from memory and to add 
new knowledge to memory. When the chunk “colour:red 
size:large shape:square” is added to memory,  HDM updates 
mred, msquare, and mlarge as follows:

Δmred      = qcolour:? size:large shape:square
Δmsquare = qcolour:red size:large shape:?
Δmlarge   = qcolour:red size:? shape:square

Given a retrieval cue, HDM selects the memory vector with 
the greatest similarity to the cue’s vector and the cue’s 
chunk is returned to ACT-R with the ‘?’ substituted for the 
concept that the memory vector represents.

Similarity is measured by the cosine of the angle between 
vectors, which can be calculated as:

cosine(q, m) = (q • m) / ( (q • m)0.5 (q • m)0.5 )

where q  is a cue vector, m is a memory vector, and • is the 
dot product. The cosine is the dot product normalized by the 
magnitudes of the vectors.  A cosine of 1 means the vectors 
are identical and 0 means they are completely dissimilar. 
HDM uses DM’s retrieval time equation (Equation 2), but 
calculates activation as similarity measured by the cosine.

Vectors without Slots
Without slots,  relationships are indicated by the order of the 
values in the chunk. Convolution is commutative, a * b  = b 
* a, so the order is not preserved. To preserve the order we 
use Pbefore, a random permutation indicating that a vector 
occurred before another a vector. To add the chunk “large 

red square” to memory, we would update mred, msquare,  and 
mlarge. We would update mred as follows:

Δmred = (Pbefore elarge)*Φ
+ (Pbefore Φ)*esquare

 + (Pbefore ((Pbefore elarge)*Φ)*esquare

which adds the questions “large ?”, “? square” and “large ? 
square” to the memory of the concept of red.

Recognition with Holographic Declarative Memory
In the DM model of the fan effect, the activation of a chunk 
is calculated as a weighted sum of the association strengths 
of the chunk’s constituent concepts. In HDM, association 
strengths are measured by vector cosine, so we can calculate 
that activation in HDM as a weighted sum of cosines.

When determining whether HDM recognizes a cue, the 
cue chunk must contain no unspecified values ‘?’. For each 
value in the cue, HDM creates a new cue with that value 
substituted for ‘?’,  performing one retrieval for each value 
in the original cue. Activation is calculated as the mean of 
the cosines between each of these cues and the memory vec-
tor of the concept that was substituted out to create the cue. 
This method for calculating activations in the fan effect has 
been used before by DSHM (Rutledge-Taylor et al., 2014; 
Rutledge-Taylor, Pyke, West, & Lang, 2010).

In the fan effect task, for the cue “hippy park”, HDM does 
two retrievals,  “hippy ?” and “? park” with the vectors 
qhippy? = (Pbefore ehippy)*Φ and q?park = (Pbefore Φ)*epark. Acti-
vation A is calculated as:

A = 0.5 cosine(qhippy? , mpark) + 0.5 cosine(q?park , mhippy)

The HDM Model of the Fan Effect
We ran the HDM model of the fan effect task 20 times, 
simulating 20 virtual participants, and averaged across runs. 
Because each run uses a different set of random vectors, the 
cosines and reaction times vary randomly with each run. 
Anderson’s (1974) experiment had 18 participants. The 
model fits the human participant data reported by Anderson 
(1974) with a correlation of r = 0.91 (see Figure 2). The fit 
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Figure 2: Real versus simulated reaction times for the fan 
effect from Anderson’s (1974) data and the HDM model.
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was obtained using the exact same values for the fitting pa-
rameters as Anderson and Reder’s (1999) ACT-R fan effect 
model. The only change was to compute activation as a 
mean of cosines, as described in the previous section.

Anderson and Reder’s (1999) model and the HDM model 
are strongly correlated,  r = 0.99. While there are slight dif-
ferences in the predictions made by the two models,  both the 
DM and HDM models are within the range of human vari-
ability for performance on this task. These results show that 
HDM replicates DM’s ability to model the fan effect,  but 
HDM does so in a radically different way: by measuring the 
cosine between vectors in a high-dimensional space.

Why does the cosine model the fan effect so well? The 
cosine acts as an estimate of the conditional probabilities 
that the Anderson and Reder’s (1999) fan effect model uses 
to compute association strengths. The memory vector for a 
concept keeps a fuzzy count of the number of times that 
concept has co-occurred with each other concept.  Taking the 
dot product of the cue with a memory vector gives you an 
estimate of the frequency with which that cue has been 
added to that memory vector, that is, the number of times 
the relationships described in that cue have occurred with 
that concept. The cosine is a dot product normalized by the 
magnitudes of the vector, which in this case, is a frequency 
normalized by the total number of instances, that is to say, 
the cosine is roughly the probability.

We can imagine all vectors in HDM as points on a n-
dimensional hypersphere. For the HDM fan effect model, 
we used 256 dimensions, but for the sake of visualization, 
imagine a 3-dimensional sphere.

Let us first consider a fan of one. Suppose the model has 
learned only one fact about the hippy, namely, the “hippy is 
in the park”. After learning this fact, the memory vector for 
hippy will be mhippy = (Pbefore Φ)*epark. The model is later 
given the cue “the hippy is in the park” during the recogni-
tion phase. To test for recognition, we take the cosine of 
mhippy with the cue q?park = (Pbefore Φ)*epark.  As mhippy = q?park 
the angle between the cue and the memory vector is zero, 
the distance between them on the surface of the hyper-
sphere is zero, and the cosine is 1.00.

Let us consider a fan of two. If the model knows “hippy is 
in the park” and “hippy is in the bank”, then mhippy is the 
sum of the park cue q?park and the bank cue q?bank,

mhippy = (Pbefore Φ)*epark + (Pbefore Φ)*ebank

In high dimensional spaces, randomly chosen vectors are 
approximately orthogonal to each other.  Let us assume that 
the cues q?bank and q?park are perfectly orthogonal. As illus-
trated in the left half of Figure 3, on the surface of the hy-
persphere, mhippy will be halfway between the two cues at a 
45˚ angle. The cosine is 0.71.

Let us consider a fan of three. If the model knows that the 
hippy is in the bank, park, and store,  mhippy will be at an 
equidistant point on the hypersphere between the cues for 
bank, park,  and store. In the fan of three, mhippy is further 
away from all the cues than in a fan of two. The angle be-
tween mhippy and any cue is 55˚ and the cosine is 0.58.

Where f is the fan, the cosine between a cue and a mem-
ory vector is f -1/2 if the vectors are perfectly orthogonal, or 

approximates f -1/2 for the random vectors used by HDM. 
Thus HDM predicts that as the fan increases, the cosine 
decreases, but by diminishing amounts with each increase in 
fan. As the fan approaches infinity, the cosine approaches 
zero. HDM makes the intuitive prediction that increases in 
the fan has a steadily diminishing effect on reaction time, 
such that knowing 100 facts about the hippy is not apprecia-
bly different from knowing 101. 

The cosine in HDM approximates the square-root of the 
probability only when the events are equiprobable.  For n 
events with frequencies v1 to vn, the cosine of event i is

                       (3)

When given events of unequal probabilities,  HDM will be-
have as if the most frequent events are disproportionately 
likely and the least frequent events are disproportionately 
unlikely. This is a testable and possibly erroneous prediction 
of HDM. The quantum probability model of human judge-
ments (Busemeyer, Pothos, Franco, & Trueblood, 2011) also 
uses vector algebra to calculate probabilities, but uses the 
square-roots of the frequencies, then squares the cosine, 
such that Equation 3 is equal to classical probability. Using 
the square-roots of the frequencies is not possible for HDM 
as it would require HDM to know a priori how frequently 
each event will occur.

Future Work and Applications of HDM
We have presented in this paper an HDM model of the fan 
effect and compared it to Anderson and Reder’s (1999) DM 
model of the fan effect. However, we have only discussed 
fitting to the reaction time of targets,  sentences presented at 
the recognition phase that occurred in the study set. Ander-
son and Reder’s (1999) model for foils,  sentences that were 
not in the study set, fails on a variant of the fan effect task 
(West, Pyke, Rutledge-Taylor, & Lang, 2010). As the foil is 
difficult to model, we leave developing an HDM model of 
the foil for future research.

At present, HDM does not model recency effects,  that is, 
more recent information is not recalled better than less re-
cent information. However,  other holographic models in the 
literature (e.g., Franklin & Mewhort, 2015; Murdock 1993) 
can account for recency effects, so such a mechanism could 
be incorporated into the model.

q?park

q?bank

q?store

mhippy

Figure 3: mhippy with a fan of 2 (left) or 3 (right).

mhippy

q?park

q?bank

cosine = vi
v1
2 +...+ vi

2 +...vn
2

152



At present, interfacing with ACT-R chunks imposes an 
information bottleneck on HDM. Detailed sensory informa-
tion cannot be feasibly stored in ACT-R chunks, but can be 
stored in holographic vectors (Kelly, Blostein, & Mewhort, 
2013). Reimplementing the entirety of ACT-R as a holo-
graphic system would improve ACT-R’s ability to interface 
with real world environments and to match situations to 
procedures. Some of that work has already been done: A 
holographic model similar to ACT-R’s procedural memory 
system already exists as the basal ganglia model of the 
SPAUN brain model (Eliasmith, 2013; Stewart, Bekolay, & 
Eliasmith, 2012). However, a holographic procedural mem-
ory consistent with HDM and ACT-R would necessarily 
differ from SPAUN’s to meet the demands of integration 
with a different architecture.

HDM is a powerful tool for cognitive modellers because 
it inherits the abilities of holographic models such as BEA-
GLE (Jones & Mewhort, 2007) and DSHM (Rutledge-
Taylor,  Vellino, & West, 2008) to store large quantities of 
data in memory and use it to make intelligent predictions in 
knowledge-heavy tasks. In Rutledge-Taylor et al. (2014) we 
show that DSHM can be used to model a difficult but small-
scale decision-making task. HDM could be applied to a 
large-scale, knowledge-driven decision-making task.

Conclusion
We present a new module for ACT-R, Holographic Declara-
tive Memory (HDM). We substitute HDM for DM in the 
ACT-R model of the fan effect and find that without chang-
ing any parameters HDM provides a good fit to the fan ef-
fect. We present an analysis that allows us to specify the 
mathematical relationship between the DM and HDM mod-
els of the fan effect.

HDM, by virtue of being a holographic model, has a 
number of capabilities for which DM is less suited,  such as 
analogical or case-based reasoning, learning associations 
between concepts without having association strengths set 
by the modeller,  and performing tasks that require large 
amounts of knowledge. We hope that by integrating a holo-
graphic memory model into ACT-R, we can bring the capa-
bilities of vector space modelling into the ACT-R research 
community and enhance the capability of the ACT-R cogni-
tive architecture to model human cognition.
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Abstract

An important application of cognitive architectures is to provide 
human performance models that capture psychological 
mechanisms in  a form that can  be “programmed” to predict task 
performance of human-machine system designs. While many 
aspects of human performance have been successfully modeled 
in  this approach, accounting  for multi-talker speech task 
performance is a novel problem. This paper presents a model  for 
performance in a two-talker task that incorporates concepts  from 
the psychoacoustic study of speech perception, in particular, 
masking effects and stream formation.

Keywords: Cognitive architecture; two-channel speech; 
auditory perception; auditory streams

Introduction
A classic problem in cognitive psychology is the "cocktail 

party effect" in which a person is surrounded by several 
people speaking simultaneously,  and is nonetheless able to 
follow a single speaker well enough to maintain a 
conversation, although some information about what the 
other speakers are saying appears to be available under 
some conditions. The early study of these phenomena (e.g. 
Cherry, 1953) led to a body of additional studies and 
theoretical work that defined the current concept of selective 
attention; the human listener was said to be able to 
selectively attend to one of the signal sources and "filter 
out" the others. The most common experimental paradigm is 
that the subject must listen to simultaneous speech inputs 
from two or more talkers (human speakers), but respond to 
the information provided by only one of them. Some more 
recent research over the last decade has used more precise 
procedures to help characterize the determinants of 
performance; in particular many experiments have been 
done using the coordinate response measure (CRM) speech 
corpus which represents a highly simplified form of the 
command and control messages used in military settings 

(Bolia, Nelson, Ericson, & Simpson, 2000).
The mainstream psychoacoustic work on this problem 

applied the mathematical tools of signal analysis that have 
been successful in characterizing human ability to detect 
and discriminate sounds. A less formal but influential 
concept was auditory streams (Bregman, 1990), the notion 
that we perceive separate sound sources based on the 
detailed properties of the incoming sounds. In a two-talker 
task, each talker would be perceived as a stream, and the 
listener’s task is to determine which sounds go with which 
stream and choose the appropriate response. This process 
must involve a combination of perceptual mechanisms and 
cognitive strategies. However, psychoacoustic accounts of 
the task have focussed on "front end" processes of signal 
detection and processing and did not have a well-defined 
way to take into account the possibly complex "back end" 
processes of cognitive strategies involved in the task. In 
contrast,  cognitive architecture research developed powerful 
theoretical mechanisms for the "back end" processing, 
especially using production systems, but  tended to ignore 
difficult details of perceptual processes.

The present paper combines mathematical models of 
speech perception with a cognitive architecture to model 
human performance in a two-talker listening task.  EPIC 
(Executive/Process-Interactive Control) is one among 
several architectures whose goal is to provide an integrated 
account of human abilities and limitations in perception, 
cognition, and action.  A psychoacoustic speech perception 
model was incorporated into the EPIC cognitive architecture 
to provide an integrated account of performance in a well-
studied two-talker speech perception task. We devised a 
relatively simple speech perception model and a strategy 
which together account for important factors that determine 
performance. 

An earlier form of this model appears in Kieras, 
Wakefield, Thompson, Iyer, & Simpson (2014); the model 
presented here has the same strategy component, but the 
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perceptual models are considerably improved, taking into 
account how pitch differences affect detection and stream 
segregation. The result is a model with far fewer parameters 
that must be estimated from the data.  A detailed comparison 
of the improved perceptual model with the previous one is 
not possible in the available space here; the reader can 
compare this model with the one in Kieras, et al (2014).

Following a review of the two-talker CRM listening task, 
an overview of EPIC will be presented and key extensions 
of the auditory processing module will be introduced. 
Within the framework imposed by these extensions, a model 
for the two-talker CRM listening task will be proposed and 
fit to the human data.

Replication of a Two-Talker Dataset
 The CRM corpus is a collection of recorded command 

utterances in the form of 
Ready <Callsign> go to <Color> <Digit> now 

spoken by one of four females or four males,  where the 
Callsign, Color, and Digit are drawn from sets of 8, 4,  and 8 
items, respectively.  The corpus was recorded and edited to 
maintain a high degree of temporal overlap among the 
spoken Callsigns, Colors and Digits (Bolia, et. al., 2000).

In the two-talker CRM listening task, participants respond 
to commands by selecting the appropriate Color/Digit pair 
from a display. A particular Callsign is designated as the 
Target Callsign, which was always Baron in the studies used 
in this paper. On each trial, a Target message is drawn from 

those utterances bearing the Target Callsign and is presented 
simultaneously with a randomly selected Masker message, 
with the restriction that the Callsign, Color and Digit of the 
Masker differ from those of the Target.  The participant thus 
hears two messages whose words are simultaneous, and 
must choose the color-digit pair associated with the Target 
callsign, and was instructed to ignore the Masker message. 
The responses are scored as matching the Target message, 
the Masker message, or Neither.  

An important study by Brungart (2001) stimulated our 
first modeling.  He manipulated the acoustic similarity of the 
two talkers, varying from Different Sex (DS), to Same Sex 
(SS),  to Same Talker (ST),  and also manipulated the 
relative loudness of the two messages, with a Signal-to-
Noise ratio (i.e. the Target-to-Masker ratio) ranging from 
-12 to +15 dB. This study is important because in addition 
to reporting the proportion of completely correct responses 
(both Color and Digit are Target), he also reported the 
proportions of responses that matched Target, Masker, or 
Neither separately for Color and Digit. 

Rather than show his results in this paper, however, we 
present the results for a methodologically improved 
replication which is very similar in design and results to 
Brungart (2001). The replication followed the conditions 
and procedures of Brungart (2001) in all respects except 
two: (1) The SNR, which ranged from -12 to +15 dB in the 
original study, was shifted to a lower range (-18 to +9 dB) in 
the interest of studying performance at SNRs closer to 
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Figure 1. Observed (solid points and lines) and Predicted (open points and dotted lines) proportion of  responses as a function of SNR and 
talker similarity.  Top panel shows Color responses, bottom panel  shows Digit responses. In  order from the top down, the curves  are as 
follows: Blue curves with diamond points are for Target  responses, black curves with  circle points are for completely correct responses 
(both color and digit from the Target), and are the same in the top and bottom panels; red curves with square points  are for Masker 
responses, and green curves with triangles for neither  Target nor Masker.  Error bars  show 95% confidence intervals for the means 
averaged over individual subject proportions.
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masked detection thresholds; (2) the replication clarified the 
task instructions with a point reward system for correct 
performance,  and provided performance feedback at the end 
of each trial and during the experiment. 

Results
The six panels of Figure 1 show these somewhat complex 

experiment results as the observed points (solid points and 
lines; the predicted points will be explained later).  Each 
panel plots the proportion of Target, Masker, and Neither 
responses as a function of the signal-to-noise (SNR) ratio  in 
dB. The upper and lower panels display the proportion for 
Color and Digit responses separately. In addition, the panels 
show the proportion of Both-Correct responses in which 
both Color and Digit are from the Target message.  These 
black curves are the same in the upper and lower panels. 
The left-to-right panels display the results based on the 
similarity of the Target and Masker talkers. From left to 
right, the stimulus conditions are Different Sex, Same Sex 
but different talkers, and Same Talker. 

The basic effects are as follows: overall, with increasing 
positive SNR, the completely correct and Target Color and 
Digit responses are chosen more often, and Masker and 
Neither content are chosen less often. The overall 
performance when the messages are delivered by Different-
Sex talkers is better than that for Same-Sex talkers, which is 
turn is better than that when the two messages are from the 
Same Talker. For the Same-Sex and Same-Talker 
conditions, accuracy is very poor at very low (negative) 
SNRs, but then improves, and then declines again in the 
vicinity of 0 dB SNR, and then improves again. 

A key empirical fact is that the incorrect responses were 
almost always from the Masker message, which places a 
basic constraint on the cognitive processes in any model,  in 
that it implies that Masker message content was being 
perceived and remembered, and then chosen as a response, 
rather than being simply filtered out,  as would be expected 
from a simple selective attention model.

Accounting for the Phenomena
To date, a theoretical account of the two-talker CRM 

results remains incomplete.  Discussions have focused on 
the relative importance of informational masking over 
energetic masking, the roles of selected and divided 
attention, and the formation and maintenance of auditory 
streams.  However, none of these concepts have been 
operationalized to the point of providing strong predictions 
of experimental outcomes. What follows is an attempt to 
help bridge this gap.

The focus of our work was to account for these results in 
terms of a basic concept of human cognitive architecture 
and a quantitative model based on that concept.  The 
resulting model incorporates mechanisms that resemble both 
energetic and informational masking, but do so with 
considerably more theoretical precision; most importantly, 
the strategy that the subject follows to perform the task is 
directly represented, and this turns out to be critical in 

accounting for the specific effects in this data.

The Architecture and Model
An EPIC architecture model comprises a simulated task 

environment which interacts with a simulated human; the 
architecture describes the fixed components of the simulated 
human, controlled by a task-specific strategy represented as 
production rules. Due to space limitations, the usual 
description of the architecture is not provided here; see 
Meyer and Kieras (1997, 1999) or Kieras (in press) for more 
discussion. The focus of this presentation is on the 
mechanisms of the auditory processor that have been added 
to the architecture, and the production-rule strategy for the 
task.

Model Summary
The application of a cognitive architecture to 

multichannel speech processing is novel, and so needs to be 
presented with some detail, but for brevity, low-level 
representational issues are not presented here.  Rather, the 
emphasis is on the conceptual design of the architecture and 
model components, especially the auditory processor, taking 
into account that at this time many processes have to be 
“black boxed”. The following is a compact description of 
the architecture and model components and processing 
involved in the two-talker CRM task,  flowing from input to 
response. In some of what follows, the description is 
somewhat more complex because the mechanism is general 
enough to apply to more than two talkers. 

Speech auditory input.  Each utterance is pre-parsed into 
six segments corresponding to words (with go to being 
treated as a single word). The segments from the different 
sources are assumed to arrive at the auditory processor 
simultaneously and are each perceived as individual 
auditory events. Each segment pair is processed in order of 
arrival. 

Auditory perception constructs auditory objects based on 
properties of the physical input. There are two kinds of 
auditory object: word objects represent individual perceived 
words that have a temporal duration; stream objects 
represent perceived sound sources for these word objects. 

Word objects. Word objects have a variety of properties, 
but for the purposes of this model, they may or may not 
have content,  which is the recognized semantic item (e.g. 
red); this allows for a word to be “heard” but not 
recognized. Words also have stream attributes,  which in this 
model are average loudness level (specified in dB) and 
average pitch (in semitones, where the number of semitones 
is defined as 12·log2(pitch in Hz)), both averaged over the 
duration of the word. Semitones provide a logarithmic scale 
for pitch, analogous to decibels for loudness. This model 
assumes that the stream attributes are always perceived.1

Whether the content of a word object is recognized in the 
presence of the other word objects is assumed to be a basic 
masking phenomenon. The probability of content detection 
depends on the SNR, that is, the loudness level of the word 

1 For simplicity, we are assuming that perceived pitch and loudness correspond to physical semitones and dB.
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relative to the other word objects that are simultaneously 
present, and the pitch difference between the two word 
objects. With respect to the latter, studies show that 
discrimination of simultaneous vowel sounds improves with 
pitch difference, though increasing the difference beyond 
about 4 semitones produces no further improvement 
(Assmann & Summerfield,  1990). This effect was 
incorporated in the model by computing an Effective SNR 
that is the weighted sum of the loudness difference in dB 
(the SNR) and the pitch difference in semitones capped at 4.

Stream objects and stream tracking. The stream objects 
also have attributes of loudness and pitch, but these 
represent the overall properties of the perceived sound 
source. In this model, a stream object carries the mean 
loudness and mean pitch of the words associated with the 
stream. For example, a typical female talker will be 
represented as stream percept with a higher mean pitch 
property than that for a typical male talker.

The auditory perceptual processor assumes that there are 
as many stream objects as input sources, each with a unique 
but arbitrary StreamID attribute, and attempts to assign each 
incoming word object to one of the streams, using the 
stream-related attributes of loudness and pitch to do so. 
Once the assignment is done, the stream percepts are 
updated to reflect the loudness and pitch properties of the 
words assigned to them, and the next pair of word objects 
will be assigned to the updated streams. Thus the auditory 
processor tracks the streams.

Cognitive strategy and response choice. The final output 
of perceptual processing,  represented in the cognitive 
processor's working memory, is a set of word objects and a 
set of stream objects.  Each word object will always be 
associated with a stream object,  but it may or may not have 
recognized content.  

Because the loudness and pitch of each word in the 
utterances varies within the same talker,  it is possible for 
individual words from two different talkers to be mis-
assigned to the streams, so that each stream is associated 
with a mixture of words from the two talkers.  Figure 2 
shows an example in which the Color words have been 
assigned to the wrong stream, while the Digit words were 
assigned to the correct stream. This will lead to a response 
with the Masker Color and the Target Digit.

The cognitive process for selecting a response makes use 
of the recognized content of the word objects together with 
the stream associated with each word object. For example, 
as in Figure 2, if the word object whose content is the Target 
Callsign Baron is associated with Stream2 and there are two 
word objects associated with the same stream whose content 
has been recognized as the Color Red and the Digit 8, then 
Red 8 will be used to specify the response to be made.

Some content might be unrecognized, but in many cases 
the model strategy can infer the missing information. For 
example, if only one of the Callsign contents was 
recognized, and it was a Masker Callsign, the model can 
infer that the unrecognized Callsign word object was the 
Target Callsign, and its assigned stream must be the Target 
stream, so the Color and Digit words associated with that 
same stream must be the Target Color and Digit. Thus the 
strategic component of the model tries to make use of partial 

information to perform the task. 
Theoretical summary. In terms of conventional attention 

theory, this is a "very late selection" model - all of the 
information produced by perception is available to cognition 
for choosing the response. 

The problems of trying to handle two simultaneous 
messages is not represented as a failure to select the correct 
stream prior to cognition, but rather that masking effects and 
errors in stream assignments will result in a collection of 
perceptual information about the messages that may be 
incomplete or incorrect (e.g. as in Figure 2), and the task 
strategy must make use of this information to choose a 
response that meets the task requirements.

Model Details and Parameters
Corpus statistics drive the model. We computed the 

average loudness and pitch over each segment in each 
utterance in the CRM corpus, and supplied this information 
for each word (segment) that was "heard" by EPIC’s 
auditory processor. An interesting result is that while female 
talkers had mean pitches about an octave higher than male 
talkers, individual talkers had somewhat different baseline 
pitches, which allows the stream tracking to often 
distinguish talkers within genders over the course of an 
utterance. Because this model was driven by the corpus 
properties, there are relatively few free parameters that 
affect its fit to data. 

For each trial, the simulated experiment samples two 
utterances and then supplies EPIC's auditory system with 
the content, loudness,  and pitch of each segment. The pitch 
was converted to semitones. Inside the auditory system 
module, pitch differences were always capped at 4 
semitones, a constant value based on Assmann & 
Summerfield (1990) and not estimated to fit the data.

Content detection parameters. The content detection 

Stream 1
124, 61

ready
t1, 120, 60

arrow
t2, 130, 62

Stream 2
102, 58

ready
t1, 100, 57

baron
t2, 96, 59

red
t5, 110, 60

green
t5, 124, 62

4
t6, 120, 60

8
t6, 100, 57

 
Figure 2. Example showing contents of working memory after 
erroneous stream tracking. The polygonal boxes top and bottom 
are the two stream objects, showing mean pitch (Hz) and  loudness 
level (dB) values. The ovals are the word objects in each message 
in  left-to-right time order (goto  and now omitted for clarity), 
showing  the content, time stamp, pitch, and loudness. During 
perception, each word was associated with  its closest  stream, but 
because the Color word pitches were discrepant, they were 
assigned to the wrong stream. 
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parameters are summarized in Table 1. The Effective SNR is 
the sum of the loudness SNR and the pitch difference in 
semitones weighted by a parameter w.

The content detection process is modeled along the lines 
suggested by Wichman & Hill (2001). With a low 
probability (the lapse rate α),  subjects will fail to recognize 
content (even at very high SNR); otherwise, the probability 
of content detection follows a gaussian detection function of 
Effective SNR, with parameters of mean µ and standard 
deviation σ. The parameters w, α and σ are assumed to be 
constant across the type of content word (Callsign,  Color, 
Digit), while µ is assumed to have a different value for each 
type of content word (Callsign, Color,  Digit).  For 
completeness, the content detection functions for the filler 
words ready, goto, and now, were specified, but for 
simplicity were made the same as the Callsign detection 
function because the content of the filler words plays no role 
in stream tracking or response strategy. 

Stream tracking details and parameters. The stream 
tracking parameters are also summarized in Table 1.  The 
stream perception model in the EPIC auditory processor 
uses an averaging minimum-distance stream tracking 
algorithm.  Each stream object accumulates the mean pitch 
(in semitones) and mean loudness (in dB) of the word 
segments that have already been assigned to that stream. 
The stream predicts that the pitch and loudness of the next, 
or new, word segment will be the same as the current means. 
The stream perception model then calculates the prediction 
error between each stream and each new word segment as 
the weighted cartesian distance between the (pitch, 
loudness) values,   where pitch differences are weighted by a 
parameter λ (0-1) and loudness differences are weighted by 
(1 - λ). The pitch difference was capped at 4 semitones. The 
new word segments are then assigned to streams so as to 
minimize the total distance between all words and their 
assigned streams.  The streams are then updated to include 
their newly assigned word segments, and the resulting 
means used to predict the segment that follows. 

The stream perception model included a noise component. 
After determining the minimum-distance assignment, the 
stream perception process compares the maximum and 
minimum total distance; if the difference is less than or 
equal to a threshold value θ, an assignment is chosen at 
random.

Cognitive processor strategy exploration. The auditory 
perception components in the EPIC architecture take the 
input utterance segments and perform content detection and 
stream tracking and provide the resulting content and 
StreamID attributes of the individual word segments, like 
that shown in Figure 2,  to the cognitive processor, which is 
running a strategy implemented in production rules.  Over 
the course of this work, a variety of strategies were 
considered, and two key options were identified. The first is 
that in the 2-channel task,  symmetrical inferences can be 
made; for example, if we know that one of the Color words 
is from the Masker stream, we can infer that the other Color 
word has to be from the Target stream.  

The second option concerns the "guessing" strategy. Note 
that in this forced-choice paradigm, the subject must 
respond even if they have not identified the Target Color or 

Digit.  The optimum strategy would seem to be to always 
avoid responding with known Masker content,  and choose 
some Neither Color or Digit instead. However, this Avoid-
Masker strategy failed badly to fit the data - it could not 
account for how there are so many Masker responses in 
conditions where the Masker stream should be easily 
identified, such as at extreme negative SNRs. We realized 
that subjects might adopt a "use what you heard" heuristic: 
If the Target callsign content was not actually detected, then 
there is some uncertainty about whether the two streams 
were correctly identified, so responding using content that 
was actually detected is better than a pure guess. Thus the 
Use-Maskers strategy will use content known to be from the 
Masker stream if Target content was not detected, but only 
if the identity of Target stream had been inferred from 
detection of Masker callsign content.  This model used both 
the symmetrical inferences and the Use-Masker options.

Strategy summary. During the processing of the utterance, 
if Callsign content is present (detected),  tag its StreamID as 
the Target or Masker stream accordingly. If not, infer the 
Target or Masker status from the other stream if its Callsign 
content is present. Then tag the Target or Masker status of 
each Color and Digit word, based on their assigned 
StreamIDs. Note that if neither Callsign is detected, it is still 
possible for Color and Digit words to be paired with their 
correct streams, but the model will not know which stream 
is the Target stream or the Masker stream. 

When it is time to choose a response, the following rules 
are used for both choosing the color response and choosing 
the digit response, depending on what content was detected 
and which stream it is associated with: If the Target stream 
is known or inferred, then use the content from the Target 
stream if it is available. But if the Target stream was only 
inferred and the Target content is not available, then use the 
Masker content if it is available.  Otherwise, use a color-
digit content pair from the same stream if available, or use 
separate color and digit content if it is available; otherwise, 
make a pure guess. 

Model Fitting and Results
The parameter values shown in Table 1 were determined 

by Monte-Carlo runs of the EPIC model with a grid search 
of the parameter values using high-performance clusters 
provided by AFRL through mindmodeling.org. The search 
goal was to maximize r2  between predicted and observed 
values for the Target and Masker Color and Digit 

Effective SNR pitch weight w 2.00

Callsign content detection µ -20.00

Color content detection µ -18.00

Digit content detection µ -26.00

Content detection σ 10.00

Content detection lapse rate α 0.04

Stream tracking pitch weight λ 0.80

Stream tracking distance threshold θ 0.10

Table 1. Best-fit parameter values
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probabilities (blue and red curves in Figure 1).  Each Monte-
Carlo run used 3000 trials per talker/SNR condition. There 
are a total of 240 empirical data points with at least 120 
degrees of freedom; eight parameter values were varied in 
the search. The best-fit values are shown in Table 1.

Figure 1 shows the predictions from the EPIC model as 
open points and dotted lines.  All three conditions are well 
handled with a small set of parameters that describe how the 
auditory perceptual process is affected by the acoustic 
properties of the input as provided by the corpus statistics 
based on the segmentation. It is especially noteworthy that 
unlike the model presented in Kieras et al. (2014), there are 
no parameters that are specific to talker similarity conditions 
- the pitch difference used in detection and tracking 
accounts for these effects.

As summary measures of goodness of fit, r2 = 0.99 
between predicted and observed values for the Target and 
Masker Color and Digit probabilities (blue and red curves), 
and r2 = 0.95 for the completely-correct probabilities 
(black). Only a few of the predicted values lie outside the 
confidence intervals in the data. 

However, there is a clear tendency for the completely-
correct points to be generally under-predicted, probably 
because our simple model of the stream tracking is not 
“sticky” enough. That is, a detailed look shows that subjects 
are more likely than the model to choose the Target Digit if 
they have chosen the Target Color, as opposed to switching 
to the Masker or Neither Digit.  The result is a tendency to 
under-predict the completely-correct responses, even though 
the individual Target and Masker responses are well 
predicted.

Conclusions
The EPIC auditory architecture has been extended to 

include explicit mechanisms for auditory stream perception 
and tracking. These mechanisms rely on acoustic properties 
of the speech input itself, in this case, the statistics of the 
corpus.  

We now have a successful model of the two-talker task in 
which stream tracking based on basic acoustic 
characteristics of speech accounts very well for data from 
the two-talker task. Further refinement of the model for the 
stream tracking process may improve the fit,  and there may 
be ways to reduce the number of free parameters in the 
detection functions.  Work in progress suggests that this 
model may also scale to three- and four-talker tasks; in fact, 
the model as described functions in the three- and four-
talker cases; the theoretical issue is how to correctly capture 
the substantially poorer performance produced by having 
multiple maskers. 

In addition,  the two-talker model can account for the 
original Brungart (2001) data if complex suboptimal 
mixture model strategies are implemented to represent the 
apparently under-constrained strategies adopted by the 
subjects.  This last result urges that better experimental 
control of subject strategies, as in our replication 
experiment, should be used in future experiments on this 
topic, and that modeling should attempt to explore 
alternative subject strategies systematically.
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Abstract 

This study shows that cause and types of errors in complex 
problem-solving tasks can be explained within a framework 
of the prevalence effect commonly studied only in simple 
visual search tasks. The explanation proposes that subjects 
make a series of probabilistic decisions aimed at balancing 
both speed and accuracy. Such decision is a complex process 
that relies not only on task instructions but also on cognitive 
biases established by the history of previous trials and 
progress of the current trial. We provide evidence based on 
both empirical data and cognitive modeling. 

Keywords: problem-solving, cause of errors, prevalence, 
ACT-R 

Introduction 

Why and how do people make mistakes in complex 

problem-solving tasks? What are the primary cognitive 

mechanisms? We try to answer these questions using a 

computerized version of a board game SET
1
. Compared to 

typical laboratory tasks, SET is a more complex task 

requiring implicit and explicit strategies, coordination of 

bottom-up perceptual and top-down executive processes, 

making consecutive decisions and accumulation of evidence 

along several dimensions. Any of these components can be 

a source of errors. Despite a number of preceding studies 

focused on SET (Jacob & Hochstein, 2008; Mackey, Hill, 

Stone, & Bunge, 2011; Nyamsuren & Taatgen, 2013), none 

of them looked at the source of errors. However, the nature 

of errors can tell us a lot more about the process of problem 

solving than just the response times and accuracies. We 

employ a combination of empirical study based on Math 

Garden and cognitive modeling to tackle this problem. Math 

Garden (Klinkenberg, Straatemeier, & Van der Maas, 2011) 

is a web-based computer adaptive practice and monitoring 

system used by more than 2000 schools to train students' 

cognitive skills with serious games such as SET. 

A SET trial starts with a number of cards dealt open 

(Figure 1). Each card is uniquely defined by a combination 

of four attributes: color, shape, shading and the number of 

shapes. Each attribute can have one of three distinct values. 

The goal is to find a unique combination of three cards, 

called a set, where values of each attribute are all same or all 

different. We refer to the number of different attributes in a 

                                                           
1
 SET is a game by Set Enterprises (http://www.setgame.com) 

set as the set level. For example, in Figure 1, a level 2 set is 

formed by three yellow cards. It has two same (color and 

shape) and two different (shading and number) attributes. In 

a level 4 set, all values of all attributes are different. 

Jacob and Hochstein (2008) proposed that SET players 

use a dimension reduction strategy.  They prefer to search 

for a set among cards that have the same attribute value thus 

effectively reducing the search space by one attribute 

dimension. For example, a subject may look for a set among 

cards of the same color. A later study (Nyamsuren, & 

Taatgen, 2013) confirmed Jacob and Hochstein's theory. 

Nyamsuren and Taatgen also found that dimension 

reduction is mostly used early in a trial. If dimension 

reduction strategy fails to find a set, subjects start searching 

for more dissimilar sets. 

 

 
 

Figure 1: An example of a trial used in Math Garden. A 

level 2 set is formed by the yellow cards. 

Experimental Results 

The data was gathered in Math Garden between April 2014 

and October 2014. It included 1374530 trials of 80 items 

(20 items per set level) played by 86964 subjects. Each item 

consisted of six cards and had exactly one set (e.g. Figure 

1). A trial was terminated after a subject selected any 

combination of three cards. There was 30-seconds time limit 

per trial. Above sample does not include overtime trials or 

trials without proper responses (a subject can give up on a 

trial and request to shown an answer). 

Accuracy and Response Time 

The average accuracy
2
 is around 70%. In 30% of the trials, 

subjects responded with wrong combinations of three cards 

(further referred as triplets). First, we study cause of errors 

                                                           
2
 Math Garden dynamically adjusts difficulty to maintain a 75% 

success rate. Therefore, relative accuracy is uninformative. 
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by analyzing response times (RT). 

Confirmed by a linear regression carried out on trials' 

mean RT, Figure 2a shows that response times increase with 

set level for both correct and incorrect trials (β = 2.05, 

t(156) = 20.2, p < .01). In correct trials, the increase is 

caused by two factors (Nyamsuren & Taatgen, 2013). 

Firstly, subjects tend to start a trial with search for a lower-

level set and, if the set was not found, switch to search for 

higher-level sets. Secondly, it requires more effort to 

compare dissimilar attributes than similar attributes. It is 

likely that the same two factors are also responsible for RT 

increase in incorrect trials. Mean RT for correct trials is 

lower than mean RT for incorrect trials (β = -1.17, t(156) = -

4.2, p < .01). However, this difference in RT decreases as 

the set level increases (β = .35, t(156) = 3.5, p < .01). Note 

that, for items with level 4 sets, mean RT for incorrect trials 

is lower than mean RT for correct trials. 

 

 
 

Figure 2: (a) Response times for correct and incorrect trials 

averaged by set level; Distributions of proportions of triplets 

by the number of valid attributes calculated from (b) all 

possible combinations of triplets in 80 items and (c) triplets 

provided as response by subjects. 

Errors Based on Types of Triplets 

Previous studies showed that perceptual aspects of SET 

have significant influence on subjects' decisions (e.g. 

Nyamsuren & Taatgen, 2013). Similarly, error types in SET 

may be affected by perceptual components of the task. In 

this section, we explore whether properties of a triplet 

defined by its combinations of attribute values affect 

subjects' decisions and error patterns. 

Subsequent analyses concern incorrect trials where 

subjects responded with wrong triplets. Figure 2b shows a 

distribution of proportions of triplets by the number of valid 

attributes in a triplet. An attribute is valid if it follows the 

set rule and thus is either the same or different in all cards of 

the triplet. These proportions are calculated from all 

possible non-repeating combinations of triplets in all 80 

items. They serve as a baseline. Figure 2c shows the same 

distribution, but with proportions calculated from wrong 

triplets provided as responses. According to Figure 2c, 

triplets with 2 or 3 valid attributes have significantly above 

chance probability of being chosen as a set. In other words, 

errors made by subjects are systematic and not random. 

More set-like triplets with higher number of valid attributes 

have higher probability of being incorrectly chosen as a set. 

More importantly, there is a negative correlation between 

the number of valid attributes and RT. Errors with triplets 

with more valid attributes are made sooner than errors with 

triplets with fewer valid attributes. According to a linear 

regression analysis, RT decreases by 188 ms with each valid 

attribute in a triplet (t(1518) = -2.26, p = .024). 

Errors Based on Sameness and Difference 

The previous section showed that the number of valid 

attributes in a triplet could have a significant impact on 

subjects' decisions. However, a valid attribute can be either 

same or different among three cards of the triplet. We found 

that sameness or difference of an attribute plays a 

substantial role in subjects' decisions. 

 

 
 

Figure 3: Distributions of proportions of errors types in 

trials categorized by set level. A wrong triplet consisting of 

three cards on the left of Figure 1 would give a 1-1 error 

type, since this answer contains one valid same attribute 

(shading) and one valid different attribute (color). 

 

The following analysis concerns incorrect trials where 

subjects responded with wrong triplets. Figure 3 shows 

distributions of proportions of triplets with specific 

combinations of same and different valid attributes. The 

proportions were calculated separately for groups of trials of 

the same set levels. In trials with level 1 sets, most errors are 

made with triplets that had same valid attributes. For 

example, about 35% of all errors in level 1 trials involved 

triplets with two valid same attributes and no valid different 

attributes. The effect is completely opposite in trials with 

level 4 sets. In those trials, the most frequent errors involve 

triplets with different valid attributes. In fact, the gradual 

shift from sameness to difference can be observed in the 

distributions of proportions as set level increases. For levels 

1 to 4, mean numbers of same attributes in wrong triplets 

are 1.4, 0.93, 0.61 and 0.46 against expected 0.67, 0.41, 

0.33 and 0.21 if triplets were chosen randomly. Similar 

above chance preference was observed for different 

attributes in higher-level sets. Therefore, this shift likely 

represents a systematic shift in criterion against which 

subjects evaluate validity of attribute combinations. 

Cause of Errors 

An explanation of errors in SET can be derived from the 

prevalence effect. It is frequently observed in visual search 

(b) 

(a) (c) 
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tasks where a target can be either present or absent. In low-

prevalence conditions, subjects miss the target more often 

than in high-prevalence conditions (Wolfe, Horowitz, Van 

Wert, Kenner, Place, & Kibbi, 2007). Subjects do not 

explicitly try to speed up their responses using some time 

threshold. Instead, they adjust their internally estimated 

probability of a target being absent based on the sequence of 

previous trials (Ishibashi, Kita & Wolfe, 2012). This 

probability affects the decision on whether an object is a 

target or a distractor and the decision to quit the trial. 

Within-trial Prevalence 

With a proposal of within-trial prevalence, we assume that 

subject's internally estimated probability of finding a set 

changes during the progression of a trial. Subjects are aware 

that there is always one set present in each trial. Therefore, 

although probability of finding a set at the start of a trial is 

very low, it increases as a subject continues search and 

discards more distractor triplets. Wolfe and Van Wert 

(2010) proposed that the prevalence effect can be modeled 

via a drift diffusion model where decision is made when an 

evidence accumulation reaches a certain threshold. 

Similarly, we propose that subjects pick a triplet as a set 

when the accumulating probability reaches some threshold. 

During the trial, each discarded triplet increases probability 

of the next triplet being a set (green lines in Figure 4). 

 

 
 

Figure 4: An evidence accumulation account of a within-

trial prevalence in SET. 

 

We know that the more set-like triplets are, the more 

likely they are to be chosen as a set. The effect can be 

explained with an assumption that an increasing similarity 

of a triplet to a set results in a temporary increase in within-

trial probability. This process can be viewed as a large but 

temporary step-wise increase in accumulation caused by 

each new validated attribute (blue lines in Figure 4). Higher 

number of valid attributes will result in a larger increase in 

accumulation and a higher probability of exceeding the 

acceptance threshold. However, an attribute with invalid 

combination may negate the local boost in probability and 

results in the triplet being discarded as a potential set. 

Even when a set is found early, the temporary increase in 

probability caused by four valid attributes is normally 

sufficient to exceed the threshold. On the other hand, in late 

trials, wrong triplets with few valid attributes will have a 

higher chance of exceeding the threshold due to constantly 

increasing probability. This process will result in incorrect 

trials having higher RT than correct trials (Figure 2a).  

Finally, triplets with higher number of valid attributes 

may exceed the threshold sooner than triplets with fewer 

valid attributes explaining the negative correlation between 

RT and the number of valid attributes observed in the data. 

Between-trial Prevalence 

The prevalence effect also provides a framework for 

explaining why subjects shift from sameness to difference 

when validating attribute combinations. Here, changing 

prevalence of trials with particular set levels is a likely 

cause for such criterion shift. The adaptive algorithm in 

Math Garden ensures that next trial's difficulty is tailored to 

subject's skills. Therefore, new subjects start with easy trials 

with level 1 sets and are gradually introduced to more 

difficult trials. As a result, trials with level 1 and 4 sets 

initially have high and low prevalence respectively. 

However, as subjects gain more experience, prevalence of 

trials with level 1 and level 4 sets decreases and increases 

respectively causing subjects to shift their set acceptance 

criterion from similarity to dissimilarity. Based on data of 

432 subjects who played at least 100 trials, proportions of 

trials with set levels 1 and 4 in first 25 trials are 63% and 

7% respectively. For the fourth bin of 25 trials, the same 

proportions change to 18% and 28% respectively. 

In terms of evidence accumulation account shown in 

Figure 4, different and same valid attributes make different 

contributions to the temporary increases in accumulation. In 

trials with level 1 sets, valid different attributes may not 

cause temporary increase in accumulation or may even have 

inhibitory effect on accumulation. However, as a subject is 

exposed more to trials with higher set levels, contributions 

of valid different attribute may gradually increase. 

Threshold 

The fact that the RT increases with set level indicates that 

the threshold is not the same among trials with different set 

levels. It is likely that subjects dynamically adjust their 

threshold whenever it is too low or too high, as in other 

visual search tasks. Chun and Wolfe (1996) showed that 

subjects' RT in target absent-present visual search tasks can 

be reproduced with a model using a dynamic threshold 

adjusted in a staircase manner. It was further suggested that 

RT in low- and high-prevalence search tasks can be 

modeled via adjustment of a quitting threshold (Wolfe & 

Van Wert, 2010). In a more recent visual foraging study, 

subjects adjusted in a staircase manner their probability of 

remaining on a patch depending on whether an instance of 

foraging was successful or not (Wolfe, 2013).  

We draw an analogy from above examples and propose 

that subjects in SET are also adjusting set acceptance 

threshold in a staircase manner based on the result of the 

previous trial. After making a mistake, a subject may 

become more conservative and increase set acceptance 

threshold. The opposite will happen after a correct trial 

where the subject accepts a more liberal approach by 
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lowering threshold. 

Cognitive Model 

A cognitive model was used to formally test validity of the 

processes proposed in the preceding section. We have 

reused a model of a SET player developed in our earlier 

work. Due to space limit, we will describe only essential 

details of the model. The reader is referred to previous 

literature for a detailed description of the model 

(Nyamsuren & Taatgen, 2013). The model is based on 

ACT-R cognitive architecture (Anderson, 2007) that 

simulates functionality of essential cognitive resources such 

as declarative memory, working memory, the visual system 

and the production system. Within a model, task-related 

instructions are implemented as a set of production rules. 

The overall strategy used by the model is simple. The 

model chooses a triplet and compares validity of four 

attributes one by one in a random order. This is done by 

having a production rule named 'compare' repeatedly being 

called for each attribute. Only when all four attributes form 

valid combinations, the model chooses the triplet as a set 

ending a trial. When any attribute yields an invalid 

combination, the triplet is discarded and a new triplet is 

chosen. At the beginning of the trial, the model prefers 

triplets of cards having, at least, one common value (e.g. all 

green cards). Later in the trial, the model switches to triplets 

with cards that are more dissimilar. 

The original model did not make mistakes. We have 

extended the model by implementing error-making 

mechanisms described in the preceding section. The next 

section describes those extensions. 

Production Competition as a Cause of Errors 

The original model took a conservative approach to set 

acceptance ensuring that all four attributes were valid in a 

triplet. The modified model adopts a more liberal approach 

and can accept a triplet as a set without validating all 

attributes. This is done by introducing a new production rule 

named 'valid-set' that competes with the production rule 

'compare'. This process is shown in Figure 5. Given a 

triplet, the model can either validate an attribute in the 

triplet by calling 'compare' production or accept the triplet 

as a set by calling 'valid-set' production. A production rule 

with the highest utility value U is chosen. 

Utility of 'valid-set',     , represents the accumulation 

shown in Figure 4 and indicates a probability of a triplet 

being a set.      is zero at a start of a trial but increases as 

the trial progresses according to               .    is 

the total number of unique triplets formed by six cards and 

equal to 20.    is the number of compared triplets, and 

          is the number of remaining uncompared triplets. 

     can temporary increase based on the number of 

validated attributes in a triplet. Given k validated attributes, 

probability of a set is                      , where 

     is a proportion of triplets that have k or more valid 

attributes. For each newly compared triplet, k is set to 0 but 

increases with each validated attribute in the triplet. It is 

unlikely that subjects can estimate      within each trial. 

However, it is probable that subject may able to learn 

prevalence of triplets with different values of k over many 

trials. Calculated from all unique triplets from all items, the 

proportions are        ,        ,         , and 

               since there is only one set. Therefore, 

     increases with increasing k and is equal to 1 for k = 4 

simulating the temporary increase in accumulation shown in 

Figure 4. Above proportions decrease as    increases. 

     
  

                        

   
                       

                      

         (Eq. 1) 

The utility of 'compare' production,     , represents a 

threshold for set acceptance. The threshold for i-th trial is 

calculated as                
 , where    

 is the 

minimum number of triplets to be compared in the trial. 

     remains the same during a trial, but    decreases or 

increases between trials according to the Eq. 1. For the next 

trial,      increases if the model makes a mistake by 

responding with a wrong triplet. If set is found,      

decreases. If utility is too high and the model cannot find a 

set within a time limit then    is reset to 12, the minimum 

allowed value. This minimum value is set based on the 

assumption that subjects always have to perform some 

search. Numerical constants were fitted based on model 

simulations. 

 

 
 

Figure 5: The competition between 'valid-set' and 'compare' 

productions is a cause of errors in the model. 

Bias to similarity 

Bias to similarity can occur at least at two decision points. 

First, bias can affect a choice of strategy. To replicate the 

effect of prevalence of trials with different set levels, the 

model was modified to be highly biased to the dimension 

reduction strategy while playing items with set level 1. 

However, this bias decreases with increasing set level 

following the decrease in observed proportions of trials with 

set level 1. Therefore, while playing items with set level 4, 

the model is more likely to use dissimilarity-based strategy. 

Second, similarity bias can affect a decision whether a 

triplet is a set with subjects giving an initially higher weight 

to valid same attributes than to different attributes. This bias 

is simulated using two weights    and    that affect 

calculation of the value k:            . ks and kd are 

numbers of validated same and different attribute 

respectively. If the model is using the dimension reduction 

strategy then    and    are equal to 0.5 and -0.5 

respectively. Otherwise,    and    are equal to -0.5 and 0.5 

163



if the model is using a dissimilarity-based strategy. 

Those changing weights represent shift in criterion for 

accepting a triplet as a set. More specifically, weights 

coupled with decreasing bias to the dimension reduction 

strategy simulate in the model a shift in set acceptance 

criterion from similarity to dissimilarity. 

Simulation Results 

80 items were divided into 10 blocks. Each block contained 

items of the same set level and same distance between set 

cards. The model was tested on 10000 trials in each block. 

The 'compare' production had the minimum utility at the 

first trial of a block but was adjusted between trials of the 

same block. 

 

 
 

Figure 6: (a) Model's response time for correct and wrong 

trials of different set levels. (b) Model's accuracy by set 

level. (c) Proportions by the number of valid attributes of 

wrong triplets selected by the model. 

 

 
 

Figure 7: Distributions of proportions of errors made by the 

model in trials categorized by set level. 

 

Figure 6a shows RT produced by the model. Similar to 

experimental data, model's RT increased as set level 

increased (β = 1.0, t(156) = 7.5, p < .01). The main predictor 

for accuracy indicates that RT should be lower for correct 

trials (β = -.36, t(156) = -.97, p = .3) with the interaction 

term indicating that this difference should decrease as set 

level increased (β = .2, t(156) = -1.5, p = .14). However, 

both the main and interaction terms were not significant. 

The model was not able to simulate decreasing difference in 

RT between correct and incorrect trials observed in the 

empirical data (Figure 2a). Figure 6b shows model 

accuracy. The model predicts that the accuracy should 

decrease with set level. Most likely, this trend was not 

observed in subject data (Figure 2a) because Math Garden 

maintains 0.75 probability success by matching trial's 

difficulty to subject's skills. Figure 6c shows types of 

model-made errors defined by the number of valid 

attributes. Similar to subjects (Figure 2c), the model is more 

likely to make errors with triplets that have high number of 

two or three valid attributes. The increasing number of valid 

attributes also results in lower RT for incorrect trials (β = -

1.1, t(844) = -4.3, p < .01). However, the decrease of 1.1 

seconds per valid attribute is much higher than 0.188 

seconds observed in subjects' data. 

Figure 7 shows distributions of proportions of incorrectly 

selected triplets with specific combinations of same and 

different valid attributes. The model's data closely resembles 

the empirical data shown in Figure 3. Correlations between 

the proportions in the empirical data and model data are r(7) 

= .86, p < .01 for level 1, r(7) = .84, p < .01 for level 2, r(7) 

= .97, p < .01 for level 3, and r(7) = .99, p < .01 for level 4. 

The model shows the same shift in criterion from similarity 

to dissimilarity in its decision of a triplet being a set. 

Overall, model simulations support our hypothesis that the 

prevalence effect, internally estimated probability of finding 

a set, can be a cause of errors. 

Discussion and Conclusion 

Speed-accuracy trade-off (Wickelgren, 1977) may also 

contribute to errors since Math Garden pressures subjects to 

finish a trial both quickly and accurately. However, it is 

unlikely to be the sole or even the main cause of errors in 

SET. First, the negative correlation between the number of 

valid attributes and RT is not easily explained by speeded 

responses. Second, a critical assumption behind the speed-

accuracy trade-off is that errors should disappear if subjects 

are discouraged from giving fast responses. However, the 

reward system used in Math Garden severely punishes for 

fast incorrect responses making it more profitable to make 

slow correct responses. Therefore, the ideal strategy is either 

to give a correct response or let the time run out. The fact 

that subjects make early errors (Figure 2a) despite 

discouragement of fast responses violates the assumption 

behind the speed-accuracy trade-off. Wolfe at al. (2007) 

also explicitly differentiated the prevalence effect from 

speed-accuracy trade-off and showed that people resort to 

probabilistic decision making even in absence of a time 

pressure. The prevalence-based explanation assumes that 

that estimated probability causes changes in both RT and 

accuracy (Wolfe & Van Wert, 2010). Therefore, 

manipulations based on time should have little effect on 

estimated probability and, therefore, on accuracy explaining 

why subjects still made early errors in SET despite strong 

discouragement in Math Garden. 

Therefore, a general question that has not been addressed 

in other studies is why a probabilistic decision is made 

despite an opportunity to verify their answers. We propose 

that it is due to an inherent nature of a human cognition to 

(b) 

(c) (a) 
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pursue efficiency. Efficiency is achieved by minimizing the 

amount of cognitive effort to accomplish the task while still 

maintaining a reasonably high degree of success. This 

efficiency optimization is different from the common 

definition of optimization aimed at finding the optimal 

solution. Instead, in cognitive literature, efficient strategy is 

often referred to as heuristic (Gigerenzer & Brighton, 2009). 

Heuristics are simple strategies that do not guarantee 

absolute success rate but work most of the time. A necessity 

for heuristics is dictated by the framework of bounded 

rationality (Simon, 1972). It assumes that cognitive 

resources are limited and, therefore, processes utilizing the 

least amount of resources are favored even at the expense of 

accuracy. Note that a time pressure is not a required 

component for a formation or use of heuristics. 

Above discussion suggests that the prevalence effect is a 

general phenomenon beyond simple visual search tasks 

commonly used to study the effect. Our study shows that it 

may play an important role in complex problem-solving 

tasks. For example, a similar effect is commonly observed 

in causal reasoning tasks. Griffiths, Sobel, Tenenbaum and 

Gopnik (2011) showed that subjects internally estimate 

Bayesian-like probabilities to judge causal relations between 

an effect and two possible causes. Although subjects were 

aware that it is possible for both options to independently 

cause the effect, their judgments were highly correlated with 

frequencies of both options causing the effect. The more 

prevalent option was not only likely to be classified as a 

cause but also decreased the probability of positive 

classification for the second option despite the independence 

of causes. Therefore, decision-making in causal task is not 

just frequency-based but a probabilistic process that 

incorporates frequency information. 

Wolfe and Van Wert (2010) originally proposed that 

target prevalence in visual search can be modeled with a 

drift diffusion model with a changing starting point. Indeed, 

triplet comparison processes in Figure 4 can be viewed as a 

sequence of drift diffusion models where a consecutive 

model has a higher starting point than the previous one. 

However, Wolfe and Van Wert assumed that the starting 

point can only change between trials and not within trials. 

Our study shows that, in a complex task requiring several 

decisions, the starting point can and should change within a 

trial if there is a high expectation that the target is present. 

During the progression of visual search the estimated 

probability of finding a target should increase. This leads to 

our assumption that prevalence is not only a between-trial 

effect, but also can be observed within a trial in complex 

tasks such as SET. 

ACT-R does not provide a suitable and standardized way 

to model an evidence accumulation process in the 

procedural system. In this study, we proposed that 

production rule's utility can change as a function of 

relevance to a changing context without the production rule 

being executed. It is not inconsistent with the existing utility 

learning mechanism, but adds an additional factor that 

influences utilities. As a proof of concept, the SET model 

used this mechanism to manipulate utility of a single 

production ruule during a trial to replicate a human behavior 

conventionally modeled with accumulation models. While 

we argue for the necessity for such mechanism, more 

studies are required for its implementation that is well 

integrated into ACT-R both theoretically and technically. 

Experimental data and the cognitive model can be 

downloaded from http://www.bcogs.net/models/ 
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Abstract 

The nature of capacity limits within human visual working 

memory (VWM) remains the subject of controversy: while 

the capacity-as-objects account predicts that what loads 

VWM capacity is solely the number of objects maintained, 

irrespectively of the number of visual features that need to be 

stored for each object, the capacity-as-features account 

predicts that also (or – primarily) the total number of features 

maintained in VWM loads its capacity (and leads to decreased 

performance). We present novel simulations of a VWM task, 

using our existing, oscillatory computational model that 

describes the binding of features into objects as resulting from 

the proper synchronization and desynchronization of rhythm-

ical changes in neuronal activity. The model predicted (in line 

with wide evidence) that VWM performance decreases with 

the increasing number of objects, but also decreases (although 

not as sharply as predicted by the capacity-as-features 

account) as a function of increasing number of features. The 

model attempts to explain what precise characteristics of 

oscillatory dynamics stand behind such two sources of VWM 

limitation. However, the complete pattern of the model’s 

predictions remains yet to be examined empirically. 

Introduction 

Working memory (WM) is a neurocognitive mechanism 
responsible for the active maintenance of information as 
well as its manipulation for the purpose of the current task. 
Although early research on WM was dominated by verbal 
paradigms and models, for the last 15 years some 
researchers (e.g., Luck & Vogel, 1997) have pointed at the 
crucial role of, relatively simpler than verbal WM, visual 
working memory (VWM; also called robust visual short-
term memory store) in subserving functions of temporary 
storage, binding, and manipulation of information. VWM 
operates on visuospatial representations, usually called 
objects, that are widely thought to consist of bindings of the 
corresponding visuospatial features (like shape, color, 
orientation, size, or location). Although simple, during the 
evolution of the human mind this mechanism, primarily 
responsible for the continuity of perception as well as the 
spatial orientation, most probably has been adapted in 

service of more complex cognition, including the construc-
tion of abstract representations (see Cowan et al., 2011), 
encoding and processing relations (Clevenger & Hummel, 
2014), as well as running mental models and simulations 
(hypothetical models of the world, in abstraction from its 
actual state; Johnson-Laird, 2006). This hypothesis is 
supported by the fact that WM (and VWM in particular) is 
the strongest known predictor of fluid intelligence – the 
crucial ability to solve new, complex problems, that is 
central to human cognitive ability (McGrew, 2009). It has 
been shown that VWM capacity, measured by the number 
of recalled or recognized visual representations, explains up 
to half of variance in fluid intelligence (Fukuda, Vogel, 
Mayr, Awh, 2010), what suggests a key role of VWM in 
reasoning, but also in other types of complex cognitive pro-
cessing, like problem solving, spatial navigation, language 
use, complex learning, and decision making (i.e., those 
strongly correlated with fluid intelligence). 

Research on VWM pertained to such issues as the role of 
attentional selection/filtering in VWM, the profound influ-
ence of global organization of perceptual scene (statistical 
regularity) on the number of objects that can be retrieved 
from VWM, as well as the interaction of VWM and long-
term memory (for a review see Brady, Konkle, & Alvarez, 
2011). Also, a lot is known about neurobiological basis of 
VWM, including localization of VWM subsystems respons-
ible for maintaining object features (within superior parietal 
lobule) versus binding complete objects out of those 
features (within inferior parietal lobule; Xu & Chun, 2009), 
or the relation between individual capacity observed in 
people and the patterns of activity of these subsystems 
(Todd & Marois, 2004). 

Indeed, one of the most important features of VWM is 
that its capacity is heavily limited and inter-individually 
varied. Usually, the average capacity of VWM equals four 
objects or even less, and in the population it can vary from 
two up to six items (Cowan, 2001). However, the major 
controversy in research on VWM capacity is what exactly is 
its “currency”, that is, which aspect of maintained infor-
mation limits the number of objects stored and retrieved. 
Early theories proposed that VWM is limited in its capacity 
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for storing separate objects, irrespectively of the complexity 
of particular objects (Luck & Vogel, 1997; for a review see 
Fukuda, Awh, & Vogel, 2010). The evidence for this stance 
came from studies in which increasing the number of 
presented objects drastically decreased performance (usually 
measured with the so-called change detection paradigm that 
requires remembering one visual array, as well as its later 
comparison with either the identical array or an array in 
which one item has been changed; Cowan, 2001; Luck & 
Vogel, 1997). At the same time, performance seemed to be 
robust to increasing number of visual features that had to be 
encoded and processed (e.g., people detected the change for 
several simple objects, like squares, that differed only in 
color with a comparable accuracy as they detected the 
multiple-feature objects).  

However, recently many scholars (e.g., Bays, Catalao, & 
Husain, 2009; Bays & Husain, 2008; for a review see 
Brady, Konkle, & Alvarez, 2011) have objected this 
capacity-as-objects account, suggesting that in fact what 
constrains VWM is the total amount of information in a 
perceptual scene, and people remember a larger number of 
perceptually simpler objects than of complex, multiple-
feature objects (Alvarez & Cavanagh, 2004). According to 
the capacity-as-features account, the changes imposed in 
the change detection paradigm are too substantial (e.g., a 
change from red to blue) in order to reveal the influence of 
VWM load on the precision of maintained representations, 
which however does appear when participants are asked to 
reproduce exact values of remembered visual features (i.e., 
“was it light red, dark red, or pink?”). The methodological 
and interpretational issues concerning new paradigms for 
VWM capacity measurement remain controversial (for 
opposing views see Brady et al., 2011, and Fukuda et al., 
2010). However, a recent study (Oberauer & Eichenberger, 
2013) has shown that even in the standard change detection 
paradigm (but probably under better experimental control 
than in previous studies), the VWM performance gradually 
dropped when three objects were presented with one, three, 
or as much as four or six visual features (picked up from the 
following features: color, shape, orientation, size, the 
thickness of bars inside, and the frequency of stripes inside. 

Also other accounts exist, for example a recent view 
(Clevenger & Hummel, 2014) which suggested that the 
“objects” of VWM are neither complete objects or feature-
object bindings, but the pairs of objects. According to this 
capacity-as-paired-relations account, the capacity of VWM 
is constrained by the number of representations of pairs of 
objects, bound with all spatial relations between these 
objects, and encoded in parallel. 

Apart from behavioral experimentation, another way to 
understand the nature of VWM is to develop (and test) 
process models of VWM that show in simulations which 
stages or characteristics of visual information processing are 
the most vulnerable to WM load, and why VWM capacity 
has to be limited (because of certain processing demands). 
The most influential line of such models consists of 
oscillatory models (e.g., Horn & Usher, 1992; Raffone & 
Wolters, 2001; Usher, Cohen, Haarmann, & Horn, 2001; 
Vogel, Woodman, & Luck, 2001) that describe the binding 
of features into objects as resulting from the proper 

synchronization and desynchronization of rhythmical 
changes in neuronal activity, called brain oscillations. 
Binding of features into an object is made with synchronous 
oscillations, whereas the maintenance of separable objects – 
with asynchronous oscillations. Features of the same item 
fire in synchrony, whereas two features of different objects 
are active out of phase. Due to this mechanism, the system 
is able to reconstruct the object from its features. Such an 
oscillatory nature of VWM has recently been demonstrated 
in both primates (e.g., Siegel, Ward, & Miller, 2009) and 
humans (Kaminski, Brzezicka, & Wrobel, 2011).  

The goal of the present study is to analyze how the 
modified version of one such model of VWM, originally 
proposed by Chuderski, Andrelczyk, and Smolen (2013), 
handles different numbers of objects and features in its 
memory, and to identify what characteristics of a dynamic, 
oscillatory system implemented in the model may be 
responsible for its limited capacity to store either objects or 
features, or some product of objects and features. We start 
with a concise description of the above mentioned model. 

An oscillatory computational model 

 of visual working memory 

The main part of the model consists of a buffer, which con-
tains a certain number of elements. Each element roughly 
approximates a neuronal assembly representing one specific 
feature of the world. Like in many other models (e.g., Horn 
& Usher, 1992; Raffone & Wolters, 2001), a level of 
internal activation xi is assigned to each element i. The 
following equation defines the change in the level of 
activation x of ith element from time t to time t+1: 

 
 

 
 
 
 
 
 
 
 
 

This equation consists of five components. The first 

component is simply the activity of element i in the 

preceding cycle. The second component represents the self-

recurrent increase of the activation of element i, reflecting 

the reverberatory nature of neuronal assemblies constituting 

WM. The output of i is fed back to i in order to increase i’s 

activity. The parameter ω impacts the frequency of 

oscillations given a particular time scale, but has no 

significant influence on the model’s capacity. The output of 

the element i in time t has been defined using a commonly 

applied sigmoid function of xi. 
The third component of the formula represents the 

coactivation of i by the mean activity of elements j that fire 

in close proximity with i, that is, whose activity xj falls 

within [xi – δ, xi + δ]. Such a range denotes the activity 

horizon in which all oscillating elements are treated as 
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forming one binding that integrates features into a particular 

object, an object with its context, or a role-argument pair. 

This component accounts for the known fact that neurons 

that all fire in synchrony with a given neuron more strongly 

influence its potential as well as synaptic connections than 

when they fire out of phase. The less active element j is, the 

less it can coactivate i. Moderate values of δ have no 

negative influence on the model’s capacity, unless δ is either 

too small (δ < 0.01) or too large (δ > 0.1), that is, when the 

bound elements are either highly prone to random changes 

in activation (i.e., they easily fall apart) or there is no place 

in the activity space to add new distinct items (i.e., xi + δ 

approaches x of another, more activated item), respectively. 

Parameter α regulates the amount of coactivation that is 

spread from j to i. Initial computational simulations showed 

that it has a limited influence on the model’s capacity, as its 

low value (α = 0.0004) used in the present simulation 

yielded quite similar capacity (5.1 two-element items) as 

(5.5 items) its optimal value (α = 0.0012; no further gains in 

capacity were noted). 

The fourth component implements the most important 

mechanism of the model: lateral inhibition exerted by the 

bindings that are treated as encoding distinct representations 

from a representation encoded by elements i and j; that is, 

the elements denoted by k, which fall outside the range [xi – 

δ, xi + δ]. The less active element k is, the less it inhibits i. 

The larger the activation of an inhibiting binding, the more 

it suppresses element i. Parameter β controls the strength of 

that inhibition. Previous simulations (see Chuderski et al., 

2013) demonstrated that β is the main factor controlling the 

capacity of our oscillatory model. An increase in β 

negatively impacted available capacity, as higher values of 

β made more elements to fall out from VWM (drop 

permanently below the threshold arbitrarily set to .2).  

The last component consists of the noise ε, drawn from 

the normal distribution with the mean equal to zero, and the 

variance dependent on the parameter n. Large noise 

(n>0.00005) negatively influences capacity, as oscillations 

of elements become more random; however, its small values 

(n<0.00001) affect the capacity only slightly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1: The model dynamics under increased VWM load. 

When the output of element i surpasses unity (this reflects 

the strongest possible firing of a neuronal group), the 

parameter ω for that element is temporarily reversed 

(reflecting the well-known phenomenon of neuronal hyper-

polarization), causing this element to fall quickly below the 

threshold of activation (0.2), what represents the mechanism 

of refraction (afterhyperpolarization). When xi becomes 

smaller than the threshold, ω value is reset to a previous 

positive value, and the element starts building up its 

activation above the base level. However, in certain cases 

the inhibition signals may be so strong that the activation of 

i is too slow, and just after ω is reversed the activation of i 

decreases permanently below the threshold – the minimal 

activation necessary to stay in WM. If this happens, element 

i falls out of WM, meaning that it can no longer impact 

other elements in WM, nor can be recalled (but it may 

potentially be encoded in the active part of long-term 

memory). This latter mechanism underlies the function of 

emptying WM in order to encode incoming information. 
Generally, the number of elements which can be bound 

together within one synchronic oscillation is not limited. 
However, in Chuderski et al. (2013) only pairs of syn-
chronized elements (an object identity and one its feature) 
were added to the model’s VWM. So, how the model works 
when an object is composed from more visual features?  

Workings of the oscillatory model 

The aim of the model is to maintain as many separate oscil-
lations as necessary, for a given time interval. Two elements 
making one oscillating pair (e.g., an object and the infor-
mation about its a shape) are added to the buffer in the same 
time. The pair which is added as the first one is added with a 
random level of activation. Subsequent pairs can be added 
when activation of all other pairs is less than the value of 1 
– 4 × δ, and those subsequent pairs are added at a level of x 
= xmax + δ + (1 – xmax) / 2, where xmax denotes the x value of 
the most active pair. So, this mechanism checks if there is 
enough place in the activation space for new elements, and 
grants that at least on entering the buffer the new pairs will 
be sufficiently distinctive from all pairs already maintained.  
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In the model, the capacity limit arises because when the 
total amount of inhibition in the model is very large, it 
overcomes the results of activation, and the elements with 
the lowest activation levels start falling out of the buffer. If 
one element from the pair falls out, then the coactivation is 
no longer possible, and the chance that the other element 
from that pair would also fall out drastically increases. 
However, a certain amount of inhibition is necessary, 
because it secures that oscillations will evenly occupy a 
respective time interval, helping to separate them. So, the 
values of β reflect the trade-off between low inhibition 
(many objects can be maintained, but their bindings more 
easily fall apart) and high inhibition (less objects can be 
maintained, but their bindings are more robust). 

Simulating the effects of objects and features’ 

load on visual working memory capacity 

Below, we report simulations in which, apart from the 
number of objects presented to our oscillatory model in the 
(simulated) change detection task, we varied the number of 
features per object. When the arrays in the task changed, 
than a random number of features were altered in the 
highlighted target (i.e., from one feature to the maximum 
number of features possible). Thus, the model had to main-
tain in its VWM all features of an object, because if it 
encoded only some features, and the changed feature was 
among remaining ones (was not encoded), the model would 
commit an error of omission. We compared the results of 
our simulations to existing empirical data. The classic study 
(Vogel et al., 2001; Experiments 11 & 14) yielded a large 
effect on the change detection accuracy of the number of 
objects that were required to maintain (either 2 or 4 objects), 
but no effect of the number of features per object (1 or 4). In 
contrast, Oberauer and Eichenberger (2013) used eight 
feature values per each featural dimension, and observed a 
significant drop in participants’ performance when the 
number of featural dimension increased from one to four. 
So, can our oscillatory model replicate this data (see Fig.3)? 
 We simulated the variant of the change detection task 
similar to the variant applied by Oberauer and Eichenberger, 
as their results seem to be the most reliable data available. 
However, unlike their use of only sets of three objects, we 
manipulated the number of presented objects at three levels: 
two, three, and four, in order to observe whether any 
interaction of the numbers of objects and features occurs. 
First, the model was presented with symbolic descriptions 
(no perceptual module was modeled) of objects that 
contained the numerical identity of an object (e.g., Object1) 
plus one, two, or four values of distinct features. The task of 
the model was to encode the objects in its oscillatory VWM, 
and to maintain these objects until the description of the 
second array arrived. This array could be identical (in half 
trials) or could differ in a random number of features for 
exactly one object indicated (in the remaining half of trials). 
Finally, the model decided if the target object matched the 
corresponding contents of VWM, or differed. The accuracy 
of the model’s responses was recorded. 

In the following simulations, we used exactly the values 
of parameters fitted to data in the previous simulation 

(Chuderski et al., 2013). That is, we set parameter α to a 
value of .0004, parameter ω was drawn from the normal 
distribution with µ = 0.05, and σ = 0.005, and parameter δ 
was set to δ = .05. The only parameter we analyzed, and 
fitted in the present study, was the value of β (in the original 
paper the mean value of β = .0026 was used).  

Simulation results 

First, we analyzed how parameter β determines the overall 

accuracy in the current version of the model. We simulated 

450 trials in the change detection task per each reasonable 

value of β (.0010, .0015, .0020, .0025, and .0030), using 

only the set sizes of three objects, as well as applying the 

number of features equaling one, two, or four (i.e., the exact 

values used by Oberauer & Eichenberger in their Exp. 3). 

The results, shown in Fig. 2, indicated that a moderate level 

of β between .0015 and .0020 was optimal. At either higher 

or lower values of  β accuracy dropped substantially. The 

probable cause of the fact that too low inhibition deterio-

rated VWM maintenance results from stochastic effects that 

pertain to the activations of oscillated elements. When the 

model tried to maintain many bindings, low inhibition was 

not able to optimally separate the consecutive oscillations, 

the activations within one binding (object) might vary more 

than was the distance (in the activation space) to subsequent 

bindings, and some elements might fall into the attractor of 

another binding. Obviously, a high level of inhibition was 

not effective either: bindings mutually inhibited themselves 

so strongly that elements that entered the afterhyperpo-

larization phase were easily eliminated from the model.  

Thus, in the following simulations we adopted the optimal 

levels of β, picking it up on random from [.0014 – .0021] 

range. The simulation contained set sizes of two, three, and 

four objects, which could be the bindings of two elements 

(an object’s numerical identity + the value of one its 

feature), three elements (an object + two features), and five 

ones (an object + four features). Thus, for each set size we 

calculated three data points (i.e., nine data points were 

obtained with fitting only one parameter). In total, 1800 

trials were simulated per each data point. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Fig. 2. The average accuracy of the model in the three-
object change detection task under varying levels of β. 
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Not surprisingly, the model replicated the effect of the 
number of to-be-remembered objects on accuracy, overall 
matching the usual pattern of empirical data. Regarding the 
number of features, the results of set size equaling three 
nicely matched data of Oberauer and Eichenberger (2013): 
the model aptly mimicked the fact that accuracy decreased 
when the number of features increased, F = 92.02, p < .001, 
however the simulated decrease (19%) was slightly larger 
than the one observed by Oberauer and Eichenberger (10%).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. Upper panel: data from Vogel et al. (2001) for set 
sizes two and four, and from Oberauer and Eichenberger  
(2013) for set size three. Bottom panel: data simulated by 
the oscillatory model (black line = mean from all set sizes). 
Bars = 95% confidence intervals.  
 
For set sizes two and four, we could compare simulated data 
with the results of Vogel et al., who used exactly such set 
sizes. For set size four, our data diverged from their results, 
because there was a similar drop in accuracy as a function of 
the number of features, F = 6.57, p = .001, as was in the 
three-objects condition. The same occurred when only two 
objects were presented to the model, F = 39.26, p < .001. 
The simulated data as well as data of Vogel et al., and 
Oberauer and Eichenberger, are presented in Fig. 3. What is 
apparent in Vogel et al., data is the huge ceiling effect, and 

only marginal drop in accuracy from set size two to four. In 
consequence, the null effect of the number of features in 
Vogel et al. for some unknown reason might have resulted 
from their ceiling effect. In contrast, simulated data more 
closely matched Oberauer and Eichenberger data, who 
observed much lower accuracy for set size three than did 
Vogel et al. for set size four (and even than their set size 
six). Thus, the prediction of Oberauer and Eichenberger that 
the number of features maintained loads on WM and affects 
accuracy, congruent with our simulation results, seems to be 
more realistic. 
 In the model, both the number of objects and features 
affected accuracy because increasing each number increased 
the total amount of lateral inhibition. However, the impact 
of additional objects was stronger than the impact of 
features (i.e., it was easier to maintain two two-feature 
objects than four one-feature objects). The likely cause of 
such an effect consists of the fact that increasing the number 
of features increased both inhibition (decreasing overall 
capacity) and – to some extent – coactivation (increasing 
capacity). Thus, the negative effect of additional features 
was partially attenuated by more robust representation of 
each object. Increasing the number of objects increased only 
inhibition, but not coactivation, so it impact was stronger. 

Discussion 

Using a novel oscillatory model, which aimed to describe 
the functioning of human VWM, in line with the capacity-
as-objects account we showed that the major limitation of 
VWM in our simulations resulted from the number of to-be-
maintained objects. However, we also demonstrated that, 
apart from the number of objects, also the number of visual 
features maintained in VWM may be limited. When the 
number of features became increased (especially, to four 
features), the system, being close to the maximum overall 
amount of lateral inhibition it could handle, could not 
maintain additional features with the same accuracy as one 
feature. This mechanism seems to explain well the data 
obtained within the capacity-as-features account (Oberauer 
& Eichenberger, 2013; Cowan et al., 2013).  
 Although the present model is limited by both the number 
of objects and the number of features it can effectively 
maintain, the model does not support the explanations of 
VWM capacity in terms of the total informational resource 
that is consumed by both the objects and the features (Bays, 
Catalao, & Husain, 2009; Bays & Husain, 2008). First, 
although the drop in accuracy did result from additional 
features, the performance of the model decreased much 
more slowly than did increase the total number of features. 
For example, accuracy for four features stored in the four-
objects-one-feature condition was only 10% higher than 
accuracy in the four-objects-four-features condition, even 
though the total number of features maintained increased 
from 4 to 16 features. This is not in line with predictions of 
the sheer limited-resource account. Additional assumptions 
made to this approach that would explain that the more 
features, the less VWM resource on average is consumed by 
a feature, help only a little. As cogently noted by Oberauer 
and Eichenberger (2013), such add-ons supplementing the 
limited-resource account made it virtually unfalsifable. 
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 However, even though the present model is more 
compatible with those accounts of capacity that postulate 
that its currency are available slots in VWM (one slot = one 
object), but with more features per object the probability 
that surplus features will not be encoded effectively, it 
seems to nicely extend these accounts. Most of existing slot 
models were formulated as pure mathematical formulae that 
yield the probability of the correct change detection as a 
function of the number of objects, the number of features, 
and sometimes some additional parameters (e.g., Cowan et 
al., 2013; Oberauer & Eichenberger, 2013). In contrast, the 
present model is a process (i.e., computational) model that 
not only describes the relation between the characteristics of 
the change detection task and the resulting detection 
accuracy, but also generates the very complex dynamics 
(interpreted at the neural level) underlying the performance 
on this task. For example, the model explains the nature of 
slots in terms of dynamic bindings that interact mutually, 
and are prone to stochastic as well as chaotic effects. 
 To conclude, the presented dynamic model of VWM 
provided the prediction that although the VWM capacity is 
strongly constrained by the number of maintained objects 
(which is a widely observed fact), it is also, though more 
weakly, limited by the number of features per object (the 
factor that so far has not been examined exhaustively, and 
still awaits the comprehensive empirical study). In general, 
the study implies that in cognitive science at least for some 
research problems more can be theoretically understood 
from the development of process models, generating a 
particular phenomenon, than from pure mathematical 
models that only describe such phenomenon. 
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Introduction: Statistical Learning
One of the challenges that infants have to solve when learn-
ing their native language is to identify the words in a con-
tinuous speech stream. Some of the experiments in Artificial
Grammar Learning (Saffran, Newport, and Aslin (1996); Saf-
fran, Aslin, and Newport (1996); Aslin, Saffran, and Newport
(1998) and many more) investigate this ability. In these ex-
periments, subjects are exposed to an artificial speech stream
that contains certain regularities. Infants are typically tested
in a preferential looking paradigm; adults, in contrast, in a
2-alternative Forced Choice Tests (2AFC) in which they have
to choose between a word and another sequence (typically a
partword, a sequence resulting from misplacing boundaries).

One of the key findings of AGL is that both infants and
adults are sensitive to transitional probabilities and other sta-
tistical cues, and can use them to segment the input stream.
Several computational models have been proposed to explain
such findings. We will review how these models are evalu-
ated and argue that we need a different type of experimental
data for model evaluation than is typically used and reported.
We present some preliminary results and a model consistent
with the data.

Models of Segmentation
Many different types models of segmentation have been pro-
posed, that differ in the representational framework used
(including symbolic, statistical, connectionist and exemplar-
based representations, and combinations thereof) and in the
level of description chosen. We focus here on three represen-
tative models: (i) Goldwater, Griffiths, and Johnson (2009)
present a Bayesian rational model, which assumes an ideal
learner and computes the most probable set of segments that
could have produced the observed stream. (ii) PARSER
(Perruchet & Vinter, 1998) is a symbolic, exemplar-based
model that incrementally breaks the input stream into seg-
ments and memorizes them; when the weight of a segment
in memory is strong enough, it influences how the subse-
quent part of the stream is segmented. The model also in-
corporates forgetting and interference. (iii) In the connec-
tionist paradigm, TRACX (French et al., 2011) present a
recognition-based neural network that learns to represent the
input. The resemblance of the output representations with the
input sequence indicates how well the sequence is recognized

by the model.
Which of these models fits the experimental data best?

That question turns out to be difficult to answer, as data from
2AFC experiments – the vast majority of experiments with
adults in the AGL paradigm – make it difficult to choose
between models, despite important differences in the cogni-
tive processes they assume. This is because in 2AFC, only
the relative preference of one stimulus over another one is
measured, and typically only a single average accuracy is re-
ported. All the models we considered have enough free pa-
rameters to reproduce any desired average accuracy.

In existing work on model evaluation, several authors have
therefore proposed to focus on the analyses of the inter-
nal representations of the model (consisting on segments of
the stream, as well as some score in the form of memory
strength or probability), or on comparing the performance
of the model in a 2AFC setting over a range of conditions.
Perruchet and Vinter (1998) provide an example of the for-
mer. They define two criteria: the loose criterion states that
the internal memory of the model contains the words with
the highest weights, but also other sequences; to fulfill the
strict criterion, the memory must contain the words with the
highest weights, but other ‘legal’ sequences are possible (ex:
two words concatenated). We will show that the assumptions
that all the words should have the highest weights, and that
the non-legal sequences should be forgotten, is not consistent
with empirical data.

Frank, Goldwater, Griffiths, and Tenenbaum (2010), on the
other hand, provide an example of the latter. They evaluate a
number of different models by comparing the performances
in a 2AFC task with those of humans for a range of condi-
tions (e.g., for different numbers of words). Although this
constitutes a major improvement over comparing only to a
single datapoint, we still find that models which embody fun-
damentally different assumptions can easily provide similar
performance. This is the case, for instance, with the Bayesian
model of (Goldwater et al., 2009) and TRACX (French et al.,
2011).

A call for a different type of experiments
We suggest a different experimental setup that we believe
should complement the extensive body of research with
2AFC tests, and we advance some preliminary results.

In our experiment, we replicated the familiarization phase
of experiment 1 in Pena, Bonatti, Nespor, and Mehler (2002).
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In the test phase, each trial consisted of two questions about
a single sequence (either a word or a partword). The first
question was ”Is this sequence a word of the language you
have heard?”, and it allows for a yes/no answer. The follow-
ing question was a confidence rate about the previous answer,
from 1 (not confident) to 7 (very confident).

Figure 1 shows the average responses for each test item.
We do not claim that these responses provide us with direct
access to the strength of the mental representations of the sub-
jects, but we believe they are more revealing than the 2AFC
responses.

Figure 1: Average confidence rates for each test stimulus
type, in decreasing order. Confidence rates for negative an-
swers have negative values. Conditions only differ in the ran-
domization of the syllables.

An important observation of these responses is that some
partwords are rated higher than some of the words. This inval-
idates the criteria proposed by Perruchet and Vinter (1998),
and justifies the need of models that store segments creat-
ing the skewed distributions observed. In the next section we
present a model that can generate this kind of output.

The Retention & Recognition Model
Our model, the Retention&Recognition model (RnR)
(Alhama, Scha, & Zuidema, 2014) can be considered a prob-
abilistic chunking model. It incrementally breaks the stream
into segments which may be stored into its internal mem-
ory, along with a weight that we call ‘subjective frequency’.
Given an initially empty memory, for any segment from the
input stream, the model will attempt to recognize it with prob-
ability Prec (eq. 1). If it succeeds, the subjective frequency of
the segment is incremented with 1. If it fails, the model may
still retain it in memory, with probability Pret (eq. 2). In this
case, it will either add it for the first time with initial subjec-
tive frequency one, or increment its subjective frequency with
1.

Prec(segment) = (1−Bactivation(segment)) ·D#types (1)

Pret(segment) = Alength(segment) ·Cπ (2)

The model involves free parameters (A,B,C,D) that may
be fitted to empirical data. The retention probability is in-
versely correlated with the length of the segment. The fac-
tor Cπ attenuates the retention probability unless the segment
appears right after a micropause. The recognition probabil-
ity uses an activation function that depends on the accumu-
lated subjective frequency of the subsequence. The number

of word types adds difficulty to the task, resulting in a de-
creased recognition probability.

The interaction between retention and recognition can gen-
erate a range of results similar to those seen in the experi-
ment. The recognition formula provides the dynamics of rich
get richer (also present in some nonparametric bayesian mod-
els): once a sequence starts being recognized, it will be easier
and easier to recognize, leading to a big subjective frequency.
However, the retention and the probabilistic nature of the
model are responsible for the fact that not all sequences are
first incorporated into memory at the same time. This yields
skewed distributions, similar to the distribution observed in
our experiment.

Conclusions
In order to choose between models of segmentation we need
to contrast them with data from experimental paradigms that
complement the existing 2AFC results with data that shows
other properties. We have proposed an alternative paradigm
for experiments, with the hope that it will inspire many more
experiments along this line. We have also illustrated how it
provides empirical support for the misrepresentation of part-
words in some models. Finally, we have described RnR, a
probabilistic chunking model that can reproduce the patterns
revealed by the data.
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Introduction 
Anaphoric pronouns such as the English ‘he’ are used in 
daily life to refer to entities that are mentioned in the 
previous discourse context. Such pronouns are ambiguous, 
as they can refer to any singular male entity in the discourse. 
Ambiguous pronouns have to be resolved in order to be 
(correctly) interpreted. Generally, third person pronouns are 
interpreted as referring to the grammatical subject of the 
previous sentence (subject bias; Gordon & Scearce, 1995), 
or as referring to the discourse topic (most accessible 
antecedent; Ariel, 1990; Grosz, Weinstein, & Joshi, 1995), 
resulting in topic continuation.  

The resolution of ambiguous pronouns and taking into 
account the previous discourse context requires processing. 
With a constraint-based approach (derived from Optimality 
Theory; Prince & Smolensky, 2008), we try to identify rules 
(constraints) that guide this pronoun resolution process. We 
propose a number of constraints that, when implemented in 
a cognitive model, can simulate pronoun processing in 
Italian. 

Pronoun interpretation in Italian 
In pro-drop languages like Italian, contrary to non-pro-drop 
languages such as Dutch and English, a rich verb 
morphology allows for an additional subject form: the 
subject can be completely omitted, resulting in a null 
subject. Italian thus offers the possibility to either place a 
subject pronoun overtly or to use a null subject. Generally, a 
null pronoun refers to the previous discourse topic, whereas 
an overt pronoun refers to another, non-topical, referent 
(Carminati, 2002). However, this is merely a preference and 
interpretations of null as well as overt pronouns can vary. 
 So, a potential model of pronoun resolution in Italian can 
not simply take the topical character or the grammatical 
subject of the previous sentence as the referent of the 
pronoun, but will need more elaborate constraints. First, we 
ran an experiment to examine how different Italian subject 
forms are interpreted in discourse. 

Experiment 
In the experiment, Italian adults (n=40) heard short stories, 
the last clause of which contained one of three different 
subject anaphora: A full noun phrase (NP) such as the dog 
as an unambiguous baseline condition, a null subject (Ø), 
and the overt subject pronouns lui (‘he’) and lei (‘she’). A 
sample story: 
 

Il cane va a fare un viaggio in Germania.  
The dog is going on a trip to Germany. 
Ieri sera il cane ha invitato il gatto a viaggiare insieme,  
Last night the dog has invited the cat to travel together, 
mentre Ø/lui/il cane si lavava prima della partenza. 
while Ø/he/the dog washed himself before the departure. 

 
We recorded participants’ responses to a referent selection 
question, in which they could choose between the discourse 
topic (il cane) and a non-topic antecedent (il gatto) as the 
referent of the subject anaphor.  
 The results of the experiment (Figure 1) show that, in line 
with Carminati (2002), null subjects are generally 
interpreted as referring to the discourse topic (86% of the 
time). Interpretations of overt subject pronouns vary 
somewhat, as they are interpreted as referring to the 
discourse topic 39% of the time and as referring to the non-
topical referent 61% of the time. 
 

 
 
 
 
 
 
 
 
 
 

Figure 1: Experimental results for the interpretations of full 
NPs, null subjects, and overt subject pronouns in Italian.  
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Proposed model 
We propose an adaption of the pronoun resolution model of 
Van Rij, Van Rijn, & Hendriks (2011) in order to simulate 
the processing and interpretation of Italian pronouns. The 
model is to be implemented in the cognitive architecture 
ACT-R (Anderson, 2007), which constrains models to 
ensure psychological plausibility. The proposed model uses 
the following, hierarchically ordered, constraints: 
 
[1] There are no null subjects that refer to a non-topic 
[2] There are no pronouns that refer to an entity that is   
   not activated  
[3] Avoid NPs  
[4] Avoid overt pronouns 

 
There three main steps in the model: determining the 
discourse topic, interpreting the pronoun, and perspective-
taking. In this final step, the model takes the perspective of 
the speaker in order to determine if a speaker would indeed 
have used the encountered expression for the selected 
interpretation.  
 In the first step the character with the highest activation is 
taken as the current discourse topic. The activation of a 
referent is based on the previous occurrences in the 
discourse and its grammatical role during these occurrences. 
Mistakes can be made when determining the discourse topic 
because activation in ACT-R is subject to noise.  
 In the second step of the model, either a null subject or an 
overt subject pronoun needs to be interpreted. For Italian 
null subjects the discourse topic is taken as the referent of 
the pronoun based on constraint [1]. For overt subject 
pronouns however, the constraints do not restrict the 
interpretation to either the topic or to a non-topical, 
activated antecedent. Therefore, the referent of an overt 
subject pronoun can not be determined in this step. 

In this case, the third step of taking into account the 
perspective of the speaker is essential. This final step can 
have three possible input states: either the speaker wants to 
refer to the discourse topic, to a non-topical, activated 
antecedent, or to a non-topical antecedent that is not 
activated. If the intended referent is the topic, constraints [1] 
and [2] do not restrict which form can be used. In this case, 
constraints [3] and [4] are applied: a null subject is easier 
(less effortful, more economic) to produce than an overt 
subject pronoun, which is easier to produce than a full NP 
(based on Burzio, 1998). Thus, if a speaker would want to 
refer to the discourse topic, she would use a null subject. 
 When the speaker wants to refer to a non-topic, constraint 
[1] does not apply. If the antecedent is not activated in the 
current discourse, the speaker will not use a pronoun (on the 
basis of constraint [2]), so she will use a full NP. If the non-
topic antecedent is activated in the discourse however, 
constraint [1] still prevents the speaker from using a null 
subject, but constraint [2] does not apply. Therefore, 
constraint [3] determines that an overt subject pronoun is 
used instead of a full NP. So, because a speaker would use 
an overt pronoun to refer to a non-topical, activated 

antecedent, a listener would finally interpret an overt subject 
pronoun as referring to the non-topical, activated character. 
 So far, we have explained the hierarchical constraints and 
processing steps, which together lead to the correct 
interpretation preferences for null and overt subject 
pronouns. Additionally, activation in ACT-R is subject to 
noise and thus pronouns will not always be interpreted in 
the same way. However, the model should also account for 
the strong variation in the interpretations of overt subject 
pronouns. This can be simulated by the third step of the 
model, the perspective-taking step, which is necessary for 
the interpretation of overt subject pronouns but not for null 
subjects. Since the execution of an additional processing 
step takes time and effort, time constraints on language 
processing may prevent the third processing step from being 
completed. If the interpretation of the overt subject pronoun 
has not been determined yet, it will be guessed. This will 
result in more variability in the interpretation of overt 
subject pronouns than in the interpretation of null subjects. 

Conclusions 
In this paper, we propose a model that uses a constraint-
based approach and perspective-taking. Combined with 
constraints from the cognitive architecture ACT-R and 
constraints on language processing, the model can plausibly 
simulate subject pronoun interpretation in Italian. 
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Introduction 
 Regarding the investigation of the word representations, 

previous researchers often asked participants to rate the 
similarities between emotion words (Barrett, 2004; Cheng, 
Cheng, Cho, & Chen, 2013; Romney, Moore, & Rusch, 
1997), or to give the scores upon certain psychological 
dimensions (e.g. valence, arousal, et. al) (Bradley & Lang, 
1999; Cho, Chen, & Cheng, 2013; Morgan & Heise, 1988). 
These direct similarity-based or anchor-based ratings indeed 
emerge categorical properties of emotion words according 
to existing theoretical postulations. However, these methods 
are just based on subjective and retrospective report data. To 
date we might well grasp what the meanings of general 
concepts are, but what emotional concepts refer to is still not 
fully clear. Hence adopting more objective way and robust 
theories about how people learn and represent the semantic 
concepts of emotion words is crucial for leading us to in-
depth investigation. 

Analyzing general products of word use might shed light 
to answer the question. Latent Semantic Analysis (LSA, 
Landauer, Foltz, & Laham, 1998) is used to study the 
concepts behind words from the perspective of how human 
build-up the word meanings. Accordingly, the semantic 
representations of words are gradually shaped and learned 
through the multiple constraints of the input data from the 
environment since childhood. By calculating the co-
occurrence matrix between words and documents, we could 
study the semantic knowledge from large-scale corpus, and 
hence explore the possible relationships between individual 
words.  

Besides, previous success of neural networks showed the 
competence to study the inner representations of human 
mind. Particularly, Self-Organizing Maps (SOM) model can 
vectorize the representation relationships of categories of 
words and display the topological properties across the 
maps (P. Li, 2009; Ping Li, Burgess, & Lund, 2000; P. Li, 
Farkas, & MacWhinney, 2004). Parameters of SOM models 
are sensitive tools to extract subtle variations of word 
meanings, therefore grasping the common properties under 

an unsupervised learning manner to express similarity- or 
anchor-free semantic representations of the complex 
emotion word meanings. Instead of comparing pairs of 
emotion words or rating the semantic properties based on 
predefined dimensions, the present modeling study 
combined both corpus-based analysis (LSA) and 
connectionist model to delineate the complexity of semantic 
representations of Chinese emotion words. 

Methods 
   The Academia Sinica Balanced Corpus of Modern 
Chinese 3.0 (Sinica Corpus 3.0) was used as the corpora to 
provide Chinese word uses. This corpus has nearly ten 
thousand documents, fifteen million words, which were 
collected from magazines, speeches, internet, and          
other media in Taiwan. Target emotion words were   
selected   from Taiwan Corpora of Chinese Emotions       
and Psychophysiological Data on EmotioNet 
(http://ssnre.psy.ntu.edu.tw/). This data collected 218 
Chinese emotion-describing words, with 353 participants 
rated each emotion words for valence, arousal, dominance, 
continuance, frequency, and typicality (Cho et al., 2013). 
We chose 161 two-character words from the database. For 
validate the data, 36 nouns similar to the stimulus used in 
Lund and Burgess (1996) were also selected. The words 
included 12 animal names, 12 words of body parts, and 12 
words of nations. 
   The present study established the semantic representations 
in Sinica Corpus 3.0 using CTM_PAK (Zhao, Li, & 
Kohonen, 2011). Window size and list of words were 
adjusted to the data of emotional words as the parameters of 
interested. SOM was used to represent the semantic 
representations of the emotion words but not the nouns. 5 
nearest neighbors of each emotional word were also 
generated and being rated by researcher if the nearest 
neighbors belong to the same group or not.  

Results 
   The SOM model of 36 nouns showed that three categories 
of words were projected onto different map regions, with 
only few words locating at the wrong regions. The results 
here were at large consistent with the findings of Lund and 
Burgess (1996), although they used multi-dimensional 
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scaling as a plausible approach to probe semantic category 
in the corpus. Hence we might ascertain that the present data 
could at least distinguish different types of semantic 
categories under a coarse framework as Lund and Burgess 
(1996) reported. 

However, the words were not form any relevant clusters 
in the SOM models, and the semantic-similar words were 
not projected into adjacent region even in the different map 
size, training length, and initial radius. For excluding the 
possibility that some low-frequency words would affect the 
model, SOM models with emotional words appeared more 
than fifty times in the whole corpus were built. The results 
also showed that no meaningful clusters were formed. 

The average percentages in which five-nearest neighbor 
words were in the same category as the target word revealed 
that across data with different parameters, the accuracy of 
the five-nearest neighbors was all below to thirty percent. 
Although there were some variations between data, the 
patterns were not clear so that we treat these variations as 
random and had nothing to do with the size of moving 
window and the content of word list. 

Discussion 
As the result showed, although the data could categorize 

different types of noun, the semantic representations of 
emotional words were far from perfect. One of the possible 
reasons is that emotional words can’t be well anchored by 
other co-occurring words because of the complex and 
subjective component. As the theory of LSA mentioned, the 
vectors of each word could just represent the semantic 
concept across all contexts. Because of the subjective 
characteristic, highly different emotional words might be 
able to apply to the same context. So maybe it’s not 
sufficient to separate the emotional words and concepts with 
only co-occurrence data.  

Despite there seems to have above possibility, when 
taking a closer look in the SOM model of 36 nouns, the 
arrangement within category were also showed no finer and 
meaningful categories. Hence although we couldn’t reject 
that emotional words might involve some complex 
components, the way we extract concepts behind words 
might have its limitation. It’s possible that we have to 
include some dimensions about subjective feelings to 
establish the semantic structure of emotional words better. 
Across the theories about knowledge structure, embodiment 
cognition highlights the importance of motor, perceptual, 
and introspective states while forming and retrieving 
concepts. Further research might get more insight with the 
inclusion of this kind of approach, and the semantic 
structure could be well established. 

Conclusion 
The present study strived to investigate the semantic 

representation of Chinese emotional words with corpus-
based analysis. The results showed that although the data 
could separate different types of nouns, it is not sufficient to 
separate and categorized different emotional concept. 

Further studies have to take other theory into consideration 
to construct the mental representation more properly. 
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Introduction 
The research on Latent Semantic Analysis (LSA) in the 
domain of natural language processing (NLP) shows the 
efficiency of this method (Landauer & Dumais, 1997). 
Nowadays the applicability in interactive semantic rich E-
Learning contexts is interesting. 

Future applications may use LSA techniques for 
automatic tutoring (Graesser et al., 1999) or automatic 
scoring of written essays in trainings, tests or MOOCs, 
which will be the way out of single-choice and multiple-
choice tests in interactive learning environments. 

Text understanding is central in interactive learning 
environments. For this a written essay is a much better 
indicator than single or multiple choice questions and 
answers. The question of rating if a text has been 
understood is followed by the more important question of 
what has not been understood within the text, so that 
intelligent feedback can be given.  

LSA can see if knowledge has been decoded into a 
written essay or not. If textual information is not included, it 
is still unclear whether the information was not understood 
or just not activated enough (Anderson, 1976). 

Methods 
In our study, we try to use LSA to rate text understanding 
combined with a new method of classifying paragraphs by 
online-highlighting within the existing pdf-file.  

Participants 
The study was realized with 16 German participants (11 
female; mean age 22,5 years). 

Procedure 
In a first part the participants had to read the scientific 

paper “What Benefits do the Findings of Brain Science have 
for Pedagogics?” (9 pages, 51 paragraphs, 6495 words) in 
a specially programmed online pdf-reader and their task was 
to highlight important and difficult parts of the text within 
the pdf-file. The paper was displayed by a PDF-Viewer, 
which was extended in two ways. The first extension added 
the ability to highlight the text in two colors whereas the 
second extension enabled the students to store the marked 
text on the server. Both marks were different in color, a 

blueish color marked parts of the paper students thought to 
be of central importance and a reddish color to mark 
difficult parts. Their time was limited to the end of the 
session, which meant about 60 minutes, to read and mark 
the text. There was no guideline as to whether the 
participants should first read and mark afterwards or do both 
simultaneously. The participants were not especially 
instructed to learn the paper and there was no information 
given about following tasks. 

One week later all participants had to reconstruct the 
paper by writing an essay within a special online text-editor.  

Results 
The latent semantic space was reduced to 21 dimensions 

and no weight functions were applied. Cosine was used to 
calculate the similarity between students’ summaries and the 
paragraphs of the paper. Regarding the text length, four 
groups are appropriate to analyze (words<100; words=101-
200; words=201-300; words>300).  

 

 
Figure 1: The cosine parameter for three participants with 

more than 300 written words. 
 

Well decoded paragraphs are significantly differentiated 
from ill decoded paragraphs. The reason why the 
performance of text reconstruction differs this way lies in 
the text-structure itself, which can be more analyzed by 
autocorrelation, and in the previous knowledge of the 
participants, which can be analyzed within the highlighted 
text areas. 
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The autocorrelation of paragraphs presents the semantic 
relatedness of the paper very well.  

 
Figure 2: The 51 paragraphs’ semantic content patterns.  

 
 The 51 paragraphs show perfect patterns of their 

semantic content. Very special paragraphs can be identified 
immediately (e.g. paragraph 12 about the amygdala). 

The previous knowledge of the participants is 
incorporated in their highlighted text areas. The participants 
marked 18.87 % of the paper as of central importance and 
1.4 % as opaque on average. Most (9 of 16) participants 
marked nothing as opaque. Exactly one student marked 
more opaque than as of central importance. 

 
 

 

 

 

 

 

 

Table 1: Length (words in total) of the written essays and of 
the highlighted words 

 Essay  Important  Difficult  

1 355 5.47% 627 9.65% 68 1,05% 
2 221 3.40% 1138 17.52% 0 0% 
3 204 3.14% 1778 27.37% 0 0% 
4 104 1.60% 649 9.99% 840 12.93% 
5 36 0.55% 1044 16.07% 0 0% 
6 58 0.89% 1480 22.79% 0 0% 
7 107 1.65% 1084 16.69% 33 0.51% 
8 413 6.36% 327 5.03% 0 0% 
9 321 4.94% 2170 33.41% 357 5.50% 
10 170 2.62% 1420 21.86% 0 0% 
11 55 0.85% 113 1.74% 0 0% 
12 117 1.80% 2028 31.22% 33 0.51% 
13 75 1.15% 1534 23.62% 0 0% 
14 35 0.54% 1563 24.06% 91 1.40% 
15 220 3.39% 1303 20.06% 30 0.46% 
16 136 2.09% 1347 20.74% 0 0% 

Discussion 
LSA is a promising method for generating intelligent 
feedback in online courses and other E-Learning 
environments. For generating a more differentiated feedback 
in those systems, additional information is needed. 
Therefore, special highlighting methods could be 
introduced. Those techniques are still in development and 
special trainings for participants are needed to make them a 
standard tool in educational contexts. 
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Abstract

Lately two modules which aim to improve the modeling of hu-
man reasoning have been introduced into the ACT-R cognitive
architecture – the Human Reasoning Module (HRM) and the
Pre-Attentive and Attentive Vision Module (PAAV). This is a
first attempt to create a domain-specific infrastructure as an ex-
tension of a cognitive architecture. The HRM defines the basic
functionality of two different theories in human reasoning –
the mental model theory and the mental logic theory. Thus, it
is a step towards a “unified theory of human reasoning”. In this
article we use a model of the continuity effect in spatial reason-
ing to evaluate this approach. The results show that the HRM
is a clearly more convenient way to define ACT-R models for
reasoning domains. However, as a unified theory of reason-
ing improvements are necessary before quantitative measures
of all aspects in a reasoning task can be predicted.
Keywords: Spatial Reasoning; Human Reasoning Module;
Cognitive modelling; ACT-R

Introduction
While navigating in a new environment, assembling furniture,
or setting the table we always process spatial relational infor-
mation. Consider the following abstract information:

Object A is to the left of Object B.
Object C is to the right of Object B.

The task of a reasoner is to infer a relation between the ob-
jects A and C (a generation task) or to test if a specific re-
lation holds (a verification task). If only one arrangement
(which we call in the following a model) can be built from
the given information, we call it a determinate problem, oth-
erwise an indeterminate problem. Indeterminate problems are
empirically often more difficult than determinate problems
(Johnson-Laird & Byrne, 1991). The way relational infor-
mation is presented, e.g., if the information is presented con-
tinuously, e.g., A is to the left of B, B is to the left of C, C is
to the left of D, semi-continuously e.g., B is to the left of C, A
is to the left of B, C is to the left of D, or discontinuously e.g.,
A is to the left of B, C is to the left of D, B is to the left of
C, has an impact on reasoning difficulty (e.g., Knauff, Rauh,
Schlieder, & Strube, 1998; Ragni & Knauff, 2013). We call
each sentence that contains relational information a premise.
Please note that the relational information is identical, and
only the order of the premises changes.

In order to explain human spatial reasoning processes var-
ious psychological theories have been proposed. Two ma-
jor theories are the mental model theory (MMT, Johnson-
Laird, 1983), that assumes that humans construct, inspect,
and vary mental models; and the theory of mental logic, a

rule-based reasoning theory (e.g., Rips, 1994). The mental
model theory was recently extended by the preferred mental
model theory and its computational model: PRISM (Ragni
& Knauff, 2013). To evaluate the theories their predictions
must be tested against empirical data. Consequently, we
have implemented both theories (Brüssow, Ragni, Frorath,
Konieczny, & Fangmeier, 2013) in the cognitive architecture
ACT-R (Anderson, 2007). While predictions of the MMT can
explain the data, this support is missing for the rule-based the-
ory (Ragni, 2008).

ACT-R provides principally enough “structure”, i.e., mod-
ules to model human spatial reasoning problems. Findings
from psychometrics (e.g., the Block-Tapping task, Vandieren-
donck, Kemps, Fastame, & Szmalec, 2004) to neuroscience
(Prado, Chadha, & Booth, 2011; Knauff, 2013; Ragni,
Franzmeier, Wenczel, & Maier, 2014) support that humans
use for spatial reasoning a specialized mental structure, e.g.,
an amodal or multimodal representation of objects as pro-
posed by the MMT. Hence, researchers have proposed an ex-
tension, a specialized spatial module for ACT-R (e.g., Gun-
zelmann & Lyon, 2006; Lyon, Gunzelmann, & Gluck, 2008;
Douglass, 2007).

Another recently introduced approach assumes two spe-
cialized ACT-R modules to model spatial relational reason-
ing, the Pre-Attentive and Attentive Vision Module (PAAV,
Nyamsuren and Taatgen (2013)) and the Human Reasoning
Module (HRM, Nyamsuren and Taatgen (2014)). The HRM
was introduced with the goal “to create a unified theory of
human reasoning”. Its functionality includes to build models
and to use inference rules (e.g., transitivity rules). The PAAV
is an alternative for the default ACT-R vision module, and
gives access to the newly introduced Visual Short Term Mem-
ory (VSTM), where analogical representations, i.e., mental
models could be built.

The HRM has already been evaluated with regard to its
ability to model the qualitative difference between determi-
nate and indeterminate problems in spatial relational reason-
ing (e.g., the problems from Byrne & Johnson-Laird, 1989) in
Nyamsuren and Taatgen (2014). Another aspect, as outlined
above, is to test how the HRM deals with the way relational
information is presented. Hence we created a model to ana-
lyze if performance differences induced by the continuity ef-
fect can be reproduced and which implications the continuity
effect has on the processing of spatial reasoning.

The paper is structured as follows: Firstly, we summarize
the core functionality provided by the PAAV and the HRM.
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In a second step we introduce an empirical investigation of
the continuity effect. Based on a model by Nyamsuren and
Taatgen we created an extended cognitive model. This model
was extended to solve problems from the empirical investi-
gation of the continuity effect. The model’s results are then
compared with the empirical data. A discussion of additional
properties or limitations of the modules for improving the
predictions concludes the paper.

ACT-R Modules PAAV and HRM
The authors describe their intention for providing the Hu-
man Reasoning Module (HRM) as “a single system that can
express different facets of reasoning”, including deduction
and induction, deterministic and probabilistic inference, us-
ing rules and mental models. As such, the HRM differs from
most other ACT-R modules in two aspects. Firstly, the HRM
includes a set of production rules instead of a mathemati-
cal function which models subsymbolic mechanisms. With
these production rules the HRM is able to request other mod-
ules like the declarative module. Secondly, the HRM has di-
rect access to the Pre-Attentive and Attentive Vision Module’s
(PAAV) Visual Short Term Memory (VSTM) for requesting
task-specific information.

In the first step of the reasoning process the HRM relies on
the VSTM’s functionality to store objects. The VSTM is rep-
resented by a two-dimensional array and stores two types of
information: firstly all information that was processed by the
default visual buffer is placed automatically into the VSTM.
Secondly, by an explicit request task objects are stored such
that premise information are represented. The VSTM offers
a limited capacity of objects (default: 4 objects) which are
stored for a limited amount of time (default: 10 seconds).
When the capacity is exceeded the oldest object is cleared
from the VSTM. By requesting the visual-memory buffer a
model can access an object in the VSTM. Accessing an ob-
ject in the VSTM resets the associated time stamp.

The HRM uses a specific type of chunks, the as-
sertion chunks, with three slots: a property, a sub-
ject and an object. For spatial reasoning, chunks
like (p1 ISA assertion property left-of subject A
object B) are used to represent the fact that ’object A is
to the left of object B’.

During the reasoning process all premises are stored as as-
sertion chunks in the declarative memory. As mentioned be-
fore, the HRM offers a set of production rules for two types
of reasoning, a set for forward reasoning and a set for back-
ward reasoning. Each reasoning process starts by sending a
request to the reasoner buffer. Forward reasoning is used for
generation tasks where a rather unspecified request is sent to
the reasoner buffer. The task consists of infering some in-
formation that follows given the premises in the declarative
memory. Backward reasoning is used for verification tasks
where a mostly or completely specified assertion is sent to
the reasoner buffer, e.g., specifying a subject and an object
and the missing relation has to be inferred, or a completely

specified assertion with property, subject and object is given
that has to be verified or rejected. In our experiment we used a
verification task, thus we concentrate on backward reasoning.

Backward reasoning is a three step process, the backward
reasoning pipeline. In case one of the steps succeeds prov-
ing the assertion, the backward reasoning pipeline is stopped.
In the first step (bottom-up reasoning) valid assertions are re-
quested from the VSTM based on the request. One of the
valid assertions is then randomly chosen. This step does not
involve using production rule requests to the VSTM, but di-
rect access to the VSTM. Thus accessing the VSTM does not
cost time. In the second step (declarative retrieval) the asser-
tion is requested from the declarative module. In the third step
(top-down reasoning) inference rules (like transitivity, oppo-
site rules) are used to prove the assertion. Inference rules and
assertions are retrieved from the declarative memory and for
checking the applicability of a inference rule the backward
reasoning pipeline is requested recursively. Therefore, this
step may include several requests to the VSTM and to the
declarative memory.

Experiment
In the behavioral experiment semi-continuous (SC) and dis-
continuous (DC) spatial reasoning problems were tested (cp.
Table 1). Semi-continuous problems consist of premises that
do not have terms that appear in both, the second and the third
premise. For integrating the third premise information from
the first premise is necessary. Discontinuous problems, how-
ever, consist of premises that do not have terms that appear
in both, the first and the second premise. As a result, at the
time where the second premise is presented, no information
is available how the new information can be integrated with
the first premise. This leads to different complexities between
SC and DC problems that are known as the premise order ef-
fect (Ragni & Knauff, 2013) or the continuity effect (Ehrlich
& Johnson-Laird, 1982), respectively. The goal of this exper-
iment is to allow for an in-depth evaluation of the presented
ACT-R model and therefore the respective modules.

In the following sections we call terms or objects that
appear in multiple premises common terms. Using the SC
(right) condition from Table 1, the common term in the first
and the second premise would be the term C.

Method
Participants. We tested fourty-five students from the Uni-
versity of Freiburg (27 female, mean age: 22.86 years) who
received course credit or a nominal fee for their participation.

Design and Materials. In total each participant received
64 four-term series conclusion verification problems in ran-
domized order. Each problem consisted of three premises
and a conclusion. No indeterminate problems were tested,
i.e., in all problems only one correct model could be con-
structed. Half of the problems were semi-continuous (SC),
the other half were discontinuous (DC) problems. The 32
problems in each category included 16 problems with a cor-
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Table 1: Empirically tested problem categories. Two prob-
lems have a semi-continuous premise order (SC), and the
other two problems have a discontinuous premise order (DC).
The first problem in each category demands to add terms in
the model construction to the right of already included terms
(right), the second problems to add terms to the left (left).

Category Premise 1 Premise 2 Premise 3
SC (right) B left of C C left of D A left of B
SC (left) B left of C A left of B C left of D
DC (right) A left of B C left of D B left of C
DC (left) C left of D A left of B B left of C

rect and 16 problems with an incorrect conclusion. The 16
correct/incorrect problems in one problem category varied in
the direction in which new terms need to be integrated in a
partial model (to the left or to the right) (cf. Table 1).

Procedure. Participants were tested individually in a quite
room using a computer that administered the experiment.
Preceding the experiment participants received three practice
trials with feedback. Each premise and conclusion was pre-
sented subsequently in a self-paced manner (indicated by a
key-press). As premise terms fruit names were used, e.g.,
“The apple is to the left of the orange.”. Participants were
asked if a conclusion holds given the previously presented
premises. The answer was given by pressing a key corre-
sponding to a “yes” or “no” answer. Processing times for
each premise and the conclusion were recorded as well as the
given answer.

Results and Discussion
In the empirical analysis we used linear mixed-effect models.
We examined a possible influence of the premise relations on
the processing times, also known as the figural effect (Knauff,
Rauh, & Schlieder, 1995). The investigated categories can be
seen in Table 2.

Table 2: Analyzed problem categories for discontinuous
problems. All four problems have a discontinuous premise
order (DC). The first relation names the direction where terms
of the second premise are inserted. The second relation (with
-of) names the relation inside each premise.

Category Premise 1 Premise 2 Premise 3
Right, Left-of A left of B C left of D B left of C
Left, Left-of C left of D A left of B B left of C
Right, Right-of B right of A D right of C C right of B
Left, Right-of D right of C B right of A C right of B

In each premise phase we did not find a significant dif-
ference between the four conditions. In the following data
analysis we collapsed all four conditions to one single DC

condition (premise 1: F(3,38) = 1.09, p = 0.36; premise 2:
F(3,38), p = .11; premise 3: F(3,39) = 0.23, p = .88). This
was conducted analogously for the SC condition.

We analyzed differences in the processing time in each
premise and the conclusion for semi-continuous (SC) and dis-
continuous (DC) problems. In the first premise (F(1, 40)
= .45; p = .51), the second premise (F(1, 42) = 2.81; p =
.1) and the conclusion (F(1, 41) = .26; p = .61) no signifi-
cant differences in processing time between semi-continuous
and discontinuous problems were found. In the third premise
the processing time in semi-continuous problems was signif-
icantly shorter than in discontinuous problems (F(1, 42) =
22.56; p < .0001). Figure 1 shows a graphical overview of
the results. These results support the assumption that in dis-
continuous problems additional processes, especially in the
third premise, are necessary to process the respective premise
and to integrate information into the mental model.

Additional to the differences in semi-continuous and dis-
continuous problems we investigated which strategy could
be used in discontinuous problems. In these problems the
first and second premises do not share a common term. As
a result, no integrated representation can be constructed af-
ter the second premise was presented. Two different strate-
gies have been proposed in the literature to handle this situa-
tion; (1) both premises are integrated into one mental model
(e.g. adding the terms of the second premise to the right of
the terms of the first premise), the information from the third
premise then may result in a belief revision (Nejasmic, Krum-
nack, Bucher, & Knauff, 2011); (2) For both, the first and
second, premises separate models are constructed, when the
third premise is presented those models are integrated. In or-
der to determine which strategy was used by the participants,
we analyzed the response time in the third premise. In strat-
egy (1) it was proposed that terms in the second premise are
integrated into the mental model. If this information is incon-
sistent given the third premise a belief revision mechanism
is used. As a result, the response time in the third premise
should be significantly higher if belief revision is necessary
(e.g., DC (right) vs. DC (left) in Table 1). This effect was not
found (F(1, 41) = 0; p = .98).

ACT-R Model
Model Description
Original model by Nyamsuren and Taatgen (2014). They
created a cognitive model to demonstrate the functionality of
the HRM and the PAAV’s VSTM in spatial reasoning tasks.
For their demonstration Nyamsuren and Taatgen chose deter-
minate and indeterminate five-term problems in a generation
task setting with two-dimensional relations as introduced in
Byrne and Johnson-Laird (1989). The model clearly focused
on mental model construction in the VSTM and the reason-
ing processes in the HRM. Therefore, premises were placed
directly in ACT-R’s imaginal buffer. In order to represent all
terms in one problem in the VSTM the capacity was increased
to five objects.
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For evaluating the quality of their model and, there-
fore, their modules they compared correctness in determinate
and indeterminate problems with existing experiments (e.g.,
Byrne and Johnson-Laird (1989)). The model predicts 100%
correctness in determinate problems. In indeterminate prob-
lems, due to several possible valid mental models, errors only
occur during mental model modification.

An important aspect of Nyamsuren and Taatgen’s model
is the integration of new information into the VSTM. When
the second premise is presented the terms of the first premise
have already been included into the VSTM. In order to in-
tegrate the terms of the second premise the model checks
whether the object of the corresponding assertion is already in
the VSTM. If this is the case, the subject is integrated into the
VSTM with regard to the relation represented by the property.
If the object is NOT yet in the VSTM the opposite relation is
requested from the HRM. As a result, the model makes some
interesting predictions about the time to integrate premises
into the VSTM.

Extension for the Continuity Effect. In order to model
the continuity effect with the HRM and PAAV, we extended
the cognitive model by adding the functionality necessary to
solve discontinuous problems.

Instead of placing premises into the imaginal buffer di-
rectly, we used the ACT-R vision module to read premises
and conclusions from the screen. Premises and conclusions
are presented in the form of ”A L B” representing the sen-
tence ”A is to the left of B”. Similarly, in order to include
the self-paced character of our experiment the model pressed
keys (using the manual buffer) to view the next premise or
the conclusion. As in the experiment processing times and
answers were recorded.

We presented all premise information visually, so all
chunks from the visual buffer were inserted into the VSTM
automatically. This had an impact on the model’s predic-
tions. Including the manually added term information a max-
imal capacity of 13 objects was necessary. In order to counter
this effect we extended the model by a rehearsal mechanism.
Each time premise information is integrated in the VSTM
and before the model views the next premise all manually
added objects into the VSTM are rehearsed. As a result, only
the visually presented premise information is removed from
the VSTM and terms from the mental model are held in the
VSTM. With this mechanism still a maximum capacity of 7
objects is necessary to hold the complete mental model in the
VSTM. Note that the rehearsal mechanism has no significant
impact on differences in the evaluated problem categories.

In order to also allow for the processing of discontinuous
problems additional changes to the model were necessary. As
explained in the Experiment Section there are two possible
strategies how discontinuous information can be integrated.
Empirical data suggests that premise information are only
integrated after they can be linked by a common term, i.e.,
when the third premise has been presented. However, differ-
ent implementations of this strategy are possible. We chose

the strategy to keep the first premise inside the VSTM and to
store the information from the second premise in an assertion
chunk in the declarative memory. Once the third premise is
presented and integrated into the VSTM the assertion chunk
is recalled from the declarative memory. The model checks if
there are now common terms in the assertion and the VSTM
and when a common term is found, the information from this
assertion is integrated into the VSTM.

Model Evaluation

Premise processing times. Figure 1 shows a comparison
between the model predictions and the empirical data for the
processing time of the three premises in the semi- and discon-
tinuous problems.

For evaluating our model for the continuity effect we com-
pared model predictions with the overall response time and
the processing time for all premises. In the premise process-
ing phases the overall response times could not be predicted.
The integration of all the premises is too fast compared to
the human reaction times. For this reason we concentrated
on comparing the qualitative reaction time differences. We
found that for the first and the third premise the reaction time
trends could be modeled. While the first premise has no sig-
nificant difference for both continuities no differences could
be found in the model predictions. For the third premise a
significant difference between semi-continuous and discon-
tinuous problems could be found. The model predicts higher
processing times for discontinuous problems due to the inte-
gration of the postponed integration of the second premise.

For the second premise we did not found a significant
difference between semi-continuous and discontinuous prob-
lems. The model, however, does predict a lower processing
time for discontinuous problems than for semi-continuous
problems. After noticing that no common term can be
found in the VSTM the model stores the second premise in
the declarative memory without integrating terms into the
VSTM.

Correctness and Conclusion Answer Time. In order to
evaluate our choice concerning the maximum capacity of the
VSTM we used correctness as a measure. Table 3 shows the
correctness for correct and incorrect conclusions of the empir-
ical data (H) and for capacities of 4 (default) to 7. For incor-
rect conclusions the model predicts a correctness of 100% for
each capacity. For correct conclusions the correctness drops
from 100% to under 50% when the capacity is not sufficient
to store all terms in a problem. There is no capacity which
predicts the human correctness. The reason for this rapid
drop in correctness is the switch between the mental model
approach and the rule-based reasoning approach in the top-
down reasoning process. Inference rules (e.g., transitivity) are
used to validate a conclusion. This process includes several
requests to the declarative module and, thus, is highly error
prone. It can also be noted that with the current module im-
plementation the correctness for incorrect conclusions cannot
be lower than 100%. The reason is that there are no mecha-
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(a) First premise. (b) Second premise. (c) Third premise

Figure 1: Processing time for the first, second, and third premise comparing human data and model predictions for semi-
continuous problems (SC) and discontinuous problems (DC).

nisms to accept an incorrect conclusion in the top-down rea-
soning mechanism.

A comparison between the empirical data and the model
predictions for a VSTM capacity of 7 shows that the time
to reject an incorrect conclusion is significantly higher than
to accept a correct one (cp. Fig. 2). In the latter case only
the VSTM needs to be checked. In contrast for an incorrect
conclusion all three steps including the top-down reasoning
mechanism is necessary before a rejection.

Table 3: Proportions of correct answered problems in empiri-
cal data (H) and model predictions for VSTM capacities of 4
to 7 comparing correct and incorrect conclusions.

H 4 5 6 7
Correct 0.74 0.24 0.27 0.47 1.0
Incorrect 0.84 1.0 1.0 1.0 1.0

Figure 2: Time to process a conclusion and give an answer
for correct and incorrect conclusions.

Conclusion
The Human-Reasoning Module (HRM) aims “to create a
unified theory of human reasoning” (Nyamsuren & Taat-
gen, 2014). The module achieves this mainly by introduc-
ing two major changes to the ACT-R philosophy. (1) The
HRM includes a set of production rules instead of a mathe-
matical function which models subsymbolic mechanisms; (2)
the HRM has direct access to other modules, especially the
PAAV. (1) introduces a certain flow of information and con-
trol into the ACT-R system which cannot be influenced by the
modeler. This introduction of limitations to the ACT-R archi-
tecture restricts what can be explained and adds effects that
cannot be explained. Of course, introduced restrictions to a
cognitive architecture must be theoretically sound and empir-
ically validated. The aim of this paper is to evaluate these
introducted restrictions by analyzing a model for the continu-
ity effect.

The presented model is able to predict empirical data for
the processing of the first and third premise, but not for
the second premise. In discontinuous problems, the second
premise cannot be integrated into the existing mental model.
Our model stores this premise in declarative memory to recall
it later. Other approaches, like the spatial buffer of Douglass
(2007) or in the Spatial and Visual System of the cognitive
architecture SOAR (Wintermute, 2009) use hierarchical spa-
tial objects. An extension by such a mechanism should be
evaluated.

Especially in the construction phase of the mental model
overall response times could not be predicted. The model
is too fast in the integration of all the premises. The HRM
does not include any assumptions on this phase in spatial rea-
soning. The switch from a mental model-based approach to
a rule-based approach only occurs when a conclusion must
be validated. Thus, additional process assumptions should
be considered, e.g., focus operations defined in the PRISM
model (Ragni & Knauff, 2013).

The correctness could not be predicted as well for several
evaluated capacities associated with the mental model repre-
sentation. For incorrect conclusions the correctness is in each
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case 100%. In case of correct conclusions the correctness
drops from 100% to under 50% as soon as the capacity is not
sufficient to hold all terms in a problem. Orthogonally, the
response time for a correct conclusion is significantly lower
than in the empirical data if all information is accessible in
the VSTM. In order to address these issues a decay mecha-
nism instead of a fixed capacity should be considered to limit
the mental representation.

To conclude, the HRM and PAAV are interesting ap-
proaches to allow for a more convenient model definition and
to introduce restrictions to ACT-R. Additional improvements
are possible to better predict empirical effects in higher-level
cognition using ACT-R.
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Introduction 
Reasoning processes have been one of the central targets for 
cognitive modeling. Modeling of reasoning processes 
appears as an even harder challenge during paradoxical 
conditions such as the Ship of Theseus paradox. This work 
attempts to model empirical data from a behavioral study on 
paradox resolution with different modeling techniques: 
discriminant analysis (DA), decision tree analysis and 
neural networks. While each method has its own advantages 
and disadvantages, this paper attempts to compare and to 
contrast these methods trying to select the best model for 
future work.  

Identity judgments have long been at the center of 
philosophical debates, e.g., is a car still the same after being 
fixed after a serious accident? Beyond the philosophical 
debates on the nature of objects and the concept of identity, 
it has also been a matter of interest how laymen respond to 
the identity question under different circumstances. The 
present study focuses on a famous paradox from ancient 
Greece, the Ship of Theseus (Hall, 1998). Answers to this 
paradox have been predicted by a Conceptual Tendency 
Test (CTT) tapping the concept of “sameness”. The main 
aim of this paper is to present and compare the results of 
three predictive models in terms of their accuracy 
(predictive success) and to discuss the theoretical basis of 
the findings.      

The initial, empirical part of this work aims to understand 
how participants reason during resolution of a given 
paradox, namely, the Ship of Theseus (Clark, 2002). In a 
nutshell, a ship owned by Theseus has been renewed part by 
part over time. At the end, all of the parts of the old ship 
have been renewed (Ship A) and the removed parts were 
reassembled to build another ship (Ship B). Thus, there are 
two ships finally. The classical paradox is: Which ship is the 
ship of Theseus, the renewed one (Ship A) or the one that 
has been reassembled with the old parts (Ship B)? Ship A 
responses seem to reflect a “functionalist” position, i.e., the 
function of the ship has been preserved; whereas ship B 
responses seem to reflect an essentialist position, i.e., the 
physical essence of the ship has been preserved. The 
problem has been discussed by several philosophers and 

related to the concept of “sameness” or “identity” (Wiggins, 
2001). It is plausible to assume that participants’ decisions 
are determined by several dimensions involved in the 
critical concept at stake, among them spatiotemporal 
considerations: how long did the renewal and reassembly 
process take (short or long) and where did it take place (at a 
proximal or distal place)? (Rips et al., 2006; Scholl, 2007). 
Functionalist and essentialist positions could be affected by 
these parameters differently. Participants initially performed 
a Conceptual Tendency Test (CTT) in which they were 
asked to rate a set of propositions which are directly related 
to the core concept of “sameness/identity” involved in the 
paradox before answering the paradox (see method).  

In this current work, we focus on two main research 
questions: (1) Do the identity judgments in the CTT contain 
conceptual cores that are influential during the reasoning 
process on the paradox? (2) Can the final decision of a 
participant be predicted by the CTT? Our hypotheses on 
paradox resolution are as follows:  

H1: Participants take spatiotemporal features into account 
while making decisions about judgments on identity of an 
object over time.  

H2: The final decisions of the participants to the paradox 
can be predicted by their response to the CTT.  

 
Experimental Design & Data Collection 

50 undergraduate and graduate students (25 female; age-
range 19-28 years) were allocated to the two experimental 
conditions – high vs low spatiotemporal proximity (STP) – 
randomly. Fourty-eight propositions were prepared as image 
files and were randomly presented for 15 seconds on the 
computer screen by E-Prime 1.0. Participants were initially 
asked to rate a set of propositions (the CTT) which are 
directly related to the core concept involved in the paradox. 
Participants responded on a scale from 1 to 5 (where 1 
corresponds to total agreement, 3 to neutral, and 5 to total 
disagreement). There were 24 proposition pairs half of 
which were phrased in terms of “same” (“A” for Turkish 
“ayni” (“same”)), and half in terms of “different” (“F” for 
Turkish “farkli” (“different”)), e.g., A: “A bicycle that has 
its pedals removed is the same”; F: “A piece of paper bent 
over 3 times is different”. Each proposition was presented 
for 15 seconds. After the presentation of all propositions, 
participants were then presented with the Ship of Theseus 
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paradox in one of the STP conditions: in the high STP 
condition, the ship was renewed/reassembled over a short 
period of time (5 years) and at a neighboring port; in the 
high STP condition it was renewed/reassembled over a long 
period of time (50 years) and at a distant port. Participants 
were given unlimited time to respond on a 5-point Likert 
scale, where ratings of 1 and 2 were considered as strong 
and weak “ship A” ratings, ratings of 3 as “undecided” and 
ratings of 4 and 5 as weak and strong “Ship B” ratings. 

 
Results & Discussion 

Behavioral Results  
The obtained responses to the Ship of Theseus question 
revealed a bimodal, M-like distribution (20 cases for ship A 
and 24 cases for ship B) for the paradox. The M-shape 
indicates that few subjects would take a strong stance and 
respond with the value 1 for A or 5 for B, respectively, but 
rather take a weak stance (2 or 4). In the middle of the 
distribution were 6 undecided participants. This result 
shows that participants avoided strict positions but rather 
stayed in a flexible zone while reasoning about the paradox. 
Responses for the two conditions (high STP vs low STP) 
were almost equally distributed. In other words, there was 
no effect of condition, contrary to our hypothesis. The initial 
statistical analysis on the Conceptual Tendency Test (one-
way ANOVA) revealed that 4 different propositions (P17F, 
P21A, P6F, and P2F) reached significance and 6 further 
propositions (P9F, P10A, P10F, P14F, P17A, P6A) reached 
marginal significance (p<.08). Among the significant 
propositions was P17F, stating that a robot that had been 
disassembled and reassembled was different now; P2F: that 
two birds with identical genetic and behavioral features 
were different; P6F: that a piece of paper bent over 3 times 
was different; and P21A: that a robot with memory 
problems after a memory chip transplantation was the same.  
 
Modeling Results 
As a first mathematical model, Discriminant analysis (DA) 
was used to classify the responses to the paradox relying on 
the responses to the CTT. In DA groups of participants are 
discriminated based on linear combinations of variables. 
The initial discriminant analysis was run with 2 variables 
for the response to the paradox (Ship A or Ship B). Strong 
and weak positions for Ship A (1,2) and for Ship B (4,5) 
were therefore collapsed and intermediate positions (3) were 
eliminated in order to meet the statistical assumptions 
(Box’s M-Test). Wilks’ lambda was significant for the 
single function that the DA had computed (V=0.571, 
χ2(9)=21.020, p=.013). The canonical correlation that is a 
function of the eigenvalue was .655 for this function 
whereas the eigenvalue had the value of .751. 79.5% of the 
originally grouped cases were correctly classified. 6 out of 9 
(66.6%) misclassified responses stemmed from weak 
positions (2 or 4) that were obviously harder to classify than 
strong positions (1 and 5).  

As a second model, a decision tree analysis was 
performed for the same data based on two core propositions, 
namely P10F and P17F (both at significance level p=.002, 
Bonferroni-adjusted), resulting in 77.3% predictive success 
This decision tree consists of 5 nodes (3 of which are 
terminal nodes) and has the depth of 2. It is important to 
note that both of the propositions are ‘different’ (F) 
statements. This finding indicates that participants 
responded differently to the ‘same’ (A) versus ‘different’ 
(F) propositions. Interestingly enough, propositions with 
‘different’ status were found to be more critical in predicting 
identity judgments.  

As a third and last model the identity judgments were 
modeled with the neural network modeling technique 
(multilayer perceptron) relying on the same critical 
propositions of the CTT. 70% of the cases were used as 
training items and 30% as test items. The model was run 
with two units in a single hidden layer and the activation 
function was hyperbolic. The obtained Neural Network 
Model classified test cases with 88.9% predictive success.  

 
Conclusion 

Our modeling results revealed that the use of mathematical 
models like DA is beneficial in order to understand and 
explain the reasoning processes during paradox resolution 
like in the Ship of Theseus paradox – despite the fact that a 
computational model like the neural network model could 
predict the same data better. The present work demonstrates 
that the final judgments of the participants to the paradox   
could be predicted with a relatively high predictive success 
(>77%) solely relying on some critical propositions of a 
previously designed Conceptual Tendency Test (CTT). 
Participants tend to rely on a conceptual core about the 
target concept “sameness” which guides them through their 
reasoning process. Moreover, ‘different’ statements seem to 
play a more critical role in identity judgments when 
compared to ‘same’ statements. This finding suggests that 
these are two distinct cognitive processes even though they 
appear to be similar and participants were not aware of the 
fact that they responded differently to ‘same’ and ‘different’ 
statements. In conclusion, modeling is a worth-while 
methodology in order to better understand higher cognitive 
processes such as reasoning about paradoxes. 
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Abstract 

A number of frameworks for capturing insight phenomena 
have been proposed, but there are no executable models of 
knowledge-lean insight problem-solving. Here, an ACT-R 
model is presented for the nine-dot problem, which 
implements the Criterion for Satisfactory Progress theory for 
this problem. The model has two main components: a 
mechanism for searching for possible moves in the problem 
representation, and a mechanism for expanding the search to 
discover new moves not immediately available in the initial 
problem representation. The model accounts for key 
phenomena including impasse, fixation and the ‘aha’ moment, 
as well as predicting the relative difficulty of different 
problem variants.  

Keywords: Insight; ACT-R; Problem-solving; 9-dot problem. 

Introduction 
Recent theories of insight are of two kinds: knowledge-
based accounts such as Representational Change Theory 
(RCT: Knoblich et al., 1999), in which problem difficulty is 
mediated by inappropriate knowledge; and strategic 
accounts such as Criterion for Satisfactory Progress theory 
(CSP: MacGregor, Ormerod, & Chronicle, 2001), in which 
problem difficulty is mediated by search for moves that 
maximize progress towards a goal. Most researchers agree 
both knowledge and strategy are essential for explaining 
insight (e.g., Kershaw & Ohlsson, 2004), and integrated 
frameworks have been proposed (e.g., H�lie & Sun, 2010). 
However, progress is hampered by a lack of executable 
models of knowledge or strategy mechanisms. 

An ACT-R model of 9-dot problem-solving 
Here we present an ACT-R implementation of CSP for the 
9-dot problem (“Draw four connected straight lines to 
cancel 9 dots arranged in a 3x3 grid”). The problem is 
notoriously difficult, with solution rates < 5%. Although 
knowledge-based accounts predict that a given first line 
extending beyond the array should serve as a solution cue, a 
first line remaining within the square leads to higher 
solution rates. An internal first line leads to earlier criterion 
failure, which motivates change of search strategy 
(MacGregor et al, 2001, Expts. 4-5). Our ACT-R model 
implements two heuristics: maximisation and minimisation 
(Chronicle, MacGregor, & Ormerod, 2004; MacGregor et 
al., 2001; Ormerod et al, 2013) to solve the problem.  

Search through maximisation 
Under maximisation, individuals select moves that appear 
most promising to achieve a hypothesised goal. Progress is 
monitored against a criterion derived from the problem 
statement. With the nine-dot problem, an initial line 
connecting three dots represents an implementation of a 
maximising heuristic because individuals cancel the most 
dots in a single move. Progress made with this move is 
evaluated against a criterion equal to the number of 
remaining dots divided by the number of remaining lines.  

To implement maximization, the model searches for 
previously unattended and uncancelled dots at random and 
tests how many are cancelled by each move between dots. If 
it cancels more than the current best move, this move is 
stored in the imaginal buffer (where problem representations 
are stored). Then the cycle repeats until all unattended dots 
are inspected, when search for another one fails. This 
triggers a reset of all uncancelled dots to ‘unattended’.  

The line stored in the imaginal buffer represents the 
move that maximises progress. This line is checked against 
the progress-monitoring criterion. This criterion derives 
from two main sources of information in the initial 
representation: the number of dots and number of lines to be 
drawn. The criterion is equal to the number of remaining 
dots divided by the number of remaining lines. In the 
production (P PROMISING), if the number of cancelled 
dots is greater than the criterion, then the move is labelled as 
‘promising’ (status slot of the imaginal chunk). Otherwise, 
in the production (P EXHAUSTED), there is criterion 
failure and the move is categorized as ‘exhausted’ in the 
‘status’ slot of the imaginal chunk, and another best move is 
looked for. If the move has a promising status, the model 
draws a line. This is the first move. After a line is drawn, the 
model begins again the first cycle selecting previously 
unattended and uncancelled dots at random. The first stage 
stops either when there are no more dots to be cancelled or 
when the move count has reached the value of four and thus 
four moves are completed: except that it never does, without 
stage 2, the relaxation of the minimisation heuristic. 

Discovery through minimisation 
According to the minimisation heuristic, people limit a 
problem representation to the minimum required to achieve 
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satisfactory progress toward a goal. In the 9-dot problem, 
minimisation constrains the initial representation to the dot 
array presented in the initial problem (a grid of 3 x 3 dots). 
Relaxation of minimisation is triggered by criterion failure. 
Once relaxed, parsing the properties of previously explored 
moves, to identify invariants (cf. Kaplan & Simon, 1990) or 
unique move properties, derives new knowledge that can be 
used to infer possibilities for the discovery of new moves. 

The model described in the first stage fails to find a 
criterion-satisfying fourth move, because the only places in 
the initial problem array correspond to dot coordinates. To 
‘learn’ new places to look for moves, the minimisation 
heuristic needs to be relaxed. Relaxing the minimisation 
heuristic invokes a move parser that analyses the best moves 
produced to date and extracts properties that may enable 
discovery of new move types. In the four-line 9-dot 
problem, properties include space between known points, 
line lengths, and angles between lines. The model then uses 
these properties, in an order ranked according to principles 
of commonality, to discover new options to the current 
problem space based on inferences drawn from this 
knowledge (e.g., “if the most maximizing move currently 
has an average unit distance between cancelled dots of 1 
unit, extend the line by 1 unit as a putative new move”).  

In this second stage, the model compares the properties 
of the lines drawn at the first stage. In the production (P 
COMPARE) it notices differences and invariants in terms of 
X and Y coordinates among the ‘best moves’ drawn. Based 
on these detected units of invariance among moves, the 
model, through the production (P EXTEND), uses the 
extracted units of invariance to extend the length of the first 
drawn line. In this way, the knowledge about properties 
extracted by comparing lines allows the problem space to be 
expanded to include (non-dot) spaces. 

Phenomena captured by the model 
Runs of the model provide ordinal differences between 
problem variants that are consistent with the published 
empirical literature on the problem. Like human solvers, it 
struggles to solve the problem (demonstrating impasse): in 
trials invoking 50 runs of the two-stage model, solution 
rates are less than 5%. It also returns, after attempts that 
extend beyond the 3x3 dot array, to exploring moves within 
the array (demonstrating fixation).  However, it does solve 
on occasion (demonstrating the ‘Aha’ experience).  

Also like human solvers, it easily solves (within 2 runs) 
the 13-dot variant in which the complete problem space is 
available in the initial representation, and finds solutions to 
12- and 11-dot variants, where non-dot gaps within the dot 
array must be discovered, with increasing complexity but in 
runs < 10 (McGregor et al, 2001, Expt. 2). Finally, the 
implementation captures the difference between variants in 
which the first line is given, extending outside or within the 
initial dot array (McGregor et al, 2001, Expts. 4 and 5), with 
significantly fewer runs required for the latter than the 
former to discover solution, p < .01.  

Discussion 
The ACT-R implementation of CSP theory for the 9-dot 
problem demonstrates basic phenomena of insight captured 
by two simple heuristics governing search and expansion of 
an initial problem representation. Maximisation is a hill-
climbing heuristic, while minimisation is a forcing function 
for discovering new problem knowledge based on recent 
discoveries of solution attempt properties. No additional 
knowledge is required, suggesting knowledge-rich accounts 
of insight (e.g., Knoblich et al., 1999; Kershaw & Ohlsson, 
2004) may be overly elaborate for this particular problem.  

Much remains to be done to provide a full implementation 
of knowledge-lean insight problem solving. Critically, the 
properties of the initial problem representation are hard-
wired. Our hope is that the mechanism for minimisation can 
also be applied to parse the problem statement to build an 
initial representation. Building the ACT-R implementation 
raised new questions, such as whether maximization should 
be optimal (finding the very best move each run) or 
satisficing (finding the first criterion-satisficing move). 
These questions remain to be answered, but the growing 
ACT-R implementation provides a vehicle for doing so. In 
future work, we aim to extend the same principles to 
modeling other knowledge rich problems, such as the six-
coin problem (Chronicle et al, 2004).  
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Problem Statement

Robots and other autonomous vehicles have great utility,
and even more potential: they go where human drivers
can’t breathe and where the lives of human pilots would
be too costly to risk. Unfortunately, robots and their
remote human operators do not always form a cohesive
team. When robots make autonomous decisions, opera-
tors can be surprised and will, consequently, lose trust in
the automation and end up micro-managing the robot.
The benefits of partial autonomy are lost in the process.

The project discussed here evaluates ways to commu-
nicate robot reasoning to operators when needed (c.f.,
Kennedy et al., 2007). Its goal is to restore appropriate
trust in automation without overloading the operator’s
attentional resources (c.f., Merritt et al., 2008).

Our approach assumes that misunderstandings be-
tween robot and operator are often due to differences in
available information about the environment, different
decision-making processes, and different levels of expe-
rience. Some sensory information may be withheld: the
robot might know more than it visualizes, or the hu-
man is able to interpret a video feed more accurately
than computer vision can. Further, decision-making al-
gorithms and expertise are not synchronized; a robot
may have un-inspectable machine-learning models, and
an operator might have years of field experience.

A Robot that Explains Itself

Our objective is to enable the robot to convey pertinent
information to improve monitoring performance and ap-
propriate trust in the system, via the right modality and
at the right time. The experiment discussed asks partic-
ipants to interact with a system that can explain itself
verbally. For instance, it may say “I see a table and some
glass shards on the ground. I planned a path around those
obstacles”. This explanation would allow the operator
to accept the reasoning as is, verify it by referencing the
simulated video feed, or reject it outright.

The system is designed to preempt operator surprisal
by providing explanations at the best moment. It allows
the operator to adopt a management-by-exception strat-

egy: monitoring the autonomous vehicles rather than
actively controlling them (Franke et al., 2005).

Experiment

The experiment has four conditions: no explanations,
explanations only by operator request, ongoing detailed
ones, and selective ones given when a cognitive model
(see next section) detects operator surprisal.

Participants are asked to divide their time between
the robot monitoring task (Figure 1) and a secondary,
sensory analysis task, which draws away their visual at-
tention. For the primary task, a standard exploration
scenario is used with different rooms containing office
furniture. It is implemented using a realistic robot sim-
ulation and operator interface (Gerkey et al., 2003).

Robots are evaluated by participants using a trust
questionnaire (Merritt et al., 2008) and through neglect
tolerance and preference ranking. We hypothesize that
operators develop more trust in the three explanation
conditions, and that they develop trust congruent with
robot performance. We expect them to maintain the
highest performance at both tasks only in the selective
(model-driven) condition.

Increased trust is not necessarily a desirable as au-
tonomous systems do make mistakes. In a second exper-
iment, we will concentrate on appropriate trust. Here,
participants are exposed to a high and a low-performing
simulated robot per condition. The low-performing
robot makes mistakes in identifying obstacles: it circum-
navigates glass shards, while attempting to go through
water, while its actual capabilities are the opposite (wa-
ter only is to be avoided). The ensuing errors have to be
corrected by the operator manually.

Application of a Path-Planning Model

How does the cognitive model predict operator surprisal?
We have equipped our experiment system with a cogni-
tive model formulated in ACT-R that predicts the oper-
ator’s cognitive process in planning paths for the robot.
When the robot’s path deviates from the path that the
model predicts, we detect potential for a surprise and is-
sue an explanation. The experiment (see is designed to
create situations in which the robot will misunderstand
sensory information and plan an inappropriate path.
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Figure 1: Operator interface, showing pre-defined goals
at the top and a path taken by the robot around desks,
chairs and some glass debris. In the condition shown,
the subject may request a voice explanation.

The cognitive model (Reitter et al., 2010) has orig-
inally been developed to fit comparable data: way-
points set by robot operators to carry out an urban
search&rescue task. In this setting, robots scout a con-
taminated office building, circumnavigate walls, cover all
rooms, and discover all victims of a fictitious disaster.
The insert in Figure 2 shows an itinerary defined by an
operator, along with the corresponding model path.

The model predicts the plans an operator would de-
velop for a robot to move from its given location to an-
other given location. As a theoretical rational solution,
one may think of a search process that guarantees the
shortest workable path. (This standard robotics prob-
lem can be addressed via a standard A* algorithm or the
more commonly used D*Lite (Koenig et al., 2005).) In
contrast, the cognitive model predicts that human opera-
tors use a heuristic that selects the straight-line segment
available from a given position that reduces the geomet-
ric distance to the goal; the initial choice is made at
the starting position, and then the algorithm is applied
recursively until the destination is reached or backtrack-
ing becomes necessary (for models of spatial navigation,
compare Fum et al., 2000; Zhao et al., 2013).

The model explains scalability of the task with size of
the environment as well as with cognitive load, such as
when paths are to be planned for multiple robots (see
Figure 2). It was evaluated with automatically gener-
ated mazes and on a dataset gained from robot operators
that controlled 4, 8 or 12 simulated urban search&rescue
robots at a time (Lewis et al., 2007).

Conclusions

As valuable as explanations may be, they can have a
downside: cognitive overload and distraction. Therefore,
our goal is to provide information when we believe it is
necessary during the monitoring task. The experiment
is designed to evaluate this approach.

The poster will present our analysis of the empirical
results with 40 participants (the experiment has not been
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Figure 2: Average model error (solid), model vs. indi-
vidual subject error (dotted), and avg. baseline model
error (dashed) at different operator workload conditions.
Insert: Example operator path for a robot (red crosses)
and model’s prediction for that path; difference area in
solid green (from: Reitter et al., 2010).

concluded at the time of writing).
With our approach, we do not design a cognitive model

to fit new experimental results. Instead, we use a model
that has been evaluated before as a means to predict
the expectations of human operators in a realistic task
relevant to national defense, safety and security. The
experiment helps us analyze explanations as a means to
affect trust in autonomous system. It also allows us to
evaluate an ACT-R model in an extrinsic setting.
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The cognitive mechanisms underlying the processing of
non-adjacent syntactic dependencies are critical for the un-
derstanding of human language processing. For instance, a
verb needs to be syntactically and semantically integrated
with its subject, or a reflexive like himself needs to be syn-
tactically bound by its antecedent before it can be assigned
any meaning. Thus, when processing the second part of a
syntactic dependency, the parser needs to retrieve the corre-
sponding first part of this dependency. The mechanisms un-
derlying these syntactically triggered retrieval processes have
drawn considerable attention in psycholinguistic research.
Lewis and Vasishth (2005) (LV05) developed a model of
sentence processing which is based on the general cogni-
tive architecture ACT-R (Anderson et al., 2004). This model
assumes a content-addressable memory in which cue-based
retrieval processes are subject to similarity-based interfer-
ence from (partially) cue-matching distractors. The LV05
model has widely been used to explain interference effects
observed in the processing of syntactic dependencies such as
reflexive-antecedent or subject-verb dependencies. Although
the model is able to capture some of the empirically observed
effects, there is a range of data the model is unable to explain.
We propose to extend the LV05 model by two independently
motivated assumptions, namely cue confusion and activation-

sensitive interference. We demonstrate that this extended
model explains a wide range of empirically observed effects
the original LV05 model does not account for.

The LV05 model predicts that when retrieving the left part
of a dependency (the target), a syntactically inaccessible noun
phrase (distractor) that overlaps in features with the target
noun phrase causes similarity-based interference, which leads
to slowed processing (i.e., inhibitory interference). This is
predicted, e.g., in the retrieval of a reflexive’s antecedent as
in (1) in Table 1, where the stereotypical gender on the target
surgeon and on the distractor Jonathan both match the gen-
der cue on the reflexive. By contrast, in (2), the stereotypical
gender of the target surgeon mismatches the gender cue at the

reflexive; here, a matching distractor is predicted to speed up
processing by luring the parser into erroneous retrievals (fa-
cilitatory interference). Both effects are attested (e.g., Pearl-
mutter, Garnsey, & Bock, 1999; Badecker & Straub, 2002).

However, some studies have found facilitatory interference
where inhibition was expected, and vice versa; other studies
have failed to find interference effects. We developed a com-
putational model extending LV05 by two independently mo-
tivated principles that can account for these apparently con-
tradictory results. We show this in simulations that reproduce
the patterns that were seen in a large-scale literature review.
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Figure 1: Predicted interference effects (interference condi-
tion - no-interference condition) by cue confusion for models
without activation-sensitive interference (gray lines) and with
activation-sensitivity scaling factor 4 (black lines). Solid lines
represent the conditions where the target matches the seman-
tic cue, mismatch conditions are represented by dashed lines.
The LV05 model’s prediction is shown by the gray lines at
cue confusion of 0%.
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Table 1: Gender-match/mismatch design commonly used in psycholinguistic experiments investigating interference effects in
reflexives; example from Sturt (2003).

Match type Example Prediction (LV05)
(1) Target-Match The SURGEON+masc

+c-com

who treated [Jennifer�masc

�c-com

/Jonathan+masc

�c-com

] inhibition
had pricked HIMSELFmasc

c-com

(2) Target-Mismatch The SURGEON� f em

+c-com

who treated [Jonathan� f em

�c-com

/Jennifer+ f em

�c-com

] facilitation
had pricked HERSELF f em

c-com

Principle 1: Cue confusion
We assume that a retrieval cue can be associated with more
than one feature. The strength of this association is repre-
sented on a continuous scale and is shaped by experience. If
two retrieval cues co-occur frequently in a certain retrieval
environment, each of the two cues becomes associated also
with the feature matched by the other cue. E.g., the Man-
darin reflexive ziji invariantly cues for the feature pair {anim

c-com

}.
This co-occurrence leads to a certain crossed association be-
tween c-com and anim. The same would hold for the c-com

and plur cues in reciprocals. By contrast, English reflexives
vary in number and gender: { f em/masc, plur/sing

c-com

}, resulting in a
stronger one-to-one association rather than a crossed associ-
ation between c-com, number, and gender. With crossed cue-
feature associations, similarity-based interference can arise
between memory items that do not share the same features.
This explains the inhibitory interference effects observed in
Target-Mismatch in Mandarin reflexives (Jäger, Engelmann,
& Vasishth, subm.) and Hindi reciprocals (Kush & Phillips,
2014).

Independently of cue co-occurrence, we suggest that the
associative strength between cues and features is modulated
by working memory capacity: A strong one-to-one asso-
ciation is assumed to involve cognitive effort, hence read-
ers with lower working memory capacity experience more
crossed associations, leading to inhibitory interference in
Target-Mismatch, even in English reflexives, as has been ob-
served by Cunnings and Felser (2013).

Principle 2: Activation-sensitive interference
The strength of similarity-based interference is assumed to be
scaled by the activation difference between target and distrac-
tor. E.g., in Target-Match, the target activation is much higher
than the distractor activation because the target is a perfect
match to the retrieval cues, which reduces the interference ef-
fect induced by the distractor. Thus, the following three pat-
terns can be explained by distractor activation (prominence):
(i) the well-known “grammatical asymmetry” (Wagers, Lau,
& Phillips, 2009): interference effects are found more reli-
ably in Target-Mismatch than in Target-Match; (ii) inhibitory
interference increases in Target-Match when the distractor is
more active, e.g., when it is in a more prominent subject po-
sition (Badecker & Straub, 2002); and (iii) facilitatory inter-
ference in Target-Match (e.g., Cunnings & Felser, 2013) due
to fast misretrievals masking the similarity-based interference

when the distractor has an even higher activation than the tar-
get.

Conclusion
In summary, we show in a computational model how two
independently motivated principles that extend LV05’s cue-
based retrieval theory provide a principled explanation of
hitherto unexplained patterns in the literature on interference
in dependency processing: Cue confusion accounts for un-
explained inhibitory interference, and activation-sensitive in-

terference explains the conditions under which interference
effects disappear
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Introduction 
Researchers in psycholinguistics often assume that the 
frequency with which an associate is given to a cue in a 
discrete free association task (“What is the first word that 
comes to your mind in response to the word ROBIN”?) by a 
group of participants, reflects the association strength in the 
mental lexicon of each individual (Nelson, McEvoy, & 
Schreiber, 2004). Based on this assumption they use these 
group-level production frequencies to control experimental 
stimuli or to define experimental condition.  

It is also assumed that associates are produced by 
spreading activation from the cue to its targets as a function 
of their association strength and that the pattern of 
association strength is roughly the same for all speakers of a 
language. Two questions are warranted: (1) How does the 
cognitive system choose a response among the activated 
associates, so that it produces a different response each time, 
while maintaining the overall frequency pattern? (2) Why 
do people produce different associates if they share the same 
associative network?  

I present a simple model that explains how the same 
associative network might give rise to different responses, 
whose frequencies approximate the underlying individual 
association strengths. The model serves mainly as a proof-
of-concept that frequencies obtained by group experiments 
can be used to infer individual association strength. It does 
not, however, aim to be a general model of semantic 
memory, nor does it aim to model any other experimental 
effects at this time. 

The free association model 
In the model concepts are represented as single units, and 
the connection weights between them represent their 
association strength. If a cue is activated it spreads 
activation multiplied by the corresponding connection 
weight to all of its associates. Gaussian random error 
~ Ɲ (0,  𝜎2), which represents random input from the rest of 
the system, is added to the input of each associate. The most 
active node is selected as a response to the task. Predicted 
production frequencies are obtained by running the model N 
times and dividing the count of all unique responses by N 
and all runs of the model are independent of each other. 

Evaluation of the model 
The model was evaluated with the root mean square error of 
the prediction frequencies, 

 

𝑅𝑀𝑆𝐸 = √∑ (𝑓𝑟𝑒𝑞𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑,𝑖 −  𝑓𝑟𝑒𝑞𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑖)
2𝑁

𝑖=1
𝑁

 

 

Goals of the simulations 
Since the observed frequencies are interpreted to reflect 
connection strengths, then the connection strengths must be 
a function of those observed frequencies. The simulations 
had two goals: 1) to estimate the connection weight 
parameters from observed production frequencies (wi,c = 
f(FSG)) and 2) to estimate the noise distribution in a way 
that would minimize the residuals of the predicted and the 
observed production frequencies. 

FSG corpus 
Data for the observed FSG was obtained from the 
University of South Florida Free Association Norms, a 
database of association norms for 5019 cue words (Nelson 
et al. 2004). Each cue was presented to a mean of 149 (SD = 
15) people, who gave a single response to each of about 
100-120 cues. The database is freely accessible at 
http://w3.usf.edu/FreeAssociation/  

Simulations 

Simulations 1 and 2 
Simulations 1 and 2 tested which of two functions of the 
observed frequencies when used as connection weights and 
what dispersion of the noise would lead to a better 

 
 Figure 1. The probability of activation of each 

associate of the cue “ROBIN” in simulation 1 (a) with 
SD of the noise input 0.28 and in simulation 2 (b) with 
SD of the noise input 0.34 
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approximation of the data. Simulation 1 tested the 
hypothesis that the individual connection weights are equal 
to the group-level production frequencies. Simulation 2 tests 
a model in which the connection strength in the mental 
lexicon is a logarithmic function of the observed production 
frequencies: 

log10(𝑓𝑟𝑒𝑞𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑,𝑖  ∗  100)
2

 
Both simulations were run sequentially for 10000 times for 
each standard deviations of the noise input for all values 
from 0 to 1 with a step of 0.01. Both simulations fitted this 
parameter on the same subset of 10 randomly chosen cue 
words: 'TOMBSTONE', 'DOZEN', 'FEDERAL', 
'REQUEST', 'BODY', 'LIFE', 'ROBBER', 'READ', 
'WHISTLE', 'UNIVERSE'. 

Results. Simulation 2 provided a much better fit of the 
data. Overall, in simulation 1, the RMSE was lowest when 
the noise standard deviation was equal to 0.28. In that case 
the predicted value of the model differed from the observed 
production frequencies by 2.4%, and the predicted value of 
the strongest associate – by 3.78%. 

In simulation 2, when the weight of the connection 
between the cue and its associates is set to be equal to a 
logarithm of the observable production frequencies, the 
production frequencies of the model are closest to the 
observable production frequencies when the standard 
deviation of the noise input is equal to 0.34. The predicted 
frequencies of the model differ from the observed 
production frequencies by 0.72%, and the predicted value of 
the strongest associate – by 1.29% 

Figure 1 presents a possible explanation for why the log 
transformation is more effective – it spreads the activation 
distributions of each associate further apart, which makes 
them more distinct. 

Simulations 3 and 4 
Both model 1 and model 2 were run on all standardized 

4371 cues with SD of the noise input equal 0.28 and 0.34 
respectively. 

Results. Model 1 predicted the observed frequencies for 
the all 4371 cues with a 2.35% error rate. The model 
predicted the frequency of the strongest associate with a 
5.24% prediction error. However, model 2 was again an 
even better predictor of the data for all 4371 cues – 99.15% 
overall successful prediction and 97.29% prediction success 
for the strongest associate. Also, the variance of the 
prediction error for all words (figure 2), and for the first 
associate (figure 3) was much smaller for model 2, 
compared to model 1, which makes its prediction much 
more reliable. 

Discussion 
This model provides a mechanism that can simulate the 

observable production frequencies of associates in a free 
association experiment with 0.85% prediction error, when 
activation is modeled as the spreading activation through a 
network in which the association strength is a logarithmic 
function of the observed production frequencies plus a 
Gaussian noise with a SD = 0.34. Importantly, this possibly 
validates the use of group-level production frequencies to 
estimate association strength between words in the 
individual lexicon. In this way it validates FSG’s use in 
creating experimental conditions and its use as a control 
variable in psycholinguistics. 
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Figure 2. Frequencies of different RMSE levels for 4371 
different cues for simulation 3 (a) and simulation 4 (b) 

 
 

 
 

Figure 3. Frequencies of different prediction error 
of the strongest associate levels for 4371 different cues 
for simulation 3 (a) and simulation 4 (b) 
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On a cue-based retrieval account of sentence processing
(Van Dyke & Lewis, 2003; Vasishth & Lewis, 2006), gram-
matical heads such as verbs provide retrieval cues that are
used to distinguish between the target item and competi-
tors in memory. Similarity based interference occurs when
items share retrieval cues, which makes it harder to distin-
guish between them, causing both longer reading times (RTs)
and lower question-response accuracy. Since lower accu-
racy could be the result from either incorrectly retrieving a
competitor or simply failing to complete a retrieval (an un-
started or aborted process), it is unclear how RTs are related
to question-response accuracy. We investigated this question
with two approaches: (i) by using the outcome of multinomial
processing trees modeling accuracy in a linear mixed model
with RTs as a dependent variable, and (ii) by fitting RTs and
accuracy with ACT-R.

Experiment
In a self-paced reading experiment (N=84), we investigated
interference effects in subject-verb dependencies in German
by manipulating the number feature of two intervening com-
petitor NPs (the student/s of the teacher/s). In the high inter-
ference (HI) condition, the two competitors share the feature
singular (sg) with the target (The driver), while in the low
interference (LI) condition the competitor NPs have, in con-
trast, the feature plural (pl). In order to investigate accuracy,
we had yes-no questions targeting either the dependency be-
tween the subject and the embedded verb (had transported),
or the dependency between the subject and the matrix verb
(sat).

(1) a. HIGH INTERFERENCE

Der
The.sg.nom

Fahrer,
driver,

der
who.sg.nom

den
the.sg.acc

Schüler
student

des
the.sg.gen

Lehrers
teacher

transportiert
transported

hatte,
had.sg,

saß
sat.sg

angeschnallt
using a belt

im
in the

Bus.
bus.

‘The driver, who had transported the student of
the teacher, sat using a belt in the bus’

b. LOW INTERFERENCE

Der
The.sg.nom

Fahrer,
driver,

der
who.sg.nom

die
the.pl.acc

Schüler
student

der
the.pl.gen

Lehrer
teacher

transportiert
transported

hatte,
had.sg,

saß
sat.sg

angeschnallt
using a belt

im
in the

Bus.
bus.

‘The driver, who had transported the students of
the teachers, sat using a belt in the bus’

We found the expected retrieval interference effect: longer
RTs in HI vs. LI at the embedded verb (Posterior Mean=
0.02; 95% Credible Interval = [0.00,0.04])1 , as well as lower
accuracy across question types in HI vs LI (PM= −0.40;
95% CI= [−0.65,−0.16]).

Multinomial Processing Trees
In order to investigate the relationship between latencies and
question-response accuracy, we estimated the probability of
successfully completing any retrieval at the embedded verb
(R), the probability of the retrieval of the target conditional
on R (C), and the bias to guess “Yes” (G). These estima-
tions were carried out by fitting multinomial processing trees
(MPT: Batchelder and Riefer, 1999) using Bayesian hierar-
chical modeling (Matzke, Dolan, Batchelder, & Wagenmak-
ers, 2013). The model in Figure 1 postulates four process-
ing trees depending on the correct answer and on the targeted
verb. We estimated the parameters for the HI and LI condi-
tions, assuming that G was independent of the manipulation.
In order to reduce the number of parameters in the MPT, we
further assumed no (or negligible) interference at the retrieval
triggered by the main verb. If the parser completed a retrieval
(even an incorrect one) at the embedded verb, a complete sen-
tence representation will allow to give a correct answer for
questions targeting the main verb. Even though it has been
shown that already integrated nouns can interfere with sub-
ject retrieval of later verbs (Van Dyke, 2007), retrieval at the
main verb may be easier here because only a subject-verb
dependency has to be completed (in contrast to both subject-

1All the statistical analysis were done in the Stan probabilistic
programming language. We report Bayesian linear mixed-effects
models on −1000/RTs.
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and object-verb dependencies for the embedded verb) and be-
cause the retrieval is facilitated by the use of cues such as at-
tachment status and clause, which were unavailable for the
embedded verb. Furthermore, we found no effect in RTs at
the main verb, while the response question accuracy was sig-
nificantly higher for questions targeting the main verb.

The MPT model revealed that both R and C were higher
for LI conditions compared to HI conditions (see table 1).
The difference in retrieval probability entails that more of-
ten in HI than in LI conditions, readers did not complete
the dependency at the verb, and resorted to guessing at the
stage of the comprehension question (in line with one possi-
ble conception of good-enough parsing; Ferreira, Bailey, &
Ferraro, 2002). The model also yielded estimates of subject-
level retrieval probabilities, which we regressed against RTs
for each condition. The regressions showed that an increase
in retrieval probability is associated with an increase in RTs
(HI: PM= 0.05; 95% CI= [0.00,0.10]; LI: PM= 0.08; 95%
CI= [0.02,0.14]). This suggests that a failed retrieval pro-
cess is faster than a complete one. Taken together, these find-
ings support the idea that at the locus of interference, the RT
of each observation (for each subject) is generated by either
fast good-enough parsing associated with a failed retrieval,
or relatively slow, thorough parsing associated with retrieval
completion. While HI produces latencies in retrieval comple-
tion in comparison with LI, it is also more likely that obser-
vations belonging to the HI condition will be generated by
fast good-enough parsing. This suggests that in other exper-
iments the selective good-enough parsing strategy associated
with retrieval failure has the potential to mask interference
if individual-level retrieval probability is ignored. Crucially,
a linear mixed model including the estimates of retrieval as
a covariate supports our hypothesis: We found a stronger ef-
fect of interference in our data when the individual-level mea-
sure of retrieval completion was included (PM= 0.04; 95%
CI= [0.01,0.06]).

Table 1: Parameters of the MPT model.
Posterior Mean 95% Credible Interval

Probability 2.5% 97.5%
RHI 0.61 0.38 0.77
RLI 0.81 0.68 0.90
CHI 0.89 0.68 0.99
CLI 0.95 0.85 1.00
G 0.69 0.54 0.82

RLI-RHI 0.20 0.02 0.42
CLI-CHI 0.06 −0.09 0.27

ACT-R
We implemented the assumption that readers follow a good-
enough parsing strategy when a retrieval process fails using
ACT-R (Anderson et al., 2004). The model implements the
good-enough parsing by including an integration process of
150 ms only if the retrieval is completed. For each partici-
pant, we fitted a model to RTs and question-response accura-

EV-Y

1−R
1−G No

G Yes

R
1−C No

C Yes

MV-Y

1−R
1−G No

G Yes

R Yes

EV-N

1−R
1−G No

G Yes

R
1−C Yes

C No

MV-N

1−R
1−G No

G Yes

R No

Figure 1: Multinomial processing trees. EV and MV indicate
questions targeting the embedded verb and the main verb re-
spectively; Y and N indicate whether the correct answer for
the question was “Yes” or “No” respectively.

cies by varying the retrieval threshold while keeping all other
parameters fixed. The ACT-R model replicates the findings
from the MPTs: higher retrieval probability and correct re-
trievals in LI in comparison with HI (0.78 vs. 0.67; 0.99 vs.
0.97), while it accounts for the observed RTs and accuracies.

Conclusion
In sum, the results show that good-enough parsing, as con-
strued above, may mask slowdowns due to interference, if
both RTs and accuracy are not taken into account.
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Introduction
Decision heuristics are often described as fast and frugal,
meaning that they take little time and require relatively few
computations to make a decision when compared to optimal
decision systems (Gigerenzer & Todd, 1999). Fast & Frugal
Trees are one heuristic that are a special case of decision trees
in which there is a possible exit out of the decision process at
every cue considered in the tree (Luan, Schooler, & Gigeren-
zer, 2011).

There is currently no computational account of how hu-
mans learn heuristics like F&FT-based decision processes.
This is a significant gap in our scientific understanding, and
we aim to begin addressing that gap in this effort. In this ab-
stract we report results from a pilot study assessing Instance-
based Learning Theory (IBLT) as an account of human learn-
ing from experience in domains where F&FTs may be good
decision heuristics, such as diagnostic tasks.

Instance-based Learning Theory
Instance-based Learning Theory (IBLT) is a theory of how
humans acquire and apply new knowledge given performance
feedback and a particular context. It was developed to ex-
plain and understand human decision processes in dynamic
task environments (Gonzalez, Lerch, & Lebiere, 2003) The
four components of any IBLT model are (1) episodic mem-
ory elements (i.e., instances), (2) retrieving the instance from
memory, (3) contextual similarity, and (4) integrating feed-
back across multiple, contextually similar events. In essence,
an instance provides the utility of a particular action given a
specified context in a way similar to expected utility theory

As far as we can tell, IBLT has not been applied to decision
tasks where a set of different cues can be discriminately sam-
pled for improving decision making. In the following section
we introduce a multi-cue diagnosis task.

Multi-cue Diagnosis Task
The multi-cue diagnosis task is an extension of 2AFC tasks,
where a decision-maker is provided with two alternative re-
sponses and a set of cues with which to inform the decision.
Cues are binary (i.e., present or absent) and may be related to
particular responses; part of decision-makers’ task is to learn
which cue(s) is (are) important.

In the task, there are three cues that a decision-maker can
choose to use for determining a response. Cue information

is not immediately visually available and requires clicking on
a cue button to reveal its presence or absence. The decision
maker is free to use any number of the cues in any order for
informing their decision, and the only cost with accessing cue
information was behavioral (i.e., moving to, clicking, etc.).
Further, decision-makers were not speeded in their response
and no penalty was issued based on trial response time. Given
this basic task, we derived two environments: an easy envi-
ronment (EZ) and data recreated from real-world CCU di-
agnoses (GnM; Green & Mehr, 1997). These environments
were selected to provide approximate ceiling and floor perfor-
mance in not only response accuracy, but also the adoption of
prescribed F&FTs.

There were two payoff regimes: balanced (BAL) and
heavy-miss (HM). In balanced, hits and correct-rejections re-
ceived 10 points whereas misses and false alarms were pe-
nalized −10. The HM regime was the same as BAL except
misses received −50.

In the pilot study reported here we ran a 2 (environment dif-
ficulty) x 2(payoff regime) between subjects design. We ran
five participants through each of the four conditions. Each
participant performed nine blocks of 30 trials. For each sub-
ject, on each trial, we captured their accuracy, the symptoms
they revealed, and the order in which they were revealed.
For each block the proportion of correct responses (i.e., ac-
curacy), response time (RT), the proportion of selected re-
sponses (i.e., response selection), and the adherence to the
prescribed F&FT (i.e., rule adherence) was calculated. Sub-
jects’ performance improved with experience in each condi-
tion and the EZ environment was easier than the GnM envi-
ronment. Further subjects’ RTs decreased as their acquisition
and adherence to the prescribed rule increased (see Figure 1).

ACT-R Instance-based Learning Model
We developed an IBLT model in the ACT-R architecture
(Anderson, 2007). We used ACT-R’s declarative memory
system to instantiate IBLT components one and two. We did
not vary the degree of similarity between instances, instead
opting for identity. This is justified as there was no hypothet-
ical relationship between the binary cues. Finally, we used
the ACT-R blending mechanism to instantiate IBLT compo-
nent four.

The model used IBLT to determine the order of cues to
check, when to stop checking, and which response to make.
We believe this to be a novel use of IBLT, and the model
represents complete adherence to the theory for execution.
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Figure 1: Human data and model results.

The model did not use production compilation nor production
utility learning for acquiring any skill in the task environment.

Model Evaluation
We performed three evaluations of the model. For each eval-
uation, the model was run five times across 19 blocks of 30
trials, resetting after each run. The first evaluation (i.e., de-
fault fit) used parameters that were either default, taken from
the central tendency of parameters in the Max Planck ACT-
R parameter database (Wong, Cokely, & Schooler, 2010), or
hypothesized where no guidance was available (see Table 1).
The second and third evaluations (best fit-all but RT and best
fit-RT, respectively) varied the retrieval threshold, blending
temperature, activation noise, and decay parameters in a full
combinatorial design producing 37,632 combinations of val-
ues. We only modified declarative memory and blending pa-
rameters as the investigation was on the adequacy of IBLT to
account for multi-cue diagnosis tasks. Further, we report two
different RMSEs for each evaluation: one for RT and another
for the rest of the dependent variables (i.e., Other). We did
this because the RT and the other dependent variables are on
quite different scales.

The best fit-all but RT and best fit-RT surprisingly resulted
in the same model parameters, and thus is referred to as
best-fit (see Table 1, Best-fit column). The model performed
quite well in the default fit evaluation, with an RT RMSE =
1.162;R2 = 0.552 and an Other RMSE = 0.682;R2 = 0.914.
The model also performed well in the best-fit evaluation, with
an RT RMSE = 0.786;R2 = 0.747 and an Other RMSE =
0.466;R2 = 0.906. Interestingly, with an improved fit in RT
with best-fitting parameters (panel D, Figure 1) over the de-
fault (panel C), there is a reduction in rule adherence fitness

(see panel H & G). Further, the :rt and :ans parameters are
quite different from the central tendency of those reported by
the community (see Table 1).

Parameter Name Best-fit Default Source
decay (:bll) 0.1 0.4 MPIB-DB
base level constant (:blc) 0 1 Free
retrieval threshold (:rt) −50 −0.4 MPIB-DB
activation noise (:ans) 0.75 0.4 MPIB-DB
blending temp 1 1 Free
imaginal-activation 1 1 Free

Table 1: Parameter values for the default and best-fit mod-
els. MPIB-DB refers to the Max Planck ACT-R Database and
Free refers to hypothesized values due to no guidance on its
setting. The source refers only to the default model param-
eters as the best-fit were derived by iterating over the large
parameter space and minimizing RMSE. All other parame-
ters were default values.

Conclusions
Generally, IBLT seems well suited for multi-cue diagnosis
tasks. However, there appears to be a tradeoff between ac-
counting for rule adherence and response times. Specifically,
when fitting the model RTs, rule adherence decreased relative
to the default-fit parameters. Consequently, we conclude that
IBLT may not be sufficient to account for both RTs and rule
adherence in this environment. Finally, the default fit model
performed quite well, highlighting the value of making model
parameter databases available to the community.
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Introduction 
Working memory is normally considered a capacity-

limited system. This suggests that working memory 
performance is purely determined by the structure of the 
underlying architecture and the storage requirements of the 
task. Here, we argue instead that working memory 
performance is much more flexible and dependent on task-
specific strategies. 

Paradigm 
In a concurrent dual-task, three working memory tasks 

were performed in pairs simultaneously. These tasks were 
an n-back task, a tone-counting task, and a spelling task that 
required the concatenation of individual letters to form a 
word. The tone-counting and spelling tasks were designed to 
be comparable on all aspects, and especially capacity. The 
difference between the two tasks is that compared to tone-
counting, the spelling task was expected to require an 
additional memory resource to update the information in 
working memory when a new stimulus is presented.  
Crucially, this resource is also required by the n-back task.  

Model 
We used the ACT-R cognitive architecture (Anderson, 

2007) to build a threaded cognition model (Salvucci & 
Taatgen, 2008) of the three tasks discussed previously. The 
crucial aspect of the model is the difference between 
spelling and tone-counting in terms of the cognitive working 
memory resources these tasks require. The spelling task 
model relies more on the problem state resource (Borst, 
Stocco, Van Rijn & Taatgen, 2010; Borst, Taatgen & Van 
Rijn, 2010), while the tone-counting task relies more on the 
declarative memory resource. Finally, the 2-back task uses 

both of these resources extensively. Previous research has 
shown that overlap in resource use leads to task interference 
(Nijboer, Borst, Van Rijn & Taatgen, 2014). Thus, our 
paradigm should produce a distinct interference pattern for 
the dual-task conditions, where spelling and tone-counting 
interfere strongly with the 2-back due to contention for 
resources. However, these tasks should interfere less with 
each other, due to the reliance on different resources. 

Results 
As presented in Figure 1, the amount of observed 

interference during the spelling task depended on the second 
task: The model replicates these results, which indicates that 
a difference in working memory strategy – without a 
difference in capacity requirements – can result in greater 
interference between tasks, as different resources are 
recruited. This suggests that there is a strategic and task 
dependent factor determining performance in working 
memory constrained tasks. 
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Figure 1: Behavioral results compared against model 
results. 
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Introduction 
The ability to detect environmental regularities is a 
cognitive skill essential for survival. Human beings have a 
capacity, called numerical reasoning, to identify and 
extrapolate number serial patterns in such diverse areas as 
scientific discovery, economics, and the weather. Numerical 
reasoning and calculation have long been intimately 
associated, leading to the suggestion that they share a 
common system of the manipulation of numbers. The 
question of interest is whether numerical inductive 
reasoning is fully embedded in number calculation, or 
operates beyond calculation? To directly address these 
issues, we run an fMRI experiment to compare the number 
series completion task with the addition calculation task, 
and to understand the results in a cognitive architecture. 

On the basis of previous researches, we hypothesized that 
the numerical reasoning compared to calculation was more 
activation in parietal areas for visual representation of 
relationship between numbers and prefrontal areas for 
relational integration. 

In addition, computational cognitive modeling was 
employed to make specific predictions about the different 
processes of numerical reasoning and calculation. We will 
test our understanding of these processes by modeling the 
data within an information-processing theory called the 
adaptive control of thought-rational (ACT-R) (Anderson J, 
2004; 2007). 

Material and Method 

Subjects and Stimuli 
Fifteen paid healthy graduate students (8 females) with the 
mean age of 22.1 ± 2.3 years participated in the experiment. 
Three types of problems were organized into a block design, 
the numerical reasoning task (Rea), calculation (Cal), and 
judgment baseline (Jud) (see Fig. 1). 

 
 

Fig. 1 Presentation paradigm of the stimuli. 
 

FMRI Analysis 
Data were analyzed using SPM5 software 
(http://www.fil.ion.ucl.ac.uk). Condition effects at each 
voxel were estimated according to the general linear model. 
The contrast of Rea vs. Jud would reveal regions for 
reasoning, the contrast of Rea vs. Cal would reveal regions 
specific to reasoning, and the contrast of Cal vs. Rea would 
reveal regions more involved in calculation. An uncorrected 
voxel-level intensity threshold of p < 0.01 with a minimum 
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cluster size of 27 contiguous voxels was used to correct for 
multiple comparisons using the AlphaSim method 
(http://afni.nimh.nih.gov/pub/dist/doc/manual/AlphaSim.pdf
). This procedure yielded a corrected threshold of p < 0.01.  

The Modeling 
To understand the results in the frame work of the ACT-R 
theory, the model we constructed primarily depends on the 
visual module to perceive the stimuli, the manual module to 
respond, the retrieval module to retrieve a fact from memory, 
and the imaginal module to encode and update its stored 
representation. 

Results and the Model 

Behavioral Performance 
We carried out analyses of variance for Rea, Cal and Jud on 
both RT and accuracy (Fig. 2, solid lines). Response to Rea 
task was significantly longer [F(1,14) = 115.20, p < 0.001; 
F(1,14) =12.37, p =0.003] and less accurate [F(1,14) = 
12.50, p = 0.003; and F(1,14]=35.72, p < 0.001] than that of 
Jud and Cal respectively. As shown in Fig. 2 (dotted lines), 
the model predictions of the behavioral results fit the data 
reasonably well.  

 
 

 
 

Fig. 2. Behavioral performance. Data (solid lines) and 
model fits (dotted lines) for Rea, Cal, and Jud problems. 

 

FMRI Results 
The Rea > Jud contrast revealed activation in the left 
dorsolateral prefrontal cortex (DLPFC), anterior cingulate 
cortex (ACC), bilateral intraparietal sulcus (IPS), and left 
occipital area (Fig. 3A). The Rea > Cal contrast revealed 
activation in the left DLPFC, precentral Gyrus, right 
superior parietal lobule (SPL), and left occipital Gyrus 
(Fig.3B), while the Cal > Rea contrast revealed activation in 
the bilateral thalamus, caudate, and posterior cingulate 
cortex (PCC) extending into cuneus (Fig.3C). 
 

 
 

Fig. 3 Activation for the three contrasts 

BOLD Responses 
As shown in Fig. 4, four regions were of particular interest 
in this study: two regions of DLPFC and SPL specific to 
(Rea > Cal) (Fig. 4A); two regions of thalamus and caudate 
specific to (Cal >Rea) (Fig.4B).  

 
 

Fig. 4 BOLD responses for the ROIs. 
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Abstract

We studied deceptive decision making in hypothetical scenar-
ios that involved risk of being caught of deceiving, or a penalty
after being caught of deceiving, or both. We found that the de-
ception rate was the lowest in the scenarios involving both the
risk and the penalty. Our hierarchical model for deception sug-
gests that in balancing the possible benefits from deception, the
personal discomfort of getting caught is as large or larger than
the inherent aversion to deception.

Keywords: Decision making; risk attitudes; deception; incen-
tives; MTurk.

Introduction
In our recent study that asked participants’ choices between
risky and certain options (in the context of tax return), which
either involved deception (deception condition) or did not in-
volve deception (gamble condition), we observed a high rate
of deception aversion1 in the condition in which deception re-
sulted in the better outcome than being honest, but involved
both risk, i.e., non-zero probability of detection, and a poten-
tial loss in the form of a tax penalty, if the deception was de-
tected (Laine, Sakamoto, & Silander, 2013). The participants
who were particularly deception averse in the deception con-
dition were also more risk averse than others in the gamble
condition, which had equivalent risky and certain outcomes,
but involved no deception.2 In other words, the participants
who took more risk in gamble condition, also deceived more
in the deception condition.

We speculated if the reason for such a high level of tax
compliance in the risky deception condition was exception-
ally high level of risk aversion or exceptionally high level
of deception aversion, or alternatively the task domain com-
bined with the participant pool characteristics. We used Ama-
zon MTurk workers from the US. This is a group of individ-
uals who are willing to do simple tasks for little monetary
compensation. Alternatively, based on their own prior expe-
riences or knowledge of others’ encounters with the Internal

1In this experiment 279 (42%) out of 672 participants did not
choose the risky deceptive option a single time in the deception con-
dition.

2Only 25 out 672 participants never chose the risky option in the
gamble condition.

Revenue Service (IRS), our participants (most of them US
tax payers) may have wanted to avoid any friction (even hy-
pothetical) with the tax authorities, and indicated their will-
ingness to pay due taxes, even in the presence of substantial
financial incentives for evasion.

To rule out the explanation pertaining to the task domain
and the participant pool, we conducted another study with
MTurk participants, and added conditions from which we ex-
cluded either the risk or the tax penalty. Again we observed
an exceptionally high rate of deception aversion in the con-
dition that involved both a non-zero probability of detection
and and a penalty after the deception was detected. Thus,
it seems that the “IRS aversion”, in other words the aver-
sion to a potential audit by the tax authorities, is not alone
enough to explain the high level of tax compliance, since the
participants demonstrated some willingness to evade taxes in
conditions from which either the risk or the penalty for de-
tected deception was absent. In this study we wanted to find
out what distinguishes those participants who refused to de-
ceive in their taxes no matter what from those who properly
incentivized switched from complete tax compliance to some
degree of tax evasion.

Who are those who do X, where X ∈ {take risk,
deceive, evade taxes}

In general, people tend to be risk averse when facing gains
and risk seeking when facing losses (Holt & Laury, 2002;
Kahneman & Tversky, 1979). Many economic models of
choice behavior are based on the concept of individual risk
attitude, which can be measured experimentally and mod-
elled with the shape and parameters of a utility function (Holt
& Laury, 2002; Isaac & James, 2000; Weber, 1998). It
has been considered a stable construct similar to personal-
ity traits, which drives behavioral patterns across situations
(Blais & Weber, 2006).

However, this interpretation is problematic, since several
studies have found that the risk attitude varies across task
types (e.g., hypothetical vs. real outcomes) (Holt & Laury,
2002; Taylor, 2013), domains (e.g., financial or health related
decision making), elicitation methods (e.g., choice between
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gambles, a questionnaire, an auction, or a multiple price
list method (Berg, Dickhaut, & McCabe, 2005; Charness,
Gneezy, & Imas, 2013; Crosetto & Filippin, 2013)), and even
ages (Harbaugh, Krause, & Vesterlund, 2002). For instance,
Isaac and James (2000) demonstrated in a within participant
study using two different risk elicitation tasks that some par-
ticipants could in an instant turn from being risk averse to risk
seeking, whereas some others remained risk neutral in both
tasks. Blais and Weber (2006) suggest that even if an indi-
vidual’s risk attitude towards a perceived risk does not differ
from one domain to another or from one situation to another,
her risk-taking behavior might, if she perceives the risk and
the benefits to be different in those situations.

There are differences between genders, too. Harris, Jenk-
ins, and Glaser (2006) found that women’s lower engagement
rate in risky activities correlates with their tendency to judge
negative events more likely and expected enjoyment of risky
activities less highly than men in gambling, recreation, and
health domains. However, there was no gender differences in
risk-taking and risk perception in the social domain. Mixed
findings have been reported on age differences in risk-taking
propensity. Many studies have found more risk aversion in
older people, but also the opposite in certain circumstances,
or even no differences between age groups (see for instance:
Deakin, Aitken, Robbins, & Sahakian, 2004; Dror, Katona,
& Mungkur, 1998; Harbaugh et al., 2002; Huang, Wood,
Berger, & Hanoch, 2013; Mather, 2006).

How do these studies relate to age and gender differences
in deceptive behavior? Studies with adults have shown that
while women are more lie averse than men in general, they
are more likely to lie if it benefits others, and less likely if it
hurts others, whereas men lie more for self-serving purposes,
particularly monetary gains (dePaulo, Kashy, Kirkendol, &
Wyer, 1996; Dreber & Johannesson, 2008; Erat & Gneezy,
2012). Finally, even if there is considerable heterogeneity in
tax evasion within any group defined by a demographic cat-
egory such as income or age, studies have shown that men
evade taxes more than women, high income people evade
taxes less than low income people, and married and under 65-
year-old tax payers evade more than others (Slemrod, 2007).

These findings at least partially suggest that there is a link
between risk-attitude and propensity to deceive, even to cer-
tain extent in taxes. However, most studies have focused on
individuals or groups who partake in behaviors or activities in
question (acts of commission), whereas in the following we
are interested in those who do not (acts of omission).

Experimental design
According to the standard economic model of rational and
selfish human behavior (i.e., the “homo economicus”), one
should deceive if it is beneficial compared to being honest,
and the decision should be solely determined by the trade-off
between the gain from lying and the cost incurred if detected,
given the probability of detection (Abeler, Becker, & Falk,
2014; Gneezy, Rockenbach, & Serra-Garcia, 2013). There-

fore, the policies to curb deception, for instance in tax re-
turns, have almost solely focused on increasing the detec-
tion probability and the penalty. However, these measures
are not necessarily effective if people’s deceptive behavior
is driven by internal rewards instead of cost-benefit analysis
of external rewards (Mazar, Amir, & Ariely, 2008); some-
times otherwise inconceivable indisposition to deceive have
been attributed to factors like pure lie aversion (Fischbacher
& Heusi, 2008; Gneezy, 2005; Gneezy et al., 2013; Erat &
Gneezy, 2012; López-Pérez & Spiegelman, 2012; Lundquist,
Ellingsen, Gribbe, & Johannesson, 2009), altruism (Abeler et
al., 2014), maintenance of positive self-image, e.g., avoiding
to appear greedy (Mazar et al., 2008; Fischbacher & Heusi,
2008), and moral considerations based on the norms and val-
ues of the society (Mazar et al., 2008; Sip et al., 2012).

Since our primary goal was to study the role of risk and
monetary incentives in deception, we wanted to rule out the
above factors. Instead, to more efficiently isolate the effect of
risk from the effect of the outcomes, we made the expected
value of the risky deceptive option higher than the expected
value of the non-deceptive option, and added two conditions
in which—still maintaining the expected value difference—
either (1) both deception and being honest resulted in a cer-
tain outcome, i.e., there was no risk, or (2) failing the decep-
tion resulted in the same outcome as being honest, i.e., there
was no penalty for detected deception.

Method
Participants We recruited 372 participants in Amazon
MTurk to complete an online questionnaire in Qualtrics. Af-
ter discarding data from participants who either did not com-
plete the whole questionnaire or failed the attention check
question we had 301 participants (130 women, 170 men, one
unknown; median age 30 years, age range: 18-71 years). All
participants were native English speakers, aged 18 or above,
residing in the US. Each participant received USD 1.00 for
their participation.

Material Using filling in a tax return as the deceptive do-
main, we prepared six gain-facing and six loss-facing scenar-
ios in three conditions:

VarRisk Variable risk and constant outcome from success-
ful deception (gain of $1000 and loss of $0), and from be-
ing truthful or unsuccessful deception (gain of $0 and loss
of -$1000). We used detection probabilities of 0.01, 0.1,
0.25, 0.5, 0.75, and 0.90.

VarOut Variable outcomes and constant risk at 0% detec-
tion probability.

VarBoth Both variable outcomes and variable risk.

The VarBoth condition matched the VarOut condition in
the expected values of options (see Table 1), and the VarRisk
condition in the detection probabilities. This design allowed
us to address the effects of risk and expected utility separately.

205



Example scenarios in VarBoth and VarOut in the gain con-
dition are shown in Figure 1.

Table 1: Expected values in VarBoth and VarOut conditions
for gains and losses.

Gains Honest option $ 891 810 675 450 225 90
Deceptive option $ 990 900 750 500 250 100

Losses Honest option $ 11 110 275 550 825 990
Deceptive option $ 10 100 250 500 750 900

VarBoth scenario Jenny is doing her yearly taxes. In addition
to her regular job, she has done some part-time work on the
side. Jenny is aware that she needs to report all of her income
in her tax return.
If she omits the extra part-time earnings from her report, she
will get back $1,000. If she includes these extra earnings in
her report, she will get back $675. The part-time work was
done for a small business, which might or might not report
this payment to the IRS. If Jenny fails to declare the income,
but the business reported it, she will lose her entire tax refund
as a penalty, meaning that she will get $0. But since there’s
no way to prove that it wasn’t just an accounting mistake,
there is no other fine or long-term penalty for getting caught.
From talking to other people who’ve worked at the same
place, Jenny estimates that there is a 25% chance that the
business reported the payment. If you were Jenny, would
you
[] Report the extra income and get a refund of $675.

[] Not report the extra income, in which case you have a 75%
chance of getting back $1,000, but also a 25% chance of get-
ting back $0.

VarOut scenario John is doing his yearly taxes. In addition
to his regular job, he has done some part-time work on the
side. John is aware that he needs to report all of his income
in his tax return. If he omits the extra part-time earnings from
his report, he will get back $750. If he includes these extra
earnings in his report, he will get back $675.
The part-time work was paid in cash and the employer didn’t
record his name. Therefore, John knows that there is no
chance that the IRS knows about this income. If he leaves
it out of the report, there is no chance that he will be caught.
If you were John, would you
[] Report the extra income and get a refund of $675.

[] Not report the extra income and get a refund of $750.

Figure 1: Example questions in VarOut gain and VarBoth
gain conditions.

Procedure After giving their informed consent the partici-
pants were asked to make their choices in six sets of six ques-
tions (the order of the sets was randomized for each partici-
pant.3 All participants answered all 36 questions, so the ex-
perimental condition manipulation (VarBoth vs. VarOut vs.

3We prepared two versions of each scenario, one with a female
and one with a male tax payer, and picked one randomly for each
participant.

VarRisk) was within participant. After finishing the choice
questionnaire they answer a set of 30 risk- and deception at-
titude questions and completed a brief numeracy test, results
of which are not reported here. They finished by filling in
optional background information, including age, gender, and
education. The questionnaire ended with a debriefing. It took
them 15 minutes on average to finish the whole experiment.

Results
In both VarOut and VarRisk conditions we observed much
more deception than in the VarBoth condition, see Figures 2
and 3.
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Figure 2: Relative frequencies of deceivers in the conditions
varying only outcome, or both risk and outcome.

Risk aversion vs. penalty aversion The percentage of par-
ticipants who never deceived was much higher in the Var-
Both condition than in the other two conditions (see Table
2), and roughly corresponded to the percentage observed in
Laine et al. (2013) (37% compared to 42%). The number
of non-deceivers in the VarBoth condition significantly dif-
fered from the other two conditions both overall, χ2(2, N =
301) = 20.0076, p = 4.523e−05, and also separately for gains,
χ2(2,301) = 38.0499, p = 5.465e−09, and losses, χ2(2, N =
301) = 31.259, p = 1.63e−07. All other differences were
insignificant, i.e., between VarRisk and VarOut conditions
overall (p = 0.77), for gains (p = 0.65), and for losses (p =
0.64).

The low deception rate in VarBoth condition suggests that
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Figure 3: Relative frequencies of deceivers in the conditions
varying only risk, or both risk and outcome.

Table 2: Number of deceivers and non-deceivers in each con-
dition

Condition Non-deceivers Deceivers

VarOut 68 233
VarRisk 71 230
VarBoth 112 189

our participants were extremely risk averse. This is partially
supported by the higher deception rate observed in the risk-
less VarOut condition. On the other hand, the expected value
differences between deceptive and non-deceptive options in
these two conditions were equivalent, so one would expect
the same (deceptive) choices in both of them, if the partici-
pants were basing their decisions on the expected values. It is
less clear, though, why there is no significant difference be-
tween VarOut and VarRisk conditions, since the latter did
involve risk.

Looking at the behavior in the other two conditions, we try
to gain insight on what distinguishes those participants who
never deceived in VarBoth condition (non-deceivers) from
those who deceived at least once (deceivers). First, we did
not find any meaningful patterns or relationships between the
choices and the background variables (e.g., age or gender) in
either group. Second, in both VarOut and VarRisk condi-
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Figure 4: Probability of Deception in VarOut and VarRisk
conditions for those who did and did not deceive in VarBoth
condition.

tions deception rate was higher in VarBoth condition in both
of these groups. However, there were some qualitative differ-
ences both between the groups and between the two condi-
tions.

While removing risk (VarOut condition) increased the
probability of deception equally in deceivers and non-
deceivers, removing the penalty (VarRisk condition) in-
creased it much more in deceivers (see Figure 4: the blue
solid line represents the deceivers in VarBoth condition). In
other words, incurring no potential penalty after the deception
is detected seemed to be more effective incentive to deceive
than having no risk of getting detected in the first place, but
only for those who had a higher propensity to deceive to start
with.

In both of these conditions the deceivers responded better
to incentives; their probability of deceiving appears to be a
function of detection probability in VarRisk condition and
the expected value difference in VarOut condition, whereas
such a pattern was not as apparent in non-deceivers. One
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can hypothesize that this is because the non-deceivers have
a higher cost of deception which overrides the effect of in-
centives no matter how attractive they are.

A hierarchical model

These findings motivated us to entertain a Bayesian hierarchi-
cal model (Lee, 2011) where in addition to the expected mon-
etary gain from deception each individual i has two factors
that influence her choices. The first one is her own “prize”
cdeci, which measures the monetary equivalent of inherent
cost of lying (i.e., pure deception aversion). The other one is
the cost of getting caught, cdeti, which measures the shame
or regret of getting caught. The model assumes that these two
factors vary in the population.

The data we use in this model consists of the responses of
the 301 participants in six gain questions in VarOut condition
and six gain questions in VarBoth condition. We denote the
choice of the participant i in the question k, (k ∈ 1,2, . . . ,12)
as Dik, and the expected monetary value of the deception in
question k as Vk. The probability of getting caught in question
k is denoted as pdetk. This probability is zero for the ques-
tions in VarOut condition. Finally, to turn the utilities (costs
and expected gains) measured in terms of money into proba-
bilities for choosing deception, we need a “temperature” pa-
rameter w that controls the mapping.

We can now express the model more formally,

µcdec ∼ N(µ0,σ
2
0),

σcdec ∼ Uni(0,1000),
cdeci ∼ N(µcdec,σ

2
cdec),

µcdet ∼ N(µ0,σ
2
0),

σcdet ∼ Uni(0,1000),
cdeti ∼ N(µcdet ,σ

2
cdet),

w ∼ Uni(0,10),
pik = logit−1(w× (Vk + cdeci + pdetk× cdeti)),

Dik ∼ Bernoulli(pik).

The hyperparameters were set to non-informative values,
and the estimation was conducted using PyMC python library
that implements adaptive Metropolis sampling (Patil, Huard,
& Fonnesbeck, 2010).

The posterior mean values for participants’ detection and
deception costs appear to indicate that on average they both
play an equal role in deception (see Figure 5). The pure de-
ception aversion seems to vary between $30 and $150, and
the detection cost between $40 and $110. The joint density
plot reveals that the individual’s detection and deception costs
tend to correlate, but there are people whose detection cost is
twice their deception cost (say $100 vs. $50).

Figure 5: Joint posterior density of estimated deception and
detection costs.

Discussion
It might be suggested that the MTurk workers, who are will-
ing to spend time completing simple tasks to earn just few
cents, must be unusual, and unusual in ways that can skew the
effects of the experimental manipulations. They have been
found to be more risk averse than other participant pools,
for instance general public or student samples, but show the
same pattern of risk attitudes by being risk seeking when fac-
ing losses and risk averse when facing gains (Horton, Rand,
& Zeckhauser, 2011; Paolacci, Chandler, & Ipeirotis, 2010;
Paolacci & Chandler, 2014; Rand, 2011).

Our participants also exhibited a seemingly high level of
risk aversion. However, it was not the presence of risk per se
that made the participants avoid deception, but also what may
happen after their deception gets detected. If there was no dif-
ference in the outcomes when getting detected and telling the
truth, the participants were willing to take risk and deceive,
but if there was also a chance of incurring a penalty after get-
ting detected, they were not. In other words, it was loss aver-
sion rather than pure deception aversion that determined the
deceptive behavior.

There are two possible interpretations of the findings: First,
the participants who chose to deceive really were responding
to monetary incentives, either to potentially higher gain when
no risk was involved, or to the absence of loss (if getting
detected) when risk was involved, rather than the presence
of risk itself. However, the incentives seemed to influence
more those participants who were already willing to deceive
to some extent in the condition that involved both the risk and
the penalty.

An alternative interpretation suggests that in those partic-
ipants who never deceived both the pure lying cost and the
cost of getting caught actually reflected the violation of so-
cial norms or individuals’ own moral standards. In this case,
the reluctance to deceive can be interpreted as maintenance
of self-concept as suggested by Mazar et al. (2008).
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Humans spend almost a third of our lives asleep, with the

most convincing explanation being that we otherwise suffer
degradation of many cognitive and motoric skills. However,
there is now also substantial empirical evidence that both
declarative (i.e., facts and events–‘what’, ‘where’, ‘when’)
and procedural (i.e., skills–‘how’) memory benefit from even
short periods of sleep. Memory is typically described as
three processes: 1) encoding: forming new traces from ex-
perience, 2) consolidation: integrating memories with prior
knowledge and strengthening/crystallizing the trace, and 3)
retrieval: task-dependent extraction of overall familiarity or
recall of particular traces. Sleep is generally accepted to aid
in consolidation, but under what circumstances it helps and
by what mechanisms is not well understood.

Storage versus Processing
Machine learning algorithms can be classified as either
incremental–allowing data to be added to the model instance
by instance–or batch, requiring a (sometimes large) set of
training instances before before the model produces useful
predictions. Incremental or online algorithms (e.g., naı̈ve
Bayes) clearly offer the advantage of being able to work
(however poorly) with very little data, and can learn immedi-
ately when new data are acquired. Moreover, since instances
are processed immediately, they do not need to be stored for
later updating. One disadvantage is that online updating may
require significant computational resources, perhaps at an in-
convenient time. In contrast, batch (i.e., offline; e.g., sup-
port vector machines, decision trees) learning algorithms may
need a large store of data and quite some time to build an ini-
tial useful model, and adding a single training instance may
require iterating over the entire (and increasing) data store to
update the model. A survey of learning algorithms will reveal
the classic algorithmic tradeoff: one can store more, and pro-
cess less upfront (but retrieval can be costly), or process more
upfront and store less.

Another problem with many incremental algorithms is the
potential to arrive at different learning outcomes based on
the order the instances are encountered in. In many cases,
such order effects are undesirable, but humans and animals
show a variety of order effects (e.g., in associative learning:
Kachergis (2012). Could sleep be a chance to mitigate the or-
der effects brought on during online learning? A few batch-
update models have been found to have roughly-equivalent
incremental versions. For example, latent semantic analysis
(Deerwester, Dumais, Furnas, Landauer, & Harshman, 1990,
LSA) learns semantic similarities of words via the singular

value decomposition (SVD)–an expensive matrix operation–
of a large word × document co-occurrence matrix. This large
matrix–adults know over 70,000 unique words, and have read
thousands of documents–must be kept in memory to be up-
dated when a new document is read. Updating the model re-
quires performing the SVD again, so it would be quite expen-
sive to update knowledge every time a new document is read.
It is more sensible to read a batch of documents–although, of
course, this means that any new knowledge is not available in
the model until the latest batch is incorporated.

Models that use batch updating require storing all of the
instances in long-term memory, allowing the model to iterate
over all episodes–even multiple times–to extract higher-level
features (e.g., correlations of multiple features). On the other
hand, incremental updating can reduce the need to store so
much information, much of which may be redundant or al-
ready over-learned. We conclude that sleep might be a way
to get the best of both worlds: incremental learning based on
salient features for immediate use, in addition to storage of
daily episodes–especially exciting or confusing memories–
that can be replayed during sleep to make more thorough,
careful updates to knowledge representations before further
compressing the memories.

Sleep Characteristics, Effects, and Theory
Sleep in mammals and birds consists of cycles of four stages,
proceeding from non-rapid eye movement (NREM) stages 1,
2, and 3 (also called slow-wave sleep), to rapid eye move-
ment (REM) sleep. Human adults typically go through four
or five cycles each night, reaching REM sleep every 90 min-
utes or so. More slow-wave sleep (SWS; NREM3) occurs
early in the night, whereas more REM sleep occurs in the last
few hours of a night’s sleep. Loss of NREM3 and REM sleep
results in drastically increases in these stages the following
night, suggesting they are of critical importance. From neural
recordings of rats, it appears that memory replay during non-
REM sleep occurs at a 10x speedup, whereas REM replay
is roughly at the speed of the behavioral episode (Bendor &
Wilson, 2012). Waking levels of acetylcholine (ACh) during
REM sleep may support encoding of new declarative mem-
ories, whereas low ACh during SWS is thought to allow re-
play and transfer of hippocampal memories to the neocortex
(Hasselmo, 1999).

Although implicit memory effects have also been found in
sleep studies, we focus on declarative memory (i.e., seman-
tic and episodic memory; facts and knowledge). Declarative
memory is thought to be largely dependent on the hippocam-
pus enabling sleep-based consolidation of memory. During
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SWS, episodic information stored in the hippocampus is re-
played and projected to brain regions in the neocortex, storing
stable, permanent memories. This information flow reverses
during later REM sleep, conceivably allowing the hippocam-
pus to remove the unstable, short-term memories in order to
make room for new memories to be stored there (Wamsley
& Stickgold, 2011). Sleep has been shown to improve recall
for nonsense syllables (Jenkins & Dallenbach, 1924) and for
paired-associate word stimuli (Gais & Born, 2004).

For declarative memory, there are two basic theories of
how memory consolidation is improved during sleep: the ac-
tive hypothesis states that consolidation depends on sleep,
whereas the permissive hypothesis views consolidation as a
time-dependent, interference-sensitive process that uses pe-
riods of low hippocampus input to process prior information
(Mednick & Alaynick, 2010). Procedural memory is just gen-
erally thought to be ‘enhanced’ by sleep, but this idea is not
universally accepted (Mednick & Alaynick, 2010). We will
focus on proposing specific computational mechanisms for
improving declarative memory, since the current models are
more readily adapted to this task, and the empirical evidence
indicating the necessity for this is strong.

Proposed Mechanisms
Our proposed modifications will be specified in terms of
the REM (Retrieving Effectively from Memory) model from
Shiffrin and Steyvers (1997), which is a multitrace memory
model representing both episodic traces as well as lexical-
semantic traces. Our first proposed modification is that the
updating of the lexical-semantic (LS) features–which is typ-
ically not even simulated in REM–could take place during a
sleep period, when episodic traces since the last sleep period
are (randomly, or perhaps surprising or emotionally-charged
ones) reactivated. That is, we assume that updating LS traces
is tantamount to modifying the neocortical representations,
which is best left for an offline period. Meanwhile, the hip-
pocampal episodic traces may still be retrieved and used in
various ways throughout the day. REM assumes that when
the same stimuli appear multiple times in similar contexts,
the old trace may be updated by filling in missing features
from LS traces, instead of making a new trace (this differ-
entiation process is how it accounts for the word frequency
mirror effect and null list strength effect).

Retrieval in REM uses context features–reinstated by the
probe, whatever its source (internal or external)–to activate a
subset of long-term memory (e.g., to the studied list of items).
For recognition, REM computes a likelihood ratio indicating
how well a test cue (from the LS traces) match each episodic
trace in the activated subset being considered. This likeli-
hood ratio incorporates the base rate in the long-term, and
the number of both the non-zero mismatching and matching
features. Thus, the decision depends on not only the number
of matching features, but also on how diagnostic the features
are. Since small feature values will tend to be quite common
and thus undiagnostic, whereas the more useful large feature
values are rarely encountered, a potential mechanism for im-

proving memory would be to redistribute feature values. By
choosing at least one (unique) high-valued, diagnostic fea-
ture for each trace (or group of highly-related traces), mem-
ory will be improved. This is clearly quite computationally
expensive (which is why it should be offline), but a simple,
greedy version might choose one of the common stimuli from
the day’s traces, select one of its’ LS trace’s common features,
and increment that feature value by one.

The SARKAE (Storing And Retrieving Knowledge And
Events) model (Nelson & Shiffrin, 2013) develops REM
further to explain how knowledge co-evolves along with
episodic memory. Unlike REM’s traces, SARKAE’s traces
represent not only feature values but counts of each feature
value (e.g., “blue”) organized by feature types (e.g., “color”).
Event traces contain a single feature value (with a count of 1)
if the value is copied from the stimulus, but a feature count
vector may instead be copied from memory. Knowledge
traces are simply those event traces that have been reacti-
vated and updated many times, and thus contain distributions
of feature values. In the SARKAE framework, a straightfor-
ward role for sleep is to act as the cleanup period: event traces
from the day are considered in turn, and their feature counts
are either added to an existing knowledge trace (in cortex) if
a similar one is found, or copied as a new knowledge trace.

The proposed mechanisms involve many comparisons and
updates to long-term lexical-semantic traces stored in neocor-
tex, making them more suitable for conducting during sleep.
Note that while the complex version of redistributing diag-
nostic feature values would have to be done in batch, the sim-
ple greedy version (choosing a single feature to increment) is
more batch-incremental. Although we specified these mech-
anisms in terms of the REM model, the same mechanisms
could be used in related multitrace modeling frameworks
such as SARKAE or MINERVA2.
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Social psychology does not yet have a strong cognitive 

modeling tradition. This is not for lack of cognitive 
modeling tools that are relevant and useful for modeling 
social psychological phenomena. For instance, several 
researchers have successfully demonstrated how 
connectionist modeling techniques can be used to build 
computational explanations of key phenomena of interest to 
social psychologists, such as stereotyping, prejudice and 
priming (Kunda & Thagard, 1996; Schröder & Thagard, 
2014). In this project we contribute to this important 
development by addressing a major obstacle to the 
progression of connectionist modeling in social psychology: 
That is, how can we reconcile the intuitive concepts that 
figure in the verbal explanations that pervade social 
psychological theories with formal properties and processes 
in connectionist models? We illustrate a systematic way of 
addressing this question by considering the theoretical 
concept of ‘social categories’, which plays a central role in 
social psychological theories. Using computer simulation, 
we show that if social categories are defined as ‘excluders’ 
in connectionist models then key social psychological 
phenomena can be replicated, while maintaining a clear link 
with the intuitive concept of social categories. We discuss 
the broader implications of our simulation results for both 
social psychology and cognitive modeling.   

Existing Person Perception Models 
Social categorization theories belong to the most 

prominent verbal theories in the area of person perception 
(Fiske & Neuberg, 1990; Macrae & Bodenhausen, 2000).  A 
general claim in these theories is that stereotyping and 
prejudice are the result of the natural tendency of people to 
categorize perceived people. A central assumption in these 

theories is that people construed other people based on two 
types of mental representations: social categories (e.g. 
gender, nationality, or occupation) and attributes (e.g. 
personality traits or physical features). It is further assumed 
that if a person categorizes another person then that triggers 
a set of (implicit) beliefs about the categorized person in the 
perceiver. This set of (implicit) beliefs is referred to as the 
stereotype of the category. In contrast, if attributes are 
assigned to the person, no such (or much fewer) beliefs are 
triggered. Hence, in social categorization theories, social 
categories are the main cause of stereotyping. 

More recently, (localist) connectionist models of person 
perception have been proposed, which explain stereotyping 
and prejudice by the spread of activation between mental 
representations via associative links (Freeman & Ambady, 
2011; Kunda & Thagard, 1996). Every mental 
representation in these models is associated with other 
mental representations, which means that every mental 
representation (and thus not only a particular subset) can 
trigger associated beliefs, in principle. Perhaps for this 
reason, Kunda and Thagard (1996) have presented their 
connectionist model as an (competing) alternative to social 
categorization theories. In contrast, Freeman and Ambady 
(2011) proposed that the general process of social 
categorization may be implemented by a connectionist 
process. These conflicting perspectives illustrate that the 
relationship between connectionism and social 
categorization has remained relatively unclear. If, and how, 
the different perspectives can be reconciled is thus an 
important open problem.  

What is a Social Category? 
A major obstacle to unifying social categorization and 

connectionist models is that the verbal term 'social category' 
leaves too much room for interpretation. As a first step 
towards an integrative model, we disentangle the most 
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prominent interpretations. We argue that most 
interpretations are either in conflict with major assumptions 
of social categorization theories or with empirical evidence. 
Based on this, we argue for an interpretation in which social 
categories can roughly be described as 'excluders': that is, 
mental representations that strongly exclude some other 
mental representation. This interpretation can be 
implemented in a connectionist model by giving those 
mental representations that are conceived of as categories 
strong inhibitory connections that prevent their co-activation 
(see Fig. 1).  

 
Figure 1: Illustration of a connectionist network of 'social 
categories’ and ‘attributes’. Excitatory connections are 
denoted by solid lines and inhibitory connections by doted 
lines. Within this network, Professor and Lawyer are social 
categories because they are connected by a (strong) 
inhibitory connection. In contrast, intelligent is an attribute 
because it does not have a (strong) inhibitory connection. 

An Integrative Model 
In our poster, we will demonstrate how social categories 

under our connectionist interpretation give rise to key 
phenomena that have been attributed to (social) 
categorization. Specifically, we will present simulation 
results that show how our connectionist interpretation of 
social categories gives rise to stereotyping in a way that is 
consistent with the general assumptions of social 
categorization theories.  

Andersen and Klatzky (1987) provided empirical 
evidence that people can infer more varied characteristics 
about a person when provided with a category label (e.g. 
professor) compared to a trait label (e.g. intelligent). We 
replicate these results in our connectionist simulation in 
which activating a category (under our interpretation of 
categories) by external input leads to the activation of more 
other mental representations compared to a situation in 
which an attribute is activated by external input. In other 
words, category activation triggers more (stereotypical) 
beliefs than attribute activation, which does not only explain 
the results by Andersen and Klatzky but also conceptually 
replicates the category-attribute distinction in social 
categorization theories.  

Furthermore, we show how inhibitory associations 
generate the general phenomenon attributed to 
categorization that the subjective similarities of people 
within categories and is decreased and the subjective 
similarities of people between categories is increased. This 

gives rise to the well-replicated phenomenon that 
discrimination performance is highest for stimuli that are 
separated by a category boundary (Goldstone & 
Hendrickson, 2009).   

Conclusions 
We replicate key social psychological phenomena that 

have been attributed to social categorization processes in a 
formal connectionist model. In addition, we provide a clear 
mapping of the verbal terms of social categorization theories 
(in particular, the terms ‘categories’ and ‘attributes’) onto 
formal connectionist properties. This unifies social 
categorization and connectionist models of person 
perception. Moreover, our approach demonstrates a possible 
way to reconcile the verbal approach taken in social 
categorization theories with the formal approach taken in 
connectionist models. That is, while the connectionist model 
of the social categorization process provides formal 
precision, the intuitive concepts ‘categories’ and ‘attributes’ 
provide useful verbal heuristics that summarize the 
functional behavior of these different mental representations 
in (connectionist models of) person perception. This creates 
a bridge between the verbal theorizing in social psychology 
and the formal modeling in the connectionist literature, 
which makes it possible for the two research areas to inform 
each other more in the future. 
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Abstract

The speed-accuracy trade-off (SAT) effect refers to the behav-
ioral trade-off between fast yet error-prone responses and ac-
curate but slow responses. Multiple theories on the cognitive
mechanisms behind SAT exist. One theory assumes that SAT
is a consequence of strategically adjusting the amount of evi-
dence required for overt behaviors, such as perceptual choices.
Another theory hypothesizes that SAT is the consequence of
mixing different task strategies. In this paper these theories are
disambiguated by assessing whether the fixed-point property
of mixture distributions holds, in both simulations and data.
I conclude that, at least for perceptual decision making, there
is no evidence for mixing different task strategies to trade off
accuracy of responding for speed.
Keywords: speed-accuracy trade-off; SAT; fixed-point prop-
erty; fp; mixture distributions; evidence accumulator models;
diffusion model.

Introduction
In sports, acting fast is often as important as acting precise.
For example, a basketball player trying to make the winning
shot in the dying seconds of the game may be satisfied with
less precision in his attempt given the severe time pressure
of the clock. On the other hand, if he has just been awarded
a free throw without any time pressure, accuracy in his at-
tempt is vital. In experimental psychology, the ability to
trade speed of responding for accuracy of responding is re-
ferred to as the speed-accuracy trade-off (SAT, Schouten &
Bekker, 1967; Wickelgren, 1977). SAT-related effects have
been shown in many different experimental paradigms (e.g.,
Dutilh et al., 2011; Meyer et al., 1988; Wagenmakers et al.,
2008).

Response Caution Adjustment
The most prominent theory about the neural and cognitive
mechanisms of SAT is Response Caution Adjustment (RCA,
Bogacz et al., 2010). This view entails that SAT is a con-
sequence of strategically adjusting the amount of evidence
required for overt behaviors, such as perceptual choices. Ac-
cording to this view, perceptual choice behavior can be best
described as the accumulation of evidence for each choice
alternative. That is, given a particular stimulus, the deci-
sion maker accumulates over time which alternative is most
likely to be the correct response. A response is then provided
once a certain minimal level of evidence is exceeded (Figure
1A). Computational models that quantify this process have
accounted for many different aspects of decision-making be-
havior (for reviews see Mulder et al., 2014; Ratcliff & McK-
oon, 2008), including SAT.

SAT occurs in the accumulator framework through re-
sponse caution adjustment (Figure 1B). If a decision maker

is pressed for time (or has any other reason why speed-of-
responding is important), the minimal level of evidence re-
quired for a response may be set to a lower value. If a decision
maker is more cautious, then the minimal evel of evidence
may be set to a higher value. A high value automatically re-
sults in longer decision times – and hence longer response
times (RT) – since the amount of evidence required to make a
decision is larger, and thus takes longer to accrue. However,
because of the stochastic nature of the evidence accumula-
tion process, the increased decision time is accompanied by a
larger probability of being correct. This is because the prob-
ability of accumulating enough evidence for the incorrect re-
sponse alternative is lower as the threshold is set higher.

Mixing Task Strategies
The RCA theory of SAT has been tested in many different
studies (e.g., Rae et al., 2014; Mulder et al., 2010, 2013), and
in addition is also consistent with many neuroscientific find-
ings (Boehm et al., 2014; Forstmann et al., 2008, 2010; Ho
et al., 2012; Van Maanen et al., 2011; Winkel et al., 2012).1

Nevertheless, alternative theories have been proposed about
the nature of SAT. However, no model comparison between
different theoretical proposals for SAT has so far been at-
tempted.

One alternative theory of SAT that warrants a formal com-
parison with RCA is what I refer to here as the Mixing Task
Strategies (MTS) theory. This theory entails that participants
switch between two modes of responding during a task, de-
pending on the speed and accuracy requirements (Ollman,
1966; Meyer et al., 1988). Under accuracy stress, partici-
pants respond through a stimulus-controlled process, which is
thought to yield optimal – yet relatively slow – performance.
Under speed stress, participants are thought to recruit an ad-
ditional guess process on a large proportion of trials. Because
this is hypothesized to be a fast process, the average response
times decreases. However, because the guess process leads
to chance performance on a certain proportion of trials, accu-
racy drops as well. This mixture idea lies at the heart of more
modern models of SAT, such as the phase-transition model
by Dutilh et al. (2011) and a recent ACT-R model of SAT
(Schneider & Anderson, 2012).

The essential property of the Mixing Task Strategies theory
is that participants use two modes of responding, but in differ-
ent proportions. In fact, a strong prediction is that any exper-

1For completeness, it should be mentioned that many of these
formal modeling approaches also required the “non-decision time”
parameter to vary between speed-stressed and accuracy-stressed
conditions.

214



A

A
cc

um
ul

at
ed

 E
vi

de
nc

e

Time

Response threshold

Time of choice

B

A
cc

um
ul

at
ed

 E
vi

de
nc

e

Time

Response threshold

Time of choice

Figure 1: A. An illustration of two evidence accumulation processes, one depicted by a solid line, one by a dashed line. The
process that reaches the response threshold the earliest is selected. B. A decreased threshold (panel B vs A) may yield a faster,
possibly incorrect, choice.

imental condition that has intermediate speed and accurate
stress, should have an in intermediate mixing proportion of
the two modes as well. In this paper will test this strong pre-
diction for a simple perceptual choice task (Forstmann et al.,
2008) using the fixed-point property of mixture distributions
(Falmagne, 1968).

Fixed-Point Property
The fixed-point property (Falmagne, 1968) is a general prop-
erty of mixture distributions with two base distributions, that
can be easily applied to response time data (Van Maanen
et al., 2014). Because the probability density of a binary mix-
ture distribution is always the weighted sum of the densities
of the two base distributions, it follows that there is (at least)
one value that has the same density, independent of the mix-
ture proportions (for a proof, see Falmagne 1968; reiterated
in Van Maanen et al. 2014). In terms of mixture distributions
of response times, this implies that there will be one RT for
which the probability of providing a response at that particu-
lar time is equal for all mixtures.

The fixed-point property is illustrated in Figure 2. The fig-
ure shows the probabilty densities of four binary mixture dis-
tributions. Each is a mixture of two shifted Wald distribution
functions with common scale (λ = 5000) and shift (θ = 100),
but different means (µ1 = 300 and µ2 = 500).2 The legend in
Figure 2 refers to the mixture proportion, here represented as
the proportion of the data that comes from the second base
distribution (with µ2 = 500). As is clear from the figure, all
densities cross each other at a common RT value, referred to
as the crossing point. In the Results section below, we will
test for the presence of the fixed-point property in empirical

2I chose the shifted Wald distribution function as an example
because of its wide applicability in RT data (e.g., Anders et al., 2015;
Heathcote, 2004), but the fixed-point property does not depend on
the choice of distribution function.

data by assessing whether across participants, the crossing
points of pairs of distributions with different mixture propor-
tions are indeed the same.
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Figure 2: Binary mixture distributions with different mixture
proportions always cross at a common RT.

The fixed-point property is predicted by the MTS theory of
SAT. That is, if observed RT distributions in SAT are a mix-
ture of the guess process and the stimulus-controlled process,
and the mixture proportions differ as a result of the amount of
speed stress, then the fixed-point property should be present
in the data. On the other hand, the fixed-point property is
not predicted by the RCA theory. These predictions will be
fleshed out in the next section.

Simulations
To understand which of the theories of SAT predicts the fixed-
point property in RT distributions, I generated data under the
two theories, for three levels of speed stress. In the RCA
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simulation, all trials are drawn from a simple randon-walk
process with positive drift (cf. Bogacz et al., 2006), and the
speed-stress levels are simulated by three different settings of
an absorbing boundary. In the MTS simulation, only a pro-
portion of the trials is drawn from that random-walk process,
with the remaining trials drawn from a guess process. The
three levels of speed-stress are simulated by different mixture
proportions.

Response Caution Adjustment Simulation
For the RCA simulation I used a pure drift diffusion model
(Bogacz et al., 2006):

dx = µdt +N(0,σ2dt) with x(0) = a/2. (1)

The speed of evidence accumulation is represented by the
constant drift µdt, with standard deviation σ. On each trial,
a decision is made once the evidence x exceeds one of two
boundaries at x = 0 and x = a. The response time is then de-
termined by the time when one of the boundaries is crossed,
plus a fixed non-decision time intercept t0. Similar models
have been applied to many decision making paradigms to
study the cognitive (e.g., Donkin & Van Maanen, 2014; Mul-
der et al., 2013; Palmer et al., 2005; Ratcliff, 1978; Van Maa-
nen et al., 2012b,a) and neural (e.g., Forstmann et al., 2008,
2010; Ratcliff et al., 2009) mechanisms underlying choice be-
havior. In particular, this model has been used extensively
to study SAT. Overall, SAT has been linked to changes in
the boundary parameter a (e.g., Forstmann et al., 2008, 2010;
Mulder et al., 2013; Van Maanen et al., 2011; Winkel et al.,
2012).

To generate RT distributions for this model, I simulated
10,000 trials in each condition, with the following parame-
ters: µ = 0.2;σ = 0.3; t0 = 200;a1 = 0.3;a2 = 0.6;a3 = 0.72.
Table 1 presents mean RTs for correct responses and accuray
of these simulations, to illustrate that indeed a SAT is simu-
lated.

Table 1: Summary of simulated data.

Model Mean RT (ms) Accuracy
RCA
- a1 = 0.3 458 .67
- a2 = 0.6 1103 .80
- a3 = 0.72 1416 .84
MTS
- p1 = 0.6 885 .68
- p2 = 0.75 987 .72
- p3 = 1.0 1104 .80

Figure 3A displays kernel density estimates of the RT dis-
tributions for correct responses under the RCA theory. The
standard deviation of the smoothing kernel is set at 1,000 ms,
above the minimal value of 1 standard deviation in the data,
as suggested by Van Maanen et al. (2014). It is clear that these

density functions do not all cross at the same RT. Figure 3B
shows this even clearer. Here, the differences between each
pair of speed-stress levels (i.e., boundary settings) are shown.
The RTs where these differences are zero are the crossing
points. The absence of the fixed-point property in this simu-
lation is apparent from the multiple crossing points.

Mixing Task Strategies Simulation
The MTS simulation generates data from a stimulus-
controlled and a guess process. The stimulus-controlled pro-
cess is identical to the RCA simulation, except that the bound-
ary setting of the pure drift diffusion is always set at a = 0.6.
The guess process is simulated by a random draw from a
Bernoulli process representing the choice, and an indepen-
dent draw from a normal distribution with mean µguess = 400
and σguess = 100 representing the response time. Of note is
that the mean RT of the guess process is below the mean RT
of the stimulus-controlled process, as it represents the faster
speed-stressed trials (see the mean RT for the RCA simula-
tion with a2 = 0.6 in Table 1).

Table 1 again presents mean RT for correct responses as
well as accuracy for the simulations under the MTS theory.
This shows that MTS is indeed consistent with a general SAT
effect. Figure 3C shows the kernel density estimates of the
RT distributions (with the same smoothing kernel as for the
RCA simulations); Figure 3D the density differences. These
figures confirm that the MTS theory predicts a fixed-point in
the data, as all crossing points in Figure 3D align.

Analysis of Behavioral Data
Simulation of an RCA and an MTS model suggest that a
fixed-point in the data is consistent with the MTS theory, but
not with the RCA theory. To disentangle these alternative
accounts in the domain of perceptual decision making, I re-
analyzed data from Forstmann et al. (2008). In this study,
participants were asked to perform a random-dot motion task
while being stressed for either speed, accuracy, or both on a
trial-by-trial basis. This task has been used extensively in the
context of SAT (e.g., Palmer et al., 2005; Forstmann et al.,
2008; Van Maanen et al., 2011; Mulder et al., 2013) and SAT
effects have been explained by the RCA theory. However, a
formal comparison with the MTS theory has never been per-
formed. In this particular experiment, the presence of three
levels of speed-stress enables a test of the MTS hypothesis
that the fixed-point property holds in the data. If the MTS the-
ory is correct, then the proportion of guess responses should
be lower for accuracy-stressed trials than for speed-stressed
trials. Stressing both speed and accuracy (or rather not stress-
ing anything) should yield a proportion of guess responses
that is in between these two extremes.

The Task
In the random-dot motion task, participants had to indicate
from a cloud of semi-randomly moving dots what the over-
all direction of motion is. Prior to each stimulus, participants
were presented with one of three cues for 1,000 ms. The cues
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Figure 3: A. Kernel density estimates of three simulated conditions under the Response Caution Adjustment theory; lines
represent different threshold settings (a). B. Density differences of each pair of conditions from A. C. Densities of three
simulated conditions under the Mixing Task Strategies theory; lines represent the different proportions p of trials that are form
the stimulus-controlled process. D. Density differences of each pair of conditions from C.

could be either “SN” (referring to the German “Schnell”),
“NE” (“Neutral”, stressing neither speed nor accuracy), or
“AK” (“Akurat”). After a variable interval of 500 ms, the
stimulus appeared for another 1,000 ms, followed by 350 ms
feedback. Feedback reflected the previously presented cue.
Thus, when the cue was either “SN” or ‘’NE”, feedback was
given on response speed; when the cue was either “AK” or
“NE”, feedback was given on response accuracy. The exper-
iment consisted of 840 trials, equally distributed across the
conditions. A total of 20 participants took part in the exper-
iment (see Forstmann et al. 2008 for more details on the ex-
perimental procedure).

Results
To assess the presence of the fixed-point property, I only ana-
lyzed correct responses (additional simulations showed that
the influence of incorrect responses on the crossing points
was marginal). The kernel density estimates were computed
using a kernel with a standard deviation of 300 ms. Figure
4A and B illustrate that there is no fixed-point in the data. For
these figures I aggregated all data points to compute one den-
sity function per condition. However, to formally assess the
presence of the fixed-point property would be to test within-
subjects whether the crossing points are the same (Van Maa-
nen et al., 2014). Because standard frequentist analyses can
only test for the presence of a difference between conditions,
we prefer to apply Bayesian statistics (Rouder et al., 2012). A
Bayesian ANOVA (Rouder et al., 2012) quantifies the prob-
ability that the observed crossing points are sampled from
one underlying population (i.e., when the fixed-point prop-

erty holds) or are sampled from multiple populations (when
the fixed-point property does not hold).

Crossing points of the density differences per condition and
participant were computed and are presented in Figure 4C. A
Bayesian within-subjects ANOVA yields a Bayes factor of
53 in favor of multiple populations of crossing points. This
means that the data are 53 times more likely to be generated
by such a model than by a model assuming one true popula-
tion. This result is clearly not in agreement with the fixed-
point property, and by extension not in agreement with the
MTS theory.

Discussion & Conclusion

The data from Forstmann et al. (2008) is not consistent with
an important signature of binary mixture distributions. The
absence of the fixed-point property therefore speaks against
a MTS theory of SAT. A Bayesian analysis shows that it is
in fact 53 times more likely that the data are not from bi-
nary mixture distributions. This result is consistent with an
RCA theory of SAT. To some extent, this is not surprising,
given the excellent fits of cognitive models that implement
the RCA theory, both on this data set as well as on related
data (e.g., Forstmann et al., 2010; Van Maanen et al., 2011;
Mulder et al., 2010, 2013). However, no formal model com-
parison had so far been attempted. Theoretically, the MTS
theory could have generated data that would be excellently fit
by RCA models (cf. model mimickry, Ratcliff, 1988; Ratcliff
& Smith, 2004). The phase-transition model of Dutilh et al.
(2011, an instance of MTS), has been compared to other mod-
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Figure 4: A: Densities of the correct RT distributions in the data. B. Density differences of each conditions pair from A. C.
Boxplots indicating the distribution of crossing points per condition pair.

els, but the authors did not include an RCA model in their
model comparison. Therefore, although they argue against
RCA, it cannot be excluded based on their study.

It is entirely possible that the effects that are collectively re-
ferred to as SAT effect depend on different cognitive mecha-
nisms. For example, if presenting a speed-stress cue results to
increased preparation (e.g., motor preparation, Rhodes et al.
2004) independently of which mode is actually used on that
specific trial, then a fixed-point would also not observed. This
is because the observed response time distributions are not
pure mixtures of two base distributions, but rather constitute
multiple processes.

Additionally, an experimental paradigm that promotes true
guessing behavior may indeed still best be explained by MTS,
while an experiment where guessing never leads to satisfac-
tory behavior may be best explained by RCA. Under this
view, the best explanation of SAT may be a mixture of
RCA and MTS. Nevertheless, the current model and analy-
ses strongly suggests an important role for adjusting control
when people are confronted with situations in which the im-
portance of response speed varies.

To disentangle the MTS and RCA theories, I took advan-
tage of the different predictions that these two models make
with respect to mixtures of behaviors. The fixed-point prop-
erty provides an excellent tool to test these predictions.3 Sim-
ilar predictions may be found in other domains where multi-
ple strategies for a task may (or may not) be expected. Ex-
amples include multiple reasoning strategies that may be in-
volved in reasoning tasks (Meijering et al., 2010) or varying
proportions of fast-and-automatic processing and slow and
deliberate processing, such as can be found in motor sequence
learning (Rhodes et al., 2004) or developmental transitions
(Van Rijn et al., 2003). For these kinds of response time data,
the presence or absence of the fixed-point property seems to
be an easy test of multiple competing task processes.

3Van Maanen et al. (2014) includes R code for testing the fixed-
point property.
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Abstract
Speeded and/or simple response tasks may be cognitively mod-
eled by a random walk process that accumulates to threshold.
In cases of tasks where mainly one characteristic response is
observed, at varying latencies, then random walks involving
only positive drifts that each arrive at a single threshold, pro-
vide a suitable accumulation modeling account of the data; and
advantageously, this accumulation model is exactly described
by the shifted Wald (SW) probability density function. We will
demonstrate how the SW distribution is thus a noteworthy cog-
nitive model for these tasks, which uniquely possesses simul-
taneously, high utility as an objective data measurement tool
for the response time (RT) distributions. Per each experiment
condition, its three parameters can decompose the observed
mean RT value, quantify the shape and characteristics of the
observed RT distribution, and account for significant differ-
ences between distributions with near-identical mean values;
regardless of whether one accepts the cognitive interpretation
of the random-walk accumulation process. We present the SW
model and demonstrate its efficiency and utility on both simu-
lated and real data.
Keywords: response time analysis, shifted Wald, psycho-
metrics, accumulation modeling

Introduction
In the psychological sciences, the efficacy of modeling the
distributions of response time (RT) data, rather than only
using classical methods, to obtain a deeper understanding
of experiment effects and underlying processes, has been
well-demonstrated in the preceding literature (Ratcliff, 1978;
Luce, 1986; Ratcliff & Rouder, 1998; Andrews & Heathcote,
2001; Heathcote, 2004; Van Zandt, 2000, 2002; Ratcliff et al.,
2004; Balota et al., 2008; Van Maanen et al., 2012; Staub
et al., 2010; Balota & Yap, 2011). In the present paper we
bring attention to a simple-yet-powerful tool for RT data anal-
ysis, that despite its utility, is not yet in general use within the
psychological community.
There exist quantitative distribution measurement tools for

RT data, in which the parameters describe the properties
of the observed data distribution; these tools are typically
closed-form probability density functions with positive skew
and values, such as the shifted Wald (SW, see Chapter 8.2
Luce, 1986; Heathcote, 2004), ex-Gaussian (Heathcote et al.,
1991), shifted Weibull, shifted log-normal, and Gumbel (Wa-
genmakers & Brown, 2007). Then there are more compli-
cated models of RT data that model signal accumulation:

such as the Linear Ballistic Accumulator (LBA, Brown &
Heathcote, 2008), race model (LaBerge, 1962), and the Drift
Diffusion Model (DDM, Ratcliff & Murdock, 1976; Ratcliff,
1978; Ratcliff & McKoon, 2008), however their parameters
do not directly describe the distribution of RT data. We bring
to attention that uniquely, the SW distribution does both at
the same time, and argue that as an accumulation model, it is
on par in usefulness with more complex models of accumu-
lation, when used in the appropriate context.

The Shifted Wald
Among a number of situations, the SW for RT data is apt
for experiments consisting of speeded (e.g. 500ms-2000ms)
and/or simple response tasks, where in particular, the ratio
of errors to correct responses is small; some concrete exam-
ples consist of visual search, picture-naming, simple detec-
tion, and go no-go tasks. One should note that being only
a distribution that is fit, the SW is a very simplistic model
with few assumptions. However despite its simplicity, it pos-
sesses a formidable characteristic that stands it apart from the
other distributions and models listed: while its parameters di-
rectly quantify the RT distribution, they also simultaneously,
directly describe the RT values in the context of a Brownian
motion process (BMP) in which a latent quantity accumulates
to threshold; this is the same kind of BMP, related throughout
the literature to signify the signal-to-response threshold event,
that is at the root of the other popular signal-accumulation
models, such as the DDM, race, and LBAmodels. Thus while
being a quantitative measurement tool that can be applied to
describe the distribution of any set of magnitude RTs, the SW
model also provides an opportunity for theoretical work, such
as on the cognitive-behavioral response process, based on its
ability to also describe the data in terms of latent signal accu-
mulation.

As an Accumulation Model
The SW with parameters, γ , α , and θ , can directly describe
the data in the context of a continuous time-stochastic pro-
cess (a type of BMP), consisting of a single latent quantity,
X , that is continuously accumulating until it reaches a thresh-
old. More specifically, X , accumulates at a given rate, γ , with

220



Time t (ms)

Xt

−20

−10

0

10

20

30

α = 40

θ = 200 700 1200 1700

γ = 0.08

0 500 1000 1500 2000

Data Value Y

θ  , γ    ,   α
2θ, γ    ,   α
θ  , γ 2,   α
θ  , γ    , 2α

Figure 1: The SW as a cognitive-behavioral model (left), describing the RT data in the context of a latent quantity (e.g. signal)
accumulating to threshold, α , at rate, γ , where θ accounts for the time lapsed outside of (around) this process. Then the SW as
a distribution measurement tool (right). The black distribution has θ = 200, γ = 0.08, and α = 40, and illustrated in different
shades of grey, are individual parameter adjustments that each cause unique distribution outcomes. Here they are each adjusted
in the direction that results in bigger data values (e.g. slower RTs, slower mean RTs), which in each instance, results by a
different distribution form.

noise until it reaches a threshold, α ; and θ (the shift) is the
minimal time lapsed outside of the process, which can be dis-
tributed before and after this accumulation process; the to-
tal time lapsed, T , is the data fit by the SW. This latent ac-
cumulation process provides a potential model for any data
that involves a quantity accumulating over time that eventu-
ally reaches a value (or threshold). The SW thus provides the
opportunity for a potentially-useful model, analogous to the
signal-to-response threshold event of behavior.
In the context of RT data and the appropriate experimen-

tal task, this kind of underlying accumulation process that
we note is similarly shared (by elementary adjustments) with
the other aforementioned accumulation models, has been
well-supported to correspond to a signal-to-response thresh-
old, cognitive-behavioral event. In the case of the signal-to-
response threshold interpretation of the SW: γ corresponds to
the accumulation rate of the internal signal X , α to the thresh-
old needed to initiate the physical response, and θ to the time
distributed before and after this process (thus time lapsed out-
side of signal accumulation). The total time lapsed, T , is the
RT recorded.
This latent accumulation process is illustrated in the left

plot of Figure 1, in which many random walks with drift
(RWDs, starting at θ = 200, and having average slope γ =
0.08) as they intercept threshold α = 40, are shown to corre-
spond to a SW distribution with the same parameters: {γ =
0.08 , α = 40 , θ = 200}. Each of these RWDs are of the form

Xt = Xt−1+ γ + ε , (1)

where the position of a random variable X at time t, as Xt ,
is equal to its prior position value, Xt−1, plus a movement

tendency, γ > 0 (known as drift), and marginal error, ε (or
noise).1

Then note that any given threshold, α > 0, unto which the
time process terminates when Xt reaches that value, as Xt ≥α ,
will produce a Wald distribution of data: letting T denote the
time t at which Xt reaches α , then the data is of the form

T = (Ti)1×N , (2)

for the N times (e.g. or RT observations) that the SW dis-
tribution describes (T is also known as the first passage time
of the BMP). Parameter θ functionally accounts for these as-
pects external to the RWD by shifting all values of t by a
constant, in which the starting point of the accumulation pro-
cess, X0 = 0, instead becomes, Xθ = 0. While θ shifts the
distribution from the left, note that its effect, mathematically,
is equivalent in being able to account for external processes
that occur on either side of the accumulation event.

As a Distribution Measurement Tool

While the SW and its parameters can directly describe the
data in the context of a latent quantity accumulating to thresh-
old, the SW can also serve as an objective distribution mea-
surement tool, in which its parameters, γ , α , and θ , will di-
rectly quantify the density of the observed RT distribution.

1The RWD form in (1) is the same kind used by other models
of accumulation: the LBA, race, and DDM, with elementary adjust-
ments; these are specified in the Discussion.
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The SW distribution with probability density function

f (X | γ ,α ,θ ) =
α?

2π(X −θ )3

· exp
?
− [α − γ(X −θ )]2

2(X −θ )

?
,

(3)

has expected value α/γ + θ , and variance α/γ3, for X > θ .
The pdf is illustrated in the right plot of Figure 1, in which the
distribution in black print has parameters θ = 200, γ = 0.08,
and α = 40; then in different shades of grey, the figure also il-
lustrates the outcome obtained when each of these parameters
are individually adjusted in the direction that results in bigger
data values (e.g. slower RTs). In each parameter adjustment,
there is a unique distribution outcome: for example one can
see parameter θ will give the position of the leading edge of
the distribution, and shifts the entire distribution horizontally
(to the right for slower RTs); then γ and α both serve to lo-
cate the central tendency within the shifted distribution; but
γ is more informative for mass in the tail, and hence steep-
ness of the leading curve (thicker tail for slower RTs); and α
for the deviation centrally around the mode value, and hence
normality around the mode (larger deviation for slower RTs).

While these individual parameter adjustments illustrated in
the right plot of Figure 1, each provide for a unique distri-
bution outcome, note that some of these distributions how-
ever share similar mean RTs, such as the dark and medium-
grey distributions. Such can be the case in real data, when
markedly different distributions, with near-equal means, are
observed across experimental manipulations. Experiment
manipulations with such contrasting distribution results, yet
similar mean RTs, could likely cause a Type II error in clas-
sical analyses that mainly compare the means.

The advantage of the SW as a measurement tool is its abil-
ity to parse the distribution for these features by its three-
parameter decomposition of the central tendency, in which as
noted before, E(X) = α/γ + θ . In total, noteworthy advan-
tages of the SWmay include: (1) the whole distribution being
fit across each experimental manipulation; (2) experimental
manipulations being quantified along three kinds of distinct
distribution outcomes; (3) observed RT data means being de-
composed according to their distributional make-up; (4) ob-
served means with similar values may be revealed rather as
markedly different; and (5), the RT data being fit on its natural
scale by the SW, with no need for an inherently-imperfect ap-
proximation to the normal. These benefits can be further sup-
ported by early works expounding the importance of account-
ing for the full RT distribution by Luce (1986); also some of
the aforementioned benefits are explicitly discussed by Balota
et al. (2008); Balota & Yap (2011) yet in the context of the
ex-Gaussian, which is also an excellent distribution measure-
ment tool, but does not have this direct correspondence to a
latent accumulation process.

Utilizing the Shifted Wald
Whether one decides to utilize the SW as a distribution mea-
surement tool, or as an accumulation model of the data, the
approach of use is the same: to simply fit the distribution,
which is to estimate its three parameters. It is the same ap-
proach since the parameters of the SW simultaneously de-
scribe both the shape of the RT distribution, and the data in
the context of latent accumulation to threshold.

Application to Simulated Data
We developed a fitting method that combines techniques of
deviance criterion minimization of observed-versus-predicted
quantile distance, and maximum likelihood (ML) estimation,
to fit the model parameters. The approach is summarized as
follows. In the case of the SW, given a parameter value for
its shape β , the other two parameters, θ and α , may be deter-
mined by closed-form ML estimators, developed as in Nagat-
suka & Balakrishnan (2013). Parameter γ is then obtainable
as γ = 1/αβ . An algorithm searches the near-entire space of
β , and for each β , computes the model-predicted quantiles in
the near-full range at high resolution (e.g. 100 equally-spaced
quantiles between the .02-.98, or .001-.999 range depending
on choice of fitting outliers in the data).2 The parameter set
that leads to the smallest absolute difference in the observed-
versus-predicted quantiles is selected as the fit.
We have found the SW in the context of this method,

to be robust in the recovery of parameters during cases of
both small numbers of observations N = 50, as well as large
N = 1000; the fitting procedure finishes on the level of sec-
onds using standard computing technology, and can be sim-
ply performed via R or MATLAB. The following table con-
tains the simulation recovery results, which are the average
Pearson r correlations between the model fit and generating
parameters across 1000 recovery simulation trials; each row
corresponds to the recovery of a different data set size (e.g.
number of observations), N.

Table 1: Parameter Recovery, Average Pearson Correlations
Observations γ α θ

N = 1000 0.99 0.95 0.99
N = 500 0.98 0.93 0.99
N = 250 0.97 0.89 0.99
N = 125 0.94 0.82 0.98
N = 50 0.88 0.68 0.97
N = 15 0.72 0.47 0.92

In addition, the fits also matched the observed data quantiles
very well. Given the desirable performance of the method,
we utilize the approach to fit the real data.

Application to Real Data
In this section, the fitting approach is demonstrated on a data
set involving a visual search (VS) task by baboons of mixed
ages, collected by Goujon & Fagot (2013); and the results

2For more information, see Anders et al. (in review).
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Figure 2: The SW fit to the VS task by baboons: (left) mean parameter values with bars representing standard error of the mean
grouped by experiment factor, NC = 1080 and NTr = 135, in which the grey dots show the training effect for the non-predictive
(shuffled) condition, and the black for the predictive condition; (top-right) fitted-versus-observed, quantile-quantile plot for the
N = 2,158 distributions fit for all deciles; (bottom-right) the distribution of residuals for the nine deciles across the distributions.

will be presented in the vocabulary of the SW as a latent ac-
cumulation model for the data. The experimenters explored
an animal model (via baboons) of statistical learning mecha-
nisms in humans, specifically the ability to implicitly extract
and utilize statistical redundancies within the environment for
goal-directed behavior. Twenty-five baboons (species Papio
papio) were trained to perform a VS task with contextual
cueing. The task consisted of visually searching for a tar-
get (the letter “T”) that was embedded within configurations
of distractors (letters “L”), which were either arranged pre-
dictively to locate the target (hence a contextual cue), or non-
predictively (shuffled, without a cue).
As organized by the original researchers, there are three

meaningful partitions: theC= 2 predictive vs. non-predictive
contextual cue conditions; the E = 40 time-points (epochs) to
observe training effects, in which every unit step in E consists
of 5 blocks (each block contains 12 trials, and thus each E
contains 60 trials); and the B = 27 individual baboons. These
three meaningful factors provide for N = 2158 separate dis-
tributions to each be individually fit by the SW. The average
distribution length (number of observations) is L̄ = 30, with
standard deviation, SD(L) = 1.10.
Figure 2 provides the results of the analysis on the baboon

VS task. The left column of three plots respectively contains
the means, and their standard errors, of the model-fit mea-
surements of three SW parameters: γ , α , and θ , grouped
by experiment factor: condition (NC = 1080) and training ef-
fect, in which the levels are averages of every five proceeding
epochs, to simplify the illustration (NTr = 135 per each of two

conditions). Beginning with consideration of condition, the
model clearly isolates the effect of condition (non-predictive
vs. predictive) on a single parameter, the accumulation rate of
signal strength (or target detection), γ ; note that the standard
errors of the mean in this case are in fact too small to be seen
in the plot. The other parameters, α and θ , which in this task
might be respectively interpreted as a certainty criterion be-
fore responding, and mechanical response/visual processing
RT speed, showed no substantive change across conditions.
Next, the analysis of training effects over time are dis-

played for each contextual cue condition: the predictive
condition in black points, and the non-predictive (shuffled)
condition—which provides little information (e.g. cues) to
learn from while doing the task–in grey points. The train-
ing effect appears to adjust each of the parameters over time
in a way that supports faster RTs, yet interestingly in dif-
ferent ways. Most notably, the TEA parameter, θ , for me-
chanical/perceptual RT processes, benefits equally by train-
ing across epochs during both conditions–which is a rather
plausible finding—as does the response caution / signal cri-
terion parameter, α . In contrast, there is a marked difference
across conditions in the benefit rate of the signal accumula-
tion parameter, γ , by training.
Furthermore, while each of the SW parameters appears to

be modulated by training, they differ in their rate of change
over time, and their onsets/magnitudes of diminishing re-
turns. For example, γ appears to benefit in a consistently-
increasing linear fashion from levels 1 to 8; while α and θ
speed benefits occur in uniquely different curvi-linear fash-
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ions, with different diminishing or zero-return onsets, respec-
tively near training points 5 and 7.
The right column of plots in Figure 2 provide model

goodness-of-fit checks to verify if the observed data quan-
tiles are appropriately fit by the SW. The top plot contains the
deciles of all N = 2158 distributions fit with the SW; as one
can see, nearly all of the fits match the observed deciles well
in a corresponding x = y fashion, with very few outliers. The
bottom plot provides the distribution of residuals for each of
the nine deciles across the 2158 cells fit; here it is shown that
most of the deciles are similarly well fit, with a slightly larger
variance for the deciles 7-9, which tend to also hold increas-
ingly larger RT magnitude and variation in the observed data.

Discussion
The utility of the SW distribution, to serve as a cognitive
model for certain response tasks by describing the data in the
context of accumulation to threshold, as well as its useful-
ness as an objective measurement tool for RT distributions,
was presented. Noteworthy and unique aspects of the SW,
which set it apart from other distributions that may be used
as RT distribution measurement tools, include its flexibility
to accommodate a number of distribution shapes; its three-
parameter decomposition of the mean, each parameter ac-
counting for a distinct distribution outcome; its ability to be fit
well during cases of few observations; and most distinctively
its unique ability to also describe the data via accumulation
to threshold.3

Important clarifications can be made to resolve confusions
between the SW distribution, particularly its accumulation
model characteristic, and more complex accumulation mod-
els such as the DDM, race and LBA models. Firstly, the SW
distribution is the only model of the three in which its param-
eters directly quantify the distribution of RTs, and simultane-
ously directly describe the RT data in the context of a latent
quantity accumulating to threshold. Secondly, it always con-
sists of only one accumulator modeling the response process,
with one threshold.
On the latent accumulator aspect of the SW, there are only

minor modifications which will deliver the researcher to one
of the three other prominent models: the DDM, race, and
LBA. Each of these three models have the same kind of accu-
mulator as in the SW: the DDM instead has two thresholds: a
lower and upper, to model two characteristic outcomes; and
hence allows for negative drift rates, e.g. γ < 0, to allow sub-
stantial observations on the lower boundary. The race model
has multiple instances of the same accumulator as the SW, to
model any number of characteristic responses, in which the
first accumulator that reaches the threshold wins. The LBA
has this same property of the race model, except the latent
quantity accumulates in a constant linear fashion (known as a
“random ray”), rather than as drift with random noise.

3Indeed other measurement distributions (e.g. ex-Gaussian,
Gumbel) may also provide excellent utility or fits of RT data. How-
ever their principal difference from the SW, is they do not possess
the ability to also describe the data by accumulation to threshold.

Thus all of these approaches are indeed very closely re-
lated. For example, the SW and DDM could be said to
constitute the very same supra-model: they both stem from
the same family process, the Wiener process, and as men-
tioned, arise from only subtle differences in parameter values
(see respectively Chapter 3, and pages 8–24, Chhikara, 1988;
Gerstein & Mandelbrot, 1964; Jones & Dzhafarov, 2014, for
more information); in which some parameterizations of the
Wiener process result in a closed-form probability density
function (e.g. the SW), while others will not (e.g. the DDM).
They are hence simply nested models, both using the same
kind of RWD, or Brownian motion process designed in (1).
Therefore in the context of an appropriate data application,
an attack or critique on the elements of one of these models,
such as the validity of the cognitive interpretation of this la-
tent Brownian motion process, may be considered an attack
on all three models.

A concrete issue of practicality however, worth mentioning
between simple models, such as the SW, that have one ac-
cumulator and one threshold for the observed response, and
more complex models that seek to have separate accumula-
tors, and/or thresholds for every response option, is the large
benefit of the SW in the context of the limitation of the data.
More specifically, the limitation of the number of observa-
tions available in the data, per experimental manipulation and
per response alternative, can be a problem that is exacerbated
much more quickly as one increases in the extra numbers
of accumulators and/or thresholds that more complex models
have. For example in our baboon data application, the depth
that we explore the experimental manipulations, estimating
individual parameters for each combination of them, by par-
ticipant, is a resolution that would not have been appropriate
for the other more complex models. This is because there
were insufficient amounts of observations for each response
alternative, per experimental manipulation, to drive the esti-
mation of the other models’ extra parameters that arise from
additional accumulators / thresholds; these models would be
attempting to model data, with far too many missing observa-
tions. Thus it is important to take into account the number of
observations per data cell sought to be analyzed: when select-
ing (1) an accumulator model variant, and (2) the depth that
one parameterizes the model across cells; e.g. having enough
observations (such as > 30) for each extra response option
modeled, per cell fit.

The limitation of the SW, for being applied to data with
many response alternatives observed per experimental manip-
ulation, is it lacks the ability to serve as a complete genera-
tive model for the full data. For example, considering data
with substantial amounts of both corrects and errors, the SW
can be applied separately to the corrects and errors. Here
it may serve as a distributional measurement tool to quan-
tify distribution differences across conditions, and/or deliver
a latent accumulation account across experimental manipula-
tions, conditional on the respondent providing that observed
(correct or error) response. However in this case, the SW
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cannot serve as a full generative model, for example to pro-
duce near the same number of observed number of corrects
and errors, by only knowing the parameters alone, and not
how many were corrects and errors were observed in the first
place. In contrast, a model such as the DDM, race, or LBA,
can not only serve to account for differences between the ex-
perimental manipulations, but also as a complete generative
model for the data, by having the a priori probability of a cor-
rect or error response, already pre-coded in the model, by be-
ing in the respective drift rates for each experimental manip-
ulation; and thus are excellent tools for these multi-response
option cases.
Thus in each model having its unique assumptions, ben-

efits, and restrictions, it is up to the researcher to select the
model(s) that best suit his or her research aims within the
particular application. While there are certainly appropriate
situations and data that could considerably benefit from a SW
analysis approach, currently there are very few publications
in the psychological literature that utilize the distribution. We
hope to have advocated the distribution’s use, as well as to
have facilitated a deeper understanding of the SW, and its po-
sition in the context of accumulation modeling.
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able his data.

References
Anders, R., Alario, F.-X., & van Maanen, L. (in review). The
shifted Wald distribution for response time data analysis, .

Andrews, S., & Heathcote, A. (2001). Distinguishing com-
mon and task-specific processes in word identification: A
matter of some moment? Journal of Experimental Psy-
chology: Learning, Memory, and Cognition, 27, 514.

Balota, D. A., & Yap, M. J. (2011). Moving beyond the mean
in studies of mental chronometry the power of response
time distributional analyses. Current Directions in Psy-
chological Science, 20, 160–166.

Balota, D. A., Yap, M. J., Cortese, M. J., & Watson, J. M.
(2008). Beyond mean response latency: Response time
distributional analyses of semantic priming. Journal of
Memory and Language, 59, 495–523.

Brown, S., & Heathcote, A. (2008). The simplest complete
model of choice response time: Linear ballistic accumula-
tion. Cognitive Psychology, 57, 153–178.

Chhikara, R. (1988). The Inverse Gaussian Distribution:
Theory, Methodology, and Applications volume 95. CRC
Press.

Gerstein, G. L., & Mandelbrot, B. (1964). Random walk
models for the spike activity of a single neuron. Biophysi-
cal Journal, 4, 41–68.

Goujon, A., & Fagot, J. (2013). Learning of spatial statis-
tics in nonhuman primates: Contextual cueing in baboons
(papio papio). Behavioural Brain Research, 247, 101–109.

Heathcote, A. (2004). Fitting Wald and ex-Wald distributions
to response time data: An example using functions for the
s-plus package. Behavior Research Methods, Instruments,
& Computers, 36, 678–694.

Heathcote, A., Popiel, S. J., & Mewhort, D. (1991). Anal-
ysis of response time distributions: An example using the
stroop task. Psychological Bulletin, 109, 340.

Jones, M., & Dzhafarov, E. N. (2014). Unfalsifiability
and mutual translatability of major modeling schemes for
choice reaction time. Psychological Review, 121, 1.

LaBerge, D. (1962). A recruitment theory of simple behavior.
Psychometrika, 27, 375–396.

Luce, R. D. (1986). Response Times: Their Role in Inferring
Elementary Mental Organization. 8. Oxford University
Press.

Nagatsuka, H., & Balakrishnan, N. (2013). A consistent
method of estimation for the parameters of the three-
parameter inverse Gaussian distribution. Journal of Sta-
tistical Computation and Simulation, 83, 1915–1931.

Ratcliff, R. (1978). A theory of memory retrieval. Psycho-
logical Review, 85, 59.

Ratcliff, R., Gomez, P., & McKoon, G. (2004). A diffusion
model account of the lexical decision task. Psychological
Review, 111, 159.

Ratcliff, R., & McKoon, G. (2008). The diffusion decision
model: Theory and data for two-choice decision tasks.
Neural Computation, 20, 873–922.

Ratcliff, R., & Murdock, B. B. (1976). Retrieval processes in
recognition memory. Psychological Review, 83, 190.

Ratcliff, R., & Rouder, J. N. (1998). Modeling response times
for two-choice decisions. Psychological Science, 9, 347–
356.

Staub, A., White, S. J., Drieghe, D., Hollway, E. C., &
Rayner, K. (2010). Distributional effects of word fre-
quency on eye fixation durations. Journal of Experimen-
tal Psychology: Human Perception and Performance, 36,
1280.

VanMaanen, L., Grasman, R. P., Forstmann, B. U., &Wagen-
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Abstract
As we increasingly rely upon our computer information 
systems to  store and operate on sensitive information, the 
methods we use to authenticate user identity also become 
more important. One of the most important such methods is 
the password. However, passwords that provide better 
security also tend to be more difficult to remember. They also 
tend to be difficult to type, and typing errors can have 
negative consequences such as being locked out of a critical 
information system. We present a computational cognitive 
model of password rehearsal and a typing extension to the 
ACT-R cognitive architecture intended  to study human-
computer interaction issues in the usable security domain.

Keywords: Human-Computer Interaction; Learning; 
Memory; Typing; Human Error

Introduction
As cyber attacks on user-chosen passwords abound, there 
are large-scale, long-term research efforts underway (e.g., 
the National Strategy for Trusted Identities in Cyberspace, 
2011) to ultimately replace passwords as an authentication 
mechanism. In the near-term however,  password research is 
still important, as better understanding of the cognitive and 
perceptual motor components of creating, rehearsing, 
recalling, and typing passwords is necessary to help inform 
password policies and password requirements. Furthermore, 
even as alternative authentication mechanisms become more 
prevalent (e.g., biometrics), there will undeniably be legacy 
systems reliant upon passwords for quite some time.
 While the importance and impact of password research is 
clear, it can be difficult to obtain real-world password data 
due to security and privacy concerns, or in the case of 
leaked password datasets, due to ethical concerns. It would 
be prohibitively expensive and time-consuming to collect 
laboratory data from large numbers of participants across 
relevant password requirements, specifically different 
combinations of password rules for length and complexity. 
There are also issues of experimental control versus external 
validity; in researching password requirements,  does one 
assign passwords or have participants generate their own?
 As in other domains where access to human data can be 
challenging, behavioral data from existing password 
experiments can be supplemented with predictive models of 
human performance. Unfortunately,  most password studies 
do not collect sufficiently detailed data to assess model 
validity and plausibility. The cybersecurity and modeling 
fields could both benefit from computational cognitive 

models across a variety of password-related tasks: initial 
learning and rehearsal strategies; recall and entry of well-
memorized passwords; and cross-platform (i.e., desktop 
versus mobile) password typing. The current work focuses 
on support for modeling desktop password rehearsal and 
typing, specifically for complex, system-generated 
passwords found in higher-security enterprise environments.

Transcription Typing Versus Password Typing
There is certainly a large and longstanding body of expert 
typing and transcription typing literature (e.g., Coover, 
1923, Gentner, 1981, Salthouse, 1986), including 
examination of a variety of factors such as age and skill 
(e.g., Salthouse, 1984). However, there are several 
important distinctions between general transcription typing 
and password typing. 
 In the higher-security enterprise environments for which 
the current work is intended, passwords are quite different 
from words—in fact, most password policies explicitly 
prohibit the sole use of words, as dictionary attacks on 
passwords are so successful, dating back to the late 1970s 
(Morris & Thompson, 1979). Higher-entropy passwords 
differ quite significantly from the words commonly found in 
most traditional transcription typing experiments. “Better” 
passwords are supposed to be as random as possible in order 
to make guessing them more difficult; they should not 
follow orthographic rules as do regular words. Therefore, 
when typing complex passwords, we cannot leverage many 
of the benefits of natural language. Beyond simple inclusion 
of lowercase and uppercase letters, most higher-entropy 
passwords also include numbers and special characters, 
making it difficult or impossible to leverage error correction 
techniques during password typing. Furthermore, password 
text is usually masked, whereas normal text is not.  These 
factors may contribute to changes in strategy for carefully 
typing passwords in comparison to normal transcription 
typing. 
 In addition to behavioral studies of transcription typing 
(see Salthouse,  1986 for a good review), there have also 
been cognitive models of the task. By far the most 
comprehensive and well-known computational cognitive 
model of transcription typing is Bonnie John’s TYPIST 
(John, 1996).  John’s TYPIST quantified 19 of the 29 
previously reviewed Salthouse (1986) phenomena as well as 
two additional phenomena. While TYPIST quantified 
transcription typing along the time dimension with 
scheduling charts, it did not simulate decreased performance 
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variability with higher typing skill, nor brain areas’ 
activation patterns, as have more recent queuing network 
models (e.g.,  Wu & Lui, 2004). Regardless, to the best of 
the authors’ knowledge, there does not currently exist an 
ACT-R model of rehearsal and typing for complex, system-
generated passwords on a standard desktop QWERTY 
keyboard. The current work is a necessary first step to begin 
addressing this gap.

Typing System-Generated Passwords
Prior Work
The current work was motivated by a desire to use cognitive 
modeling as an error exploration technique to supplement 
prior usable security research. The primary goal was to 
better understand the underlying cause of errors reported in 
a recent study of complex password entry on desktop 
computers (Stanton & Greene, 2014). This section describes 
relevant methodology and results of interest from said study.

Method In the Stanton and Greene (2014) study, 
participants were given ten system-generated1 passwords in 
a random order. Passwords ranged in length from six to 14 
characters (see Table 1). 

Table 1: Stimuli (Stanton & Greene, 2014).
Password Length
5c2'Qe 6

3.bH1o 6

m3)61fHw 8

ua7t?C2# 8

p4d46*3TxY 10

q80<U/C2mv 10

d51)u4;X3wrf 12

6n04%Ei'Hm3V 12

m#o)fp^2aRf207 14

4i_55fQ$2Mnh30 14

Each password had to contain at least one uppercase letter, 
one lowercase letter, one number, and one special character. 
Passwords could not end with an exclamation mark, nor 
could passwords begin with a capital letter. Note the variety 
of symbols in the preceding stimuli, many of which are not 
supported for typing in standard ACT-R. 
 Two groups of participants were tested in the Stanton and 
Greene (2104) study. One group was from the Washington, 
DC (WDC) metropolitan area in the United States, and the 
other was from the University College London (UCL) in the 
United Kingdom. This sampling distinction is important, as 

results differed somewhat by participant group.  The authors 
proposed that this might be due to differences in age and/or 
typing ability between the two groups, as the WDC group 
was older than the younger UCL group, which was 
composed of mainly undergraduates.
 In the Stanton and Greene (2014) study, participants 
received one password at a time, and for each password, had 
to complete a series of three tasks: practice, verification, and 
entry. During practice, the password was visible, and 
participants could practice typing the password in a large 
text field. Participants could practice typing the password as 
many or as few times as they wished. There was no 
feedback given during the practice task, and typed text was 
visible (i.e., not masked as in a regular password field). 
 During verification, the password was not visible, and 
participants had to enter the memorized password correctly 
in order to move onto the entry screen. Typed text was 
visible (i.e.,  not masked) during verification. If participants 
failed the verification task, they could continue to attempt 
verification, or choose to return to the preceding practice 
screen to practice the password again.  Regardless,  after 
participants completed the verification task, they moved 
onto the entry task. 
 During entry,  participants had to enter the memorized 
password ten times. On the entry screen, the password was 
not visible, nor was typed text visible. Instead,  it was 
masked with asterisks, as password fields tend to be in use. 
After participants completed the three phases—practice, 
verification, and entry—for all ten passwords, they received 
a surprise recall test. During the surprise recall test, typed 
text was visible (i.e., not masked). 
 Note that although modeling cognitive rehearsal and 
disambiguating memory from motor errors were the foci of 
the current work, it was necessary to include a description of 
the larger experiment here as well, since expanding the 
current model to account for additional phases of the 
experiment is potential future work. Furthermore, planning 
for future model expansion to address those additional 
experimental tasks was influential in determining 
implementation of the current password typing model.

Results Here we focus on errors rather than timing results 
from the Stanton and Greene (2014) study. Both are 
important to test the validity of a model, but the decision to 
emphasize errors rather than times for password typing 
parallels their importance in the real world. Accounts are 
often locked for too many erroneous login attempts, but it is 
virtually unheard of for a user to be locked out for typing 
too slowly. Furthermore, knowing which error categories 
were most prevalent was helpful for determining where to 
focus our modeling efforts,  as well as for evaluating model 
plausibility. 
 There were several error classes reported in the 
aforementioned study. Table 2 presents results from Stanton 
and Greene (2014) in order of decreasing error category 
prevalence. Note that the table is ordered based on total 

1 Advanced Password Generator from BinaryMark was used. Disclaimer: Any mention of commercial products or reference to commercial 
organizations is for information only; it does not imply recommendation or endorsement by the National Institute of Standards and 
Technology nor does it imply that the products mentioned are necessarily the best available for the purpose.
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error percentages; the order would differ slightly if based on 
either the WDC or UCL participant group.

Table 2: Categorized errors (Stanton & Greene, 2014), 
rounded to nearest percentage.

Error Category WDC UCL Total

Incorrect capitalization 38% 51% 45%

Missing character 25% 10% 17%

Adjacent key 8% 10% 9%
Wrong character 6% 12% 9%

Transposition of characters 10% 6% 8%

Extra character 7% 7% 7%

Zero instead of an “O” 3% 3% 3%
Wrong place within password 3% 1% 2%

It should be immediately obvious from Table 2 above that 
incorrect capitalization was the largest class of errors for 
both participant groups. It is by far the most interesting class 
of errors to model for several reasons: 1) the sheer 
magnitude of the incorrect capitalization error class in 
comparison to other error categories, 2) the practical 
significance of that error class given current password 
requirements, and 3) the interesting theoretical question 
posed by the nature of that particular error.
1) At 45% of the total error corpus, incorrect capitalization 

errors were nearly three times as likely as the second 
most prevalent error class (missing character errors, 17% 
total), and incorrect capitalization errors were five times 
as likely as the third most prevalent error categories 
(adjacent key and wrong character errors, each 9% total). 

2) The fact that the most frequently occurring error was 
incorrect capitalization is quite significant given that 
most modern password policies require at least one 
uppercase letter. Furthermore, the majority of special 
characters—also required by many password policies—
require shifting. Twenty-one of the total 32 possible 
symbols require shifting, whereas only 11 do not.

3) A particularly interesting point about incorrect 
capitalization errors is that based purely on the behavioral 
data reported in Stanton and Greene (2014), it is unclear 
whether those errors were memory errors or motor 
execution errors. Answering this question would help 
inform typing theory specifically for complex passwords.

An ACT-R Model of Password Rehearsal

Before enabling ACT-R to type capital letters, a cognition-
only (i.e., no use of the motor module) model of password 
rehearsal was constructed,  to test whether it alone could 
account for the errors seen in the behavioral data.

Stimulus Selection
Given the artificiality of having people learn 10 randomly 
generated passwords in a single session, rather than attempt 

to model the entire stimuli set at once, a single password 
was selected for the initial model: q80<U/C2mv. This 
allowed the model focus to be on the cognitive phenomena 
of interest: rehearsal and retrieval of a single password, 
which is more reminiscent of a real-world scenario, where 
we attempt to rehearse a newly generated password to login 
to a single account. Why select that particular password 
though? Of the 10 passwords in Table 1, the “q80” password 
seemed the most interesting to model for several reasons. 
First, at 10 characters long, it was one of the two middle 
length passwords. (The shorter passwords are really too easy 
by today’s more stringent password rules, as most higher-
security enterprise environments require a minimum length 
of 10 to 12 characters.) Of the two length-10 passwords, the 
“q80” password had two non-alphanumeric symbols, 
whereas the other length-10 password had only a single non-
alphanumeric symbol. This is important, as prior work on 
the linguistic and phonological difficulty of system-
generated passwords suggested chunking passwords 
between non-alphanumeric symbols (Bergstrom, et al. 
2014). Furthermore,  when asked, people consistently 
verbalize that password as “Q eighty is less than U over C 
two M V” and that they “break the password up” at the non-
alphanumeric symbols.  Since there were no interview data 
asking people about their chunking or rehearsal strategies 
reported in the Stanton and Greene (2014) desktop study, it 
seemed reasonable to use such qualitative observations to 
inform the current desktop password rehearsal model. When 
verbally reciting a password, it certainly makes sense that 
people might chunk passwords (at least initially) in similar 
ways across platforms.

Model Implementation
For the initial model, the password was broken up into the 
following chunks based on splitting it at the non-
alphanumeric symbols:
1) q80
2) <
3) U
4) /
5) C2mv
In the model’s declarative memory, chunks were encoded 
with their contents, an ID, and a pointer to the next chunk in 
the sequence. A more complete model of the task would 
build up these chunks character-by-character. However, 
since participants in the Stanton and Greene (2014) study 
were allowed to practice each password as many or as few 
times as they wished, the initial practice strategies and 
number of practice repetitions that would account for 
building up such a representation could vary widely. Rather 
than implement different models to simulate a variety of 
practice methods, the model assumes the initial pieces of the 
password are starting knowledge, and employs a very 
simple rehearsal strategy.  It cycles through chained retrieval 
of the various chunks in the password to mentally rehearse 
the stimulus for a period of time that is settable by the 
modeler. Since ACT-R did not natively support typing the 
less-than symbol, nor did it support typing errors of any 
kind, rather than having the model type the retrieved 
chunks, it simply output them to a file. 
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The set-similarities option in ACT-R benefits from a 
principled,  ideally a priori, hypothesis as to the nature of the 
similarities between chunks. In this case we assume that 
non-alphanumeric symbols are more similar to, and thus 
more confusable with, one another than are letters to non-
alphanumeric symbols, and letters are more similar to one 
another than are letters to numbers.  However,  the exact 
value to assign each similarity is still an open question, and 
there are 10 such pairwise similarities to set. This seems less 
than ideal for the current password, and even worse when 
considering longer passwords that contain a greater number 
of chunks. 

Although the model did predict the nature of the jump-
transposition errors humans made (where they transposed 
the two symbols that were separated by a single letter), it 
could not account for failure to capitalize the “U”, nor could 
it account for failure to capitalize the “C”, which were errors 
seen in the Stanton and Greene (2014) study. As 
capitalization errors were by far the most prevalent error in 
said study, a mechanism for typing capital letters in ACT-R 
was sorely needed. 
 Investigating the source of password entry errors is a 
perfect application opportunity for cognitive modeling to 
shed light on the root cause of an error (or errors) that was 
difficult to ascertain through prior behavioral data alone. By 
implementing support for an ACT-R model that can type 
capital letters, one could then test different models to see 
whether those incorrect capitalization errors were memory 
errors or motor execution errors (where a shift key press had 
been attempted but simply not executed properly, such as by 
prematurely releasing the shift key). The ability to type 
capital letters raises interesting theoretical questions.  For 
each letter of the alphabet, do people have two distinct 
versions in their memory, one lowercase and one uppercase? 
Or is an uppercase letter encoded as the lowercase plus a 
required shift action?

Implementation Issues in ACT-R
In order to support modeling of incorrect capitalization 
typing errors, two limitations in ACT-R first required 
addressing: missing special characters, and lack of case-
sensitivity in typing.

Missing Special Characters Of the special characters in 
Table 1, ACT-R previously included support only for the 
period,  semicolon, slash,  and quote (Bothell, 2014, see 
“key” on page 320 of the ACT-R Reference Manual). 
Therefore, in order to enable modeling typing of the 
remaining symbols in Table 1 (right parenthesis, question 
mark,  number sign, asterisk, less-than sign, percent sign, 
caret, underscore, dollar sign), it was necessary to address 
the somewhat limited prior support for non-alphanumeric 
symbol typing. As we want to support modeling of any 
possible password,  not merely those in Table 1, we added 
support for all remaining ASCII printable characters not 
previously supported by ACT-R.

Lack of Case-Sensitivity Regardless of whether calling 
ACT’R’s “press-key” motor module request (Bothell, 2014, 
see page 317 of the ACT-R Reference Manual) with a 

capital or lowercase letter, the output will be the same in 
ACT-R’s current instantiation. This is somewhat 
problematic for modeling incorrect capitalization errors, 
which requires that ACT-R be capable of press-and-hold 
capability for the left and right shift keys, combined with a 
simultaneous key press of a second key (i.e., chorded 
typing). Therefore we added to ACT-R a capability to type 
key chords and output case-sensitive text, as described in 
the following section.

Stochastic Typing Extension for ACT-R
The standard ACT-R distribution (Anderson, et al, 2004; 
Anderson 2007) does not commit any typing errors as a 
matter of motor error (Bothell, 2014). However, real 
humans, even very skilled typists, are imperfect, and tend to 
err at rates from 0.5% to 35% (Salthouse, 1986; Panko, 
2008; Landauer,  1987). We wished to explain password 
entry errors, but because some errors are due to memory 
processes and some are due to motor processes, we had to 
extend our modeling framework of choice,  ACT-R, so that 
it,  too, would be capable of such motor errors. Furthermore, 
we needed to implement the low-frequency, non-
alphanumeric characters that information systems often 
require their users to incorporate into their passwords as a 
matter of security policy, e.g. “*” or “?”. Source code for the 
ACT-R stochastic typing extension may be downloaded 
from https://github.com/usnistgov/CogMod.

Motor Errors in Typing
Our typing extension for ACT-R redefines some of ACT-R’s 
existing code so that any requested typing action can 
stochastically result in the output of a typed key other than 
the one intended. To do so it adapts the ellipsoid motor 
movement error equation of May (2012) and Gallagher and 
Byrne (2013), which leads to greater error along the axis of 
movement than off the axis, the off-axis error being scaled 
to .75 of the on-axis. However, because here the units are 
keys rather than pixels as in May’s study, and ACT-R 
assumes most keys are the same width, the width term in 
May’s equation is simplified to 1.
Hold-Key Because typing non-alphanumeric characters 
typically involves holding a shift key while striking another 
key, and standard ACT-R provides no way to hold any such 
modifier key, it was necessary to invent such a method. Our 
errorful typing extension provides two motor module 
request extensions (see “extend-manual-requests” on page 
325 of the ACT-R Reference Manual, 2014) to enable the 
holding and releasing of modifier keys such as shift. 

The new hold-key motor module request acts like press-
key, translating the requested key to be held into a peck 
movement (Bothell, 2014, pp. 315-6) with the appropriate 
features. Once the hold-key motor movement is executed, 
ACT-R will have a state indicating that the appropriate key 
is being held. This state in turn causes ACT-R to now output 
a different character for the same press-key requests that 
follow for the given keys. The model can request the 
release-key function to release the given modifier key and 
end the modifier key state.
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Additional Characters With a shift key held, ACT-R can 
now type a set of ASCII-compatible, non-alphanumeric 
characters such as “*” and “?.” It can now also type capital 
letters as well as lower-case letters, a critical feature for 
case-sensitive passwords that standard ACT-R lacks.

Discussion and Future Directions
To address the question of setting appropriate chunk 
similarities in the initial password rehearsal model, a revised 
model is underway that has restructured the chunks in 
declarative memory, and does not use partial matching and 
set-similarities, instead relying upon spreading activation. 
This new model is now ready to interface with the stochastic 
typing extension.
 Beyond using the new typing extension, one obvious 
expansion of the model would be to account for additional 
phases of the Stanton and Greene (2014) experiment, such 
as the initial practice and verification tasks. The model 
should also be expanded to test against the remaining nine 
passwords and additional stimuli. Modeling the experiment 
in its entirety would require interfacing with a real or virtual 
window to control presentation of the stimuli; this would 
allow the model to visually obtain the stimuli and build up 
representations of each password in the imaginal buffer 
letter-by-letter. As an initial model of a larger complex 
experiment, it seemed more prudent to focus the current 
work on a single interesting phenomenon, in this case, 
support for disambiguating memory from typing errors. 

We chose to focus on support for disambiguating the most 
prevalent error in the Stanton and Greene (2014) study, 
which was incorrect capitalization. As “missing character” 
was the second most common class of errors in said study, 
the current stochastic typing extension for ACT-R should  be 
modified to support typing omissions.  Furthermore, there 
are further refinements we would like to make to the ACT-R 
typing extension to reflect other systematic effects that we 
did not yet incorporate, such as the likelihood of specific 
error classes should depend on which fingers are pressing 
which keys. For example, in traditional transcription typing 
studies, omissions are more likely with the weaker little 
finger. Adding support for ACT-R sensitivity to finger/key 
combinations would benefit future work. 
 In the future, it would be informative to construct models 
of the data from the Washington, DC and University College 
London groups separately to investigate age effects and/or 
typing skill differences suggested in the Stanton and Greene 
(2014) desktop password typing study. This would first 
necessitate updating ACT-R’s virtual keyboard to support a 
standard UK QWERTY keyboard layout. We could then 
explore modeling parameters for older adults, as recent 
research suggests that they are task- and device-dependent, 
and strategy may interact with task and device (Howie, 
2015). A deeper understanding of participants’ rehearsal and 
memorization strategies would help inform and test future 
models. 
 Regardless of platform, it is important that ACT-R have 
the ability to commit motor errors when typing so that we 
can model both memory and typing components of 

password entry tasks. This is critical to determine which 
parts of the task are platform-agnostic versus platform-
dependent. We should test the password rehearsal model on 
mobile password typing for smartphones and tablets. 
Clearly the stochastic typing extensions for ACT-R that we 
created for modeling desktop password typing would not be 
appropriate for modeling interactions with mobile 
keyboards. Instead, we could utilize recent work by 
Gallagher (2015) and Gallagher and Byrne (2015) on 
mobile password typing.  No doubt device interacts with 
password complexity, but it would be interesting to see how 
the initial password learning and rehearsal is affected by 
device constraints. Are basic password rehearsal strategies 
similar across devices? A model that utilized the articulatory 
loop for rehearsal could be viable across multiple platforms. 
 We think typing differs qualitatively between platforms, 
especially between desktop and mobile touchscreen 
computers. Motor scheduling errors should occur in desktop 
typing when people are typing in parallel and depressing 
two keys simultaneously. Mobile password typing is more 
sequential (although it can be interleaved depending on one- 
versus two-fingered typing style) than is desktop typing. 
Therefore motor errors on mobile platforms should be more 
a matter of motor execution accuracy errors than scheduling 
errors. This would make sense due to the large size of the 
input device (i.e., a finger) in comparison to the small size 
of the onscreen keyboard buttons. In fact,  research 
replicating the desktop Stanton and Greene (2014) study on 
mobile devices (Greene et al., 2014) found that the 
proportion of adjacent key errors was significantly greater 
on a smartphone than on a tablet, and the smartphone 
adjacent key errors were more than twice as prevalent as in 
the desktop study. Testing the current password rehearsal 
model across platforms would contribute significantly to 
disambiguating typing from memory errors.

Regardless of platform, comparison of current and future 
model predictions to human data could utilize more 
quantitative measures for comparing errors between 
passwords. For example, a measure of edit distance such as 
the Levenshtein distance or the Damerau-Levenshtein 
distance would be appropriate (Navarro,  2001). Both of 
these metrics measure differences between sequences based 
on the number of edit operations required to change the 
given string into the target sting. However, the former only 
allows insertions, deletions, or substitutions, while the latter 
allows those and also transpositions. 

Overall,  this work illustrated several challenges in 
modeling a dataset not originally intended for modeling. For 
example, we do not know if participants in the Stanton and 
Greene, (2014) study were touch typists, and ACT-R 
assumes a “moderately skilled touch typist” (Bothell, 2014, 
see page 317 of the ACT-R Reference Manual). While we 
made significant progress constructing a model and 
extending ACT-R’s typing ability to better model previously 
reported behavioral data, it would be ideal to conduct an 
entirely new study for model validation purposes. A study 
specifically designed to inform and test model predictions 
should include more controlled practice with feedback and 
reinforcement; assign participants fewer passwords but 
force them to practice them many more times; use a within-
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subjects design to test password entry across multiple 
devices (i.e., desktop and mobile); include a baseline typing 
test to assess whether participants are touch typists; and 
explicitly query participants regarding their chunking and 
rehearsal strategies.

Although there is certainly much work that remains to be 
done, we feel the current effort was an important first step 
toward testing theories of password learning and typing on 
what is still the most prevalent platform for text-heavy 
tasks: the desktop computer. We now have the capability to 
begin disentangling memory from motor errors.  Both 
memory and motor are sources of error that must be 
addressed separately, but that interact with each other within 
a single integrated system, people.
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Abstract
This paper describes an effort to integrate the TYPIST theory
of expert transcription typing into the ACT-R cognitive archi-
tecture. Our goal is to strike a reasonable balance between a
match to the highly accurate predictions of TYPIST and the ar-
chitectural constraints imposed by ACT-R. The model we have
built provides good predictions of human performance on most
basic typing phenomena, though less accurately than TYPIST.
We present the design of the model, a description of software
to support model execution and experimentation, and the re-
sults of performance tests comparing the model’s predictions
with human typing data in the literature.
Keywords: Cognitive modeling; ACT-R; TYPIST; transcrip-
tion typing

Introduction
TYPIST (John, 1996) is a theory of transcription typing based
on the Model Human Processor (MHP) (Card, Moran, &
Newell, 1983). In this paper we describe an attempt to in-
corporate the TYPIST theory into ACT-R.

The ACT-R model of typing we have developed gives pre-
dictions qualitatively consistent with TYPIST (though typ-
ically with lower accuracy) for fourteen typing phenomena
identified by Salthouse (1986). The first contribution of this
paper is an ACT-R model that reflects the basic control struc-
ture of TYPIST, with some pragmatic modifications to ac-
commodate differences between ACT-R and the MHP. Such
a model exists internal to CogTool (John, Prevas, Salvucci, &
Koedinger, 2004), and typing models exist in other architec-
tures (e.g., QN-MHP (Wu & Liu, 2004)), but to our knowl-
edge this is the first “standalone” ACT-R model of typing.
The second contribution is software to support execution and
evaluation of the task of transcription typing, which may be
useful in other contexts. The third contribution is a set of ba-
sic typing performance results (Salthouse, 1986). Our model
does not (yet) offer new insights into typing, but it extends
the scope of modeling possible with ACT-R and it has helped
us identify new directions for architectural work.

An ACT-R typing model
We begin with an outline of TYPIST. John (1996, p. 326)
summarizes the basic method as follows:

TYPIST perceives a chunk. . . and encodes it into an or-
dered list of characters (the spelling) with a perceptual
operator. If it is a word or syllable, a cognitive opera-
tor retrieves the spelling of that chunk from long-term
memory (LTM). The first character in the list is initiated
with a cognitive operator and then executed with a mo-
tor operator. The second character is then initiated and

executed. . . If a letter is perceived alone, then the letter is
initiated immediately following the perception and exe-
cuted.

The perceptual, cognitive, and motor processors of the
MHP work in parallel, while operators internal to each pro-
cessor are executed sequentially; data flow requirements im-
pose constraints on operators across the processors. For ex-
ample, a cognitive operator can act on a word in working
memory (WM) only after it has been made available by a
perceptual operator, and motor operators to type the charac-
ters in the word can execute only after its spelling has been
retrieved by a cognitive operator.

TYPIST’s WM has a limited capacity. It can store up to
three chunks of text that have not yet been processed by cog-
nitive operators. This capacity constrains the perceptual pro-
cessor in its ability to look ahead at words to be typed.

At a conceptual level, the ACT-R model works similarly.
The biggest difference is that single-character chunks are
treated the same as multi-character chunks in the requirement
that their spelling be retrieved from memory. This simplifica-
tion was made to limit the complexity of the model.

We describe the structure of the model mainly in terms of
processing words, but the model processes at the level of syl-
lables and characters as well. Our goals in modeling TYPIST
included reproducing its structure as well as its performance,
while minimizing changes to the ACT-R architecture and the
parameter settings used in model execution.

In automatic pre-processing for a typing trial, a sentence is
first decomposed into words separated by spaces; punctuation
is treated as part of a word. Each word is then decomposed ei-
ther into syllables or a combination of trigrams and bigrams,
using a left-to-right greedy algorithm. Each word or sylla-
ble decomposition is stored in a spelling chunk in declarative
memory, with an ordered set of slots c1 . . .cn containing char-
acters. For modeling convenience we assume that characters
are not context sensitive, and are processed as individual el-
ements like an array. However, priming studies indicate that
skilled typists perceive characters as order-dependent and are
thus chained together more like a linked list (Snyder & Lo-
gan, 2014).

When the model begins executing, the goal buffer is loaded
with a typing chunk with slots to maintain the previous visual
location, the current state of visual processing, the word to be
read, spelled, or typed, along with its visual location, and two
variable slots for the current character in the word being typed
and a one-character lookahead. In other words, the typing
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chunk maintains state information for perceptual, cognitive,
and motor processing.

A find-next and an attend-next production perform visual
processing following ACT-R modeling conventions. When a
word becomes available in the visual buffer, it is recorded by
an add-to-WM production in “working memory” (discussed
below) in two ways: it is stored in the typing chunk and
combined with the previously read word in a previous/next
chunk, to record sequencing. This chunk is added to declara-
tive memory through the imaginal buffer.

The production initiate-word retrieves a previous/next
chunk from memory, with the word most recently typed being
the previous element. (As a special case, initiate-first-word
fires for the very first word to be typed, which does not have a
predecessor.) The spell production then retrieves the spelling
of this word from declarative memory. The spelling chunk
becomes available and is maintained in the retrieval buffer.
The char-slot in the typing chunk is set to c1.

Several productions initiate motor actions to type individ-
ual characters under different conditions. The basic initiate-
letter makes a request to the motor module for the current
character and advances to the next character (i.e., the typing
char-slot is modified from ci to ci+1). When the current char-
acter is a space, initiate-last-letter-in-word fires instead, per-
forming the same function and also requesting the retrieval of
the next word to be typed. The production initiate-last-letter-
in-syllable behaves the same way, except that it fires when
a special end-of-syllable marker is encountered in the one-
character lookahead. Finally, initiate-single-letter-in-syllable
is used for single-character syllables. A new keystroke can be
initiated after the preparation stage of the previous keystroke
is complete, following Salthouse (1986): “[I]t is assumed that
the typist is executing one keystroke while simultaneously
preparing the movement patterns for the next keystroke. . . ”
We discuss motor issues in more detail later in this paper.

The ACT-R model inevitably differs from TYPIST, due to
the level of modeling detail. Managing data flow dependen-
cies is complex. Some state information is in the form of the
status of buffers, but a number of flags are needed in the ACT-
R model to ensure proper ordering in production firing. Pro-
ductions explicitly manage memory: add-to-WM transfers a
word from the visual buffer to the typing chunk and creates a
new previous/next chunk in memory; initiate-word retrieves
the next word to type. Visual processing is also more com-
plex, in particular when a limited preview of text is available.
Further, ACT-R visual operations take cognitive processing
time, which introduces additional time at word boundaries.

Finally, TYPIST’s WM capacity is not simple to reproduce
in ACT-R. Without this limit, the ACT-R model looks too far
ahead of its keystrokes. An ad hoc solution was implemented
in the model: a count is kept such that visual processing is
never more than three words ahead of cognitive processing.

Some practical limitations apply to the model. Visual pro-
cessing in the model assumes that the text of the sentence is
on one arbitrarily long line; there is no mechanism to move

FIND ATTEND

INITWORD

ADDWM

INITLAST SPELL

INITLETTER

Figure 1: Graphical representation of the typing model.

attention back to the left at the end of a line. Uppercase letters
are not handled, automatically being translated to lowercase.

Modeling support
New software was needed for model execution and experi-
mentation. TYPIST processes text at the level of words, sylla-
bles, or letters. To support syllable functionality, we compiled
a database containing the syllable decomposition of 166,000
common words. If a word is not in the database, it can be
automatically broken down into trigrams and bigrams (those
occurring at least 1% as frequently as the most common tri-
gram or bigram in English) and individual letters.

The typing model depends on a small set of motor exten-
sions to ACT-R, including a new movement style, TYPIST-
hit-key. A finger can move to non-integer 〈x,y〉 locations, and
unlike press-key, the finger pressing a key does not return to
the home row afterwards. Further, at high typing speeds, the
starting point for finger movement in a future scheduled key-
press is not the current finger position; the hand/finger repre-
sentation was modified to handle this possibility. Other mod-
ifications are described in the context of typing phenomena
they are intended to support.

A virtual typing window displays the text to be typed, in a
single line. For ease of experimentation, the window main-
tains text at both the word and syllable level, providing a
model with either as determined by experimental settings.
Variations on this window were developed to support differ-
ent tests as described later in this paper.

A new virtual keyboard for typing was developed, dupli-
cating the layout of the keyboard used for some tests of TYP-

Q"

S"

W" E"

A" D"

R"

F"

X"Z" C" V"

Figure 2: Portion of the typing keyboard layout.
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IST (John, 1996, Fig. 16). A portion is shown in Figure 2.
The typing keyboard is incomplete, including only letters, a
space, a semicolon, a comma, a period, and a slash. In use,
timing is very similar to the default keyboard.

Model performance
Some of John’s discussion of TYPIST relies on an example
sentence: “One reason is quite obvious; you can get in and
out without waiting for the elevator.” We used this sentence
to determine basic timing for the ACT-R model as well as in
some testing, as described below. With the main motor timing
parameters (preparation, initialization, and burst time) at their
default settings, the ACT-R model types the elevator sentence
at a rate of 48 words per minute (wpm), with a mean interkey
interval of 232 ms. Most of the typing tests we consider are
for a 60 wpm typing rate, which can be achieved by changing
feature preparation time from 50 ms to 40 ms, producing a
mean interval of 207 ms. The model reaches its maximum
speed of 108 wpm when these three motor parameters and
the Fitts’ Law coefficient are set to zero (following John’s
assumption that variability in typing speed is due to motor
speed). TYPIST’s maximum speed is 180 wpm.

TYPIST was evaluated with respect to 29 typing phenom-
ena identified by Salthouse (1986). Twelve of these are con-
sidered basic phenomena; five concern units of typing, five
errors, and the remainder skill effects (John, 1996). For many
of these phenomena, TYPIST was evaluated by multiple tests.
The evaluation of the ACT-R typing model is much less ex-
tensive: the basic phenomena and two units of typing phe-
nomena are examined, and a single test is used in each case.
All of the tests used to evaluate the ACT-R model were orig-
inally used for TYPIST.

Phenomenon 1. Typing is faster than choice reaction time.
Salthouse (1984) describes an experiment in which partici-
pants see a stimulus (an L or an R) and type the leftmost or
rightmost character key on the bottom row of the keyboard (a
Z or a slash). Following the approach outlined for TYPIST,
we developed a reduced model that does not store ordering or
spelling information, with two new productions to map cor-
rectly between the characters. We also modified the typing
window such that its contents update to a new character af-
ter each keystroke. A comparison between mean interkey in-
terval and reaction time observed in Salthouse’s experiment,
TYPIST’s predictions, and the ACT-R model’s predictions
are shown in the table below. The ACT-R numbers are from a
sample run using a random string of Ls and Rs, with the base-
line mean interval produced by the model typing the string as
if it were a single word. Absolute errors, as a percentage of
observed values, are given in parentheses.

Statistic Target TYPIST ACT-R
Interval (ms) 177 195 (10.2%) 190 (7.6%)

RT (ms) 560 635 (13.4%) 505 (9.9%)

Phenomenon 2. Typing is slower than reading.

Phenomenon 3. Typing skill and comprehension are indepen-
dent. These are beyond the scope of TYPIST and are not
implemented in the ACT-R model.

Phenomenon 4. Typing rate is independent of word order. As
with TYPIST, the treatment of words by the ACT-R model
does not depend on their order of appearance. Salthouse cites
a loss of 2.8% between meaningful sentences and randomly
arranged words. In the ACT-R model, no differences in words
per minute are seen with re-ordered words in random sen-
tences, generated by sampling from the word database.

Phenomenon 5. Typing rate is slower with random letter or-
der. West and Sabban (1982) describes an experiment in
which participants typed easy prose sentences (EP, e.g., “I
have your letter in which you ask about the prices”), sen-
tences in which “words” were constructed by rearranging
word parts but retaining the ordering of the letters (LC, letter
combinations, e.g., “I veha uryo terlet ni chwhi ouy ska outab
eth espric”), and sentences in which the ordering of letters
in words was arbitrary (LJ, letter jumbles, e.g., “I evah uoyr
rtleet ni hcihw oyu ska auobt teh rpcsei”). West and Sabban
measure the percent speed increase from LJ to EP, LC to EP,
and LJ to LC.

The model applies a single strategy in decomposing words:
to syllables (the default behavior) for EP; to common trigrams
and bigrams (the default when words are not recognized) for
LC; and to individual letters for LJ (explicitly induced). For
typists in the range of 55 to 69 wpm, the closest match to the
model’s 60 wpm, the model performs poorly, though the rank
ordering of mean keystroke interval per condition is correctly
predicted (EP, 231 ms; LC, 246 ms; LJ, 404 ms). The ra-
tios would be close to observed behavior if the model’s LC
interval were 40% higher. TYPIST does much better, includ-
ing different strategies for breaking LC and LJ words down,
with an average error of 18% for one plausible combination
of strategies across different typing speeds (which means that
our results, limited to 60 wpm, are not directly comparable).

Statistic Target ACT-R
LJ-EP increase 0.677 0.748 (10.5%)

LC-EP increase 0.416 0.064 (84.6%)
LJ-LC increase 0.187 0.643 (243.7%)

Phenomenon 6. Typing rate is slower with restricted preview.
Salthouse (1984) presented typists with a sentence from 60 to
83 characters on a single line. Only a preview of n characters
for the entire sentence was displayed, with each keystroke
causing the preview to advance by sliding the text leftward,
removing the first character and adding a new one at the end.
Preview sizes were 19, 11, 9, 7, 5, 3, and 1 character. The
sentences used are not given by Salthouse; our testing sub-
stitutes the elevator sentence. We implemented a preview
window that acts approximately the same way, except for the
leftward movement of the text. Existing text remains on the
screen as well but visual processing is strictly left to right. On
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each keystroke, new text may be available to the model; the
details of incremental visual processing follow that of TYP-
IST (John, 1996, p. 335), providing words, syllables, or char-
acters, depending on available space given the size of the pre-
view. TYPIST predicts performance on the elevator sentence
(85 characters) at 120 gross wpm, with an error of 15.8%.

Performance of the ACT-R model on this sentence at 60
wpm, in terms of the mean interkeystroke interval in ms, is
shown in the table below and in Figure 3, compared with
the median interkeystroke interval in the experiment cited
above (Salthouse, 1984, Table 2). Excluding the non-preview
data, ACT-R model predicts Salthouse’s observed data with a
mean absolute error of 23.8% and R2 = 0.992.

Preview Target ACT-R
None 181 207 (14.2%)

19 179 206 (15.2%)
11 183 214 (17.3%)

9 180 232 (28.0%)
7 185 243 (31.5%)
5 205 288 (40.7%)
3 293 381 (30.2%)
1 645 723 (12.1%)

200 2 4 6 8 10 12 14 16 18

800

0

100

200

300

400

500

600

700

Preview window size

In
te

rk
ey

 in
te

rv
al

Observed

Predicted

Figure 3: Phenomenon 6: Typing with a preview window

Phenomenon 7. Alternate-hand keystrokes are faster than
same-hand keystrokes. Salthouse reports that succes-
sive same-hand keystrokes are slower than alternate-hand
keystrokes, in the range of 30–60 ms. TYPIST predicts a
50 ms difference, for an error of 11.1% compared with the
45 ms midpoint, by including an additional cognitive opera-
tor for same-hand key sequences.

In ACT-R, alternate-hand keystrokes would ordinarily be
slower than same-hand keystrokes due to feature preparation
time. Adopting the solution in TYPIST would require the
mapping between keys and hands to be explicit in the model’s
productions, significantly increasing its complexity. Instead,
the function for computing preparation time in the ACT-R
motor module was modified to produce an appropriate dif-
ference in the opposite direction. On random sentences, the
ACT-R model predicts a duration of 47.5 ms, error 5.6%.

Phenomenon 8. More frequent letter pairs are typed more
quickly. This is beyond the scope of TYPIST; John observes
that it is a small effect, 4% of the variability after same- ver-
sus alternate-hand sequences. For the ACT-R model, a test
of random sentences shows a near-zero correlation between
the relative frequency of a bigram and the model’s predicted
duration, for the 265 most common English bigrams. These
most common bigrams are typed approximately 2.5% faster
than the remaining bigrams, because they are more frequently
chunked as part of the syllables recognized by the model.

Phenomenon 9. Interkey intervals are independent of word
length. Specifically, the duration of the first keystroke in a
word is not dependent on its length, and neither are the dura-
tions of other keystrokes in the word. Both TYPIST and the
ACT-R model show such independence.

Phenomenon 10. The first keystroke in a word is slower than
subsequent keystrokes. Salthouse reports a 20% increase for
an average typist; TYPIST predicts increases of 0% to 8.4%
over typing speeds from 60 wpm to 120 wpm, when the
spelling operator is on the critical path. On the elevator sen-
tence, the ACT-R model predicts an increase of 18.5%, for
a 7.7% error. On samples of random sentences, the ACT-R
model predicts an increase of 18%, for an 11.4% error.

Phenomenon 11. The time for a keystroke is dependent on
the specific context. Here, context means that in a sequence
of keystrokes, α-β, the duration of β depends on α. TYPIST
can predict key context effects with two refinements, based on
John’s analysis of a set of digraphs e-e, d-e, c-e, r-e, t-e, f-e,
g-e, v-e, and b-e (Rumelhart & Norman, 1982). Both refine-
ments decompose a keystroke into horizontal movement of
a finger across the keyboard (move), key down (βdown), then
key up (βup). The first is that in the digraph α-β, αup = 83
ms for a same-hand, same-finger sequence, 50 ms for a same-
hand, different-finger sequence. The second is a relaxation
of the MHP assumption of strictly sequential finger move-
ments; John derives a formula for very accurate prediction
of the move component in these digraphs. Specifically, when
the middle finger moves to press a key, the index finger moves
part of the distance in the same direction, and vice versa.

TYPIST predicts performance on the digraphs with 0.9%
mean absolute error (MAE) and R2 = 0.95. The predictions
of the ACT-R model, which does not incorporate John’s anal-
ysis, have a MAE of 49.8%, R2 = 0.211, p = 0.21.

Digraph Target TYPIST ACT-R
e-e 165 166 (0.0%) 231 (40.0%)
d-e 201 200 (0.5%) 289 (43.8%)
c-e 215 226 (1.8%) 321 (49.3%)
r-e 145 143 (1.4%) 260 (79.3%)
t-e 159 157 (1.2%) 249 (56.6%)
f-e 168 167 (0.6%) 289 (72.0%)
g-e 178 175 (0.1%) 264 (48.3%)
v-e 178 182 (0.9%) 260 (46.1%)
b-e 195 187 (1.4%) 220 (12.8%)
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To see why this is a challenge, note the duration predictions
for the v-e and b-e key digraphs, as an example: the predicted
order is the reverse of the observed. The partial traces be-
low show why. The production initiate-letter fires at the same
times for both digraphs (as marked by +), once preparation
for the previous keystroke is complete. The v keystroke has a
lower execution time than the b (as marked by /) because it is
closer to the home key location of the first finger. The earlier
completion of the v keystroke has no effect on the initiation
of the next, however; instead it produces a longer interval
between keys in the v-e digraph than in the b-e digraph, al-
though from initiation to keypress the e keystroke is identical.

+ 2.085 PROCEDURAL FIRED INITIATE-LETTER
2.085 PROCEDURAL CLEAR-BUFFER MANUAL
2.085 PROCEDURAL CONFLICT-RESOLUTION

/ 2.164 MOTOR OUTPUT-KEY #(2.75 1.5)
2.164 [TYPING-WINDOW] KEY V (289)
2.164 PROCEDURAL CONFLICT-RESOLUTION
2.214 PROCEDURAL CONFLICT-RESOLUTION
2.295 PROCEDURAL CONFLICT-RESOLUTION

+ 2.345 PROCEDURAL FIRED INITIATE-LETTER
2.345 PROCEDURAL CLEAR-BUFFER MANUAL
2.345 PROCEDURAL CONFLICT-RESOLUTION

/ 2.424 MOTOR OUTPUT-KEY #(1.5 0.0)
2.424 [TYPING-WINDOW] KEY E (260)

+ 2.085 PROCEDURAL FIRED INITIATE-LETTER
2.085 PROCEDURAL CLEAR-BUFFER MANUAL
2.085 PROCEDURAL CONFLICT-RESOLUTION

/ 2.204 MOTOR OUTPUT-KEY #(3.5 1.5)
2.204 [TYPING-WINDOW] KEY B (329)
2.204 PROCEDURAL CONFLICT-RESOLUTION
2.254 PROCEDURAL CONFLICT-RESOLUTION
2.295 PROCEDURAL CONFLICT-RESOLUTION

+ 2.345 PROCEDURAL FIRED INITIATE-LETTER
2.345 PROCEDURAL CLEAR-BUFFER MANUAL
2.345 PROCEDURAL CONFLICT-RESOLUTION

/ 2.424 MOTOR OUTPUT-KEY #(1.5 0.0)
2.424 [TYPING-WINDOW] KEY E (220)

It is possible to integrate John’s analysis into the ACT-R
model, even if Rumelhart and Norman’s data are for a typ-
ist about 25% faster than the ACT-R model. We developed
new motor code, modifying execution and finish time com-
putations to match John’s analysis. Manual requests were
triggered on “state free” rather than “preparation free”, and
preparation time was zeroed out. These changes allow the
model to reproduce TYPIST’s performance almost exactly,
but they are an awkward fit for ACT-R.

Recall that for a given digraph α-β, the duration of the αup
component depends on β. The duration of a keystroke is com-
puted when it is initiated, but when α is initiated, β is not
yet available to the motor module. The modified motor code
requires manual requests to be made as pairs of keystrokes,
current and future, based on the one-key lookahead (in the re-
trieval buffer) used to handle the end of syllables—an ad hoc
solution without theoretical justification. It further proved
difficult to accommodate Phenomenon 7 (alternate-hand tim-
ing) as a motor phenomenon in the changed code. Incorpo-
rating key context into the design of the existing model intro-
duces complexity that we leave for future work.

Phenomenon 12. A concurrent task does not affect typing.

Salthouse and Saults (1987) describe an experiment in which
typists were asked to type while performing a simultaneous
auditory reaction time task. While typing, when the typists
heard an auditory cue, they were to press a foot pedal. For
this phenomenon, a simple foot pedal motor extension was
added to ACT-R. A pedal buffer in the motor module might
be appropriate, but this was not implemented; instead press-
pedal requests are interleaved with the hand movements.

Typing performance degraded only slightly for partici-
pants. TYPIST and ACT-R were evaluated on the elevator
sentence, with an auditory cue beginning at 25 different ran-
dom locations.

Statistic Target TYPIST ACT-R
Single (ms) 181 195 (7.7%) 210 (16.2%)

Concurrent (ms) 185 196 (5.9%) 212 (14.6%)
Pedal (ms) 431 435 (0.9%) 445 (3.2%)

Phenomenon 13. Copy span is 7–40 characters. The copy
span is the number of characters which a typist can continue
typing after a single inspection of the material, without its
being visible during typing. Salthouse (1986) describes an
experiment in which the display was erased after predeter-
mined number of keystrokes by participants, after which they
continued typing as much as they remembered. TYPIST and
the ACT-R model were evaluated on an equivalent task, in
which the elevator sentence was typed and the copy span was
determined after each character.

Statistic Target TYPIST ACT-R
Copy span (ms) 14.6 12.5 (14.4%) 15.2 (4.3%)

Phenomenon 14. Stopping span is between one and two char-
acters. The stopping span is the number of characters to
which a typist commits to after a signal to stop typing. Logan
(1982) describes an experiment in which participants were
asked to type single words of 3, 5, or 7 letters; after a pre-
determined amount of time (500, 650, 800, or 950 ms), an
auditory cue was given. TYPIST And ACT-R were evaluated
using the same time values, on words that covered all combi-
nations of same- and alternate-hand keystrokes. The results
comparing Logan’s, TYPIST, and ACT-R model are as fol-
lows:

Statistic Target TYPIST ACT-R
Stopping span (char) 1.57 1.76 (12.1%) 2.11 (34.2%)

Overall, the model improves on results obtainable by text
entry in CogTool, which types the elevator sentence at ap-
proximately 50 wpm. CogTool does not model the differ-
ences between words and random letter order, producing
mean keystroke intervals for EP, LC, and LJ that differ by
at most 5 ms (Phenomenon 5). Alternate-hand keystrokes are
39.5 ms faster than single-hand keystrokes (Phenomenon 7,
12% error). The first keystroke in a word is 17.5% slower
than the remaining keystrokes (Phenomenon 10, 12.5% er-
ror). CogTool does not model key context (Phenomenon 11).
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Discussion

The ACT-R model gives predictions of human performance
on basic typing phenomena that are at least qualitatively cor-
rect, except for context dependence in keystroke duration and
the stopping span being outside an observed boundary.

Motor processing in ACT-R is based on that of
EPIC (Kieras & Meyer, 1997), in which the duration of a
keystroke depends on several factors: preparation time, mo-
tor initiation time, and a minimum burst time, as well as Fitts’
Law movement time. By design, the duration of prepara-
tion for a movement increases with the number of features
that differ from the previous movement (different hands, fin-
gers, direction and distance of movement). Using the default
ACT-R keyboard, the press-key movement style, default pa-
rameter settings and no motor changes, the model’s perfor-
mance is roughly similar to that described in the previous
section. Leaving aside the different typing speed, the differ-
ences are on alternate hands (Phenomenon 7, 150% error),
first keystroke duration (Phenomenon 10, 161% error), and
stopping span (Phenomenon 14, 5.3% error).

We have only lightly explored the space of ACT-R motor
parameters, settling on modifications to preparation time as
the simplest way to bring modeling results in line with hu-
man performance. For the typing model, the feature prepara-
tion computations are modified such that preparation of each
keystroke has a default duration (50 ms) plus an extra incre-
ment when the previous keystroke was with the same hand.
Our repurposing of feature preparation for typing is not theo-
retically well-motivated, in part because theory is sparse. In
an updated analysis of the motor literature and EPIC, Kieras
(2009) eliminates the dependence of visually aimed manual
and ocular movements on feature preparation. He further
asks, “Should feature preparation be discarded for keypress
movements as well?” For typing the answer appears to be
yes, where feature preparation is replaced by functionality
that approximates the timing of overlapping, interdependent
physical movements with the sequential movements required
by the architecture.

Despite the its limitations, we believe this work is impor-
tant for a few reasons. First is the pragmatic accomplishment
of extending ACT-R to a very common task; some human ex-
periments that involve typing as a primary or secondary task
can now be taken on. Our work provides evidence for the
soundness of TYPIST’s design in a symbolic architecture.
Second, the performance limitations of the model suggest
new directions for research on the architecture, with well-
defined tasks and clear empirical targets. Third, the MHP
representation makes TYPIST performance easier to analyze
than that of the ACT-R model, but we also find value in run-
ning trials over large sets of sentences and analyzing aggre-
gate data. Finally, the model raises questions dealing with
strategies, visual processing, and how typists learn to adjust
their reading speed to working memory limitations, which we
will examine in future work.
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Abstract

The concept of device- vs. task-orientation allows to identify
subtasks that are especially prone to errors. Device-oriented
tasks occur whenever a user interface requires additional steps
that do not directly contribute to the users’ goals. They com-
prise, but are not limited to, initialization errors and post-
completion errors (e.g., removing a bank card after having re-
ceived money). The vulnerability of device-oriented tasks is
often counteracted by making them obligatory (e.g., by not
handing out the money before the bank card has been re-
moved), making it even harder to predict where users will have
problems with a given interface without dedicated user tests.
In this paper we show how cognitive modeling can be used
to predict error rates of device-oriented and task-oriented sub-
tasks with respect to a given application logic. The process is
facilitated by exploiting user interface meta information from
model-based user interface development.
Keywords: Human Error; Cognitive Modeling; Model-based
User Interface Development; Memory for Goals; ACT-R

Introduction
Our everyday life is dominated by routine activities, i.e., well-
learned, rule-based tasks like making coffee or buying a train
ticket. And even though we have performed them hundreds
of times, we are still making occasional errors during their
execution (Reason, 1990). While the base error rate for rou-
tine tasks is low, some procedural steps are more problematic
than others. The best-known examples are post-completion
errors, when users fail to perform an additional step in a pro-
cedure after they have already reached their main goal (Byrne
& Davis, 2006; Trafton, Altmann, & Ratwani, 2011; Rat-
wani & Trafton, 2011). This concept can be expanded to
any step that doesn’t directly contribute to the users’ goals,
but is imposed on them by the system and has been coined
device-orientation (Ament, Blandford, & Cox, 2009; Gray,
2000). The opposite, i.e., steps that are noticeably related to
the users’ goals, is called task-orientation in contrast.

Jef Raskin popularized the complaint that “a dialog box
that has no choices (e.g., you can only press ENTER before
you can do any other task) has a productivity of 0” (Raskin,
1997), because the user cannot transfer any knowledge to the
system using it. Raskin’s information theoretic concept fits
nicely with our understanding of device-oriented tasks: they

do not convey any information that is specific to the user’s
current goal.

Even when human interface designers try to avoid device-
oriented tasks in the first place, software or hardware con-
straints do not allow the removal of every single one. As long
as bank cards are used, they need to be placed into some kind
of slot and removed later on. One popular design strategy
in this situation is to make device-oriented tasks obligatory,
i.e., their position in the action sequence is pulled forward
so that the user’s goal cannot be achieved without perform-
ing the device-oriented task. But how does this change affect
error rates?

The objective of this paper is to shed some light on the im-
pact of device-orientation and subtask necessity1 on user er-
rors. We derive a computational user model from the memory
for goals theory (MFG, Altmann & Trafton, 2002) and apply
it to a class of user interfaces (UI) that have been created us-
ing the model-based UI development process (MBUID, Van-
derdonckt, 2008; Calvary et al., 2003). As a by-product of
this process, such interfaces provide meta-information about
their elements (e.g., buttons) that can be used for the creation
of more generic cognitive models (Quade, Halbrügge, Engel-
brecht, Albayrak, & Möller, 2014).

Action Control and Human Error
According to Rasmussen (1983), human action control can
be described on three levels: skill-, rule-, and knowledge-
based behavior. Skill-based behavior on Rasmussen’s lowest
level is generated from highly automated sensory-motor ac-
tions without conscious control. Knowledge-based behavior
on the other hand is characterized by explicit planning and
problem solving in unknown environments. In between the
skill and the knowledge levels is rule-based behavior. While
being goal-directed, rule-based actions do not need explicit
planning or conscious processing of the current goal. The
stream of actions follows stored procedures and rules that
have been developed during earlier encounters or through in-
struction.

1With respect to user tasks, we are using the terms obligatory,
mandatory and necessary synonymously in the course of this paper.
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Interacting with computer systems after having received
some training is predominantly located on Rasmussen’s rule-
based level, with contributions of the skills level to a lesser
degree. We are therefore concentrating our modeling effort
on rule-based behavior. On this this level of action control,
human error is characterized by deviation from the stored pro-
cedure, i.e., either leaving out a step or adding an additional
unnecessary one.

Model Based User Interface Development (MBUID)
The main goals of model-based user interface development
are the reduction of complexity and an increased reusabil-
ity of existing patterns and solutions during UI develop-
ment (Vanderdonckt, 2008). For this purpose, there exist
frameworks and description languages that conform to the
CAMELEON reference framework (Calvary et al., 2003)
for structuring the processes and information of MBUID.
While abstract UI (AUI) models describe UI elements on
a modality-independent level, the more concrete UI mod-
els hold modality-specific information and the final UI mod-
els represent specific implementations for different platforms.
Besides these models there exist conceptual models related to
the domain of the application and the task model for describ-
ing the interaction logic.

A widely used approach for modeling tasks in MBUID
is the Concurrent Task Tree (CTT) notation (Paternò, 1999)
which also allows executing tasks in conjunction with UI
models (Mori, Paternò, & Santoro, 2004) by establishing
mappings between these models. CTT comes with several op-
erators for grouping tasks into hierarchical structures, defin-
ing temporal relationships and for describing information
flow between user, application and tasks. Namely interac-
tion tasks describe tasks that user and application perform to-
gether, while application tasks relate to actions by the system.

By combining these different UI development models, in-
formation about the application becomes available that goes
far beyond what is visible to the user. In the context of this
paper, the task information contained within the UI develop-
ment models is especially interesting, as it corresponds di-
rectly to Rasmussen’s rule-based behavior level.

Experiment
The scarcity (yet pervasiveness) of procedural errors during
routine tasks (Reason, 1990) makes statistical analysis diffi-
cult. Researchers have used secondary tasks (e.g., Byrne &
Davis, 2006; Ruh, Cooper, & Mareschal, 2010) or interrup-
tions (e.g., Li, Blandford, Cairns, & Young, 2008; Altmann,
Trafton, & Hambrick, 2014) to increase error rates. We re-
jected both options for reasons of ecological validity, and
chose repeated measures and a medium sized sample instead.

The experiment focuses on procedural errors during the us-
age of a kitchen assistance system for ambient assisted liv-
ing. The kitchen assistant helps preparing a meal for a given
number of persons with its searchable recipe library, adapted
shopping list generator, and by providing interactive cooking
or baking instructions.

Ambient systems like the one used here are characterized
by interconnecting a multitude of physical devices. We se-
lected among these a personal computer with large touch
screen and a tablet computer for the experiment. To match
the characteristics of each device, we created two versions of
the user interface of the kitchen assistant. The first version
is a tablet-oriented, simple one, optimized for portrait mode,
with larger buttons and fonts, and rather few elements per
screen. The other UI version is more complex, using smaller
buttons and fonts so that more elements fit on the screen.
Some screens of the simple UI are shown side-by-side in the
complex version, thereby reducing the necessity of navigation
between screens. The complex UI targets the large personal
computer and is optimized for landscape mode. Annotated
screenshots of the two UI versions are shown in Figure 1.

Analysis of the UI Development Models
Because we are working with an already existing application,
we cannot freely manipulate whether a UI element and its
related subtask is device- or task-oriented. But we can use
the MBUID models to derive this property from them in a
generalizable way. By analyzing the operators of the task
model and the types of AUI elements it is possible to identify
device- and task-oriented subtasks and make these explicit to
the evaluator or modeler.

On the one hand, task-oriented interaction steps are char-
acterized by interaction on UI elements that are modeled on
the level of the AUI model as FreeInput or Choice. These el-
ements are generally used to provide task-oriented informa-
tion from the user to the application using interaction tasks,
e.g., by using text fields, radio buttons or checkboxes. On the
other hand, device-oriented interaction steps describe actions
which let the dialogue proceed to a further step, e.g., when ex-
ecuting buttons labeled “Next” or “Done”. The abstract type
Command denotes such UI elements on the level of the AUI
model which can be used to trigger application tasks.

In order to identify device-oriented subtasks, the models
have to be checked for interaction tasks that are modeled us-
ing Command elements which then enable application tasks.
The process is visualized in Figure 1. In the case of the
kitchen assistant, device-oriented elements are buttons that
lead to the next screen or modify entries from the ingredi-
ents list. Task-oriented UI elements are buttons for toggling
search attributes and selections in search results lists.

Method
Participants Twenty members of the Technische Univer-
sität Berlin paid participant pool took part in the experiment.
There were 5 men and 15 women, with an age range from 18
to 59 (M=32.3, SD=11.9). As the instructions were given in
German, only fluent German speakers were allowed to take
part.

Materials The experiment was conducted in our fully
equipped lab kitchen. A personal computer with 27” (68.6
cm, landscape mode) touch screen and a 10” (25.7 cm, por-

239



obligatory
device-oriented

non-obligatory
device-oriented

obligatory
task-oriented

non-obligatory
task-oriented

Simple(UI(Version Complex(UI(VersionUI(Element(Type

Model-Based(UI(Development((MBUID)

AUI(Command

Interaction(Task

AUI(Choice

Interaction(Task>>
enables

Abstract(User(Interface((AUI)

Task(ModelApplication(Task

Figure 1: Screenshots of the kitchen assistant. Ingredients list of the simple UI on the left, recipe search of the complex UI with
two screens side-by-side on the right. UI element type is indicated by solid arrows, AUI type indicated by dashed arrows.

trait mode) tablet, both placed near the sink, were used to
display the interface of the kitchen assistant. All user actions
were recorded by the computer system. The subjects’ perfor-
mance was additionally recorded on videotape for subsequent
error identification.

Design We applied a four-factor within-subjects design, the
factors being UI version (simple vs. complex), physical de-
vice (screen vs. tablet), device- vs. task-orientation, and
task necessity (non-obligatory vs. oligatory). Every sub-
ject went through all four combinations of UI version and
physical device in randomized order. User tasks were analo-
gously grouped into four blocks of eleven to twelve individual
tasks. Block orders were counterbalanced across participants
as well. We call the combination of the device-orientation and
task necessity factors UI element type in the following. While
device-orientation can be derived from the MBUID models
(see above), task necessity is only implicitly represented in
the assistant’s interaction logic. Mandatory subtasks are re-
lated to all elements that lead to the next screen or unhide
buttons on the current screen, the latter being the case for the
selection of a recipe in the search result list (see Figure 1).

Procedure Every block started with comparatively easy
recipe search tasks, e.g., “search for German main dishes
and select lamb chops”.2 Users would then have to change
the search attributes, e.g., “change the dish from appetizer to
dessert and select baked apples”. The second half of each

2We give English translations of the actual instructions here for
reasons of comprehensibility. The original instructions are available
for download at http://www.tu-berlin.de/?id=135088

block was made of more complex tasks that were spread over
more screens of the interface and/or needed memorizing more
items. The subjects either had to create ingredients lists for a
given number of servings, or had to make shopping lists using
a subset of the ingredients list, e.g., without salt and flour. All
instructions were read to the subjects by the experimenter.
Every individual trial was closed by a simple question the
subjects had to answer to keep them focused on the kitchen
setting, e.g., “how long does the preparation take?” With an
initial training phase and exit questions the whole procedure
took less than an hour.

Results

We identified errors by comparing the observed click se-
quences with optimal ones. Whenever a step of the opti-
mal sequence was missing, we recorded this as an omission.
Unnecessary additional steps performed by the subjects were
analogously recorded as intrusions. A special case of intru-
sions are perseverations, when an action is erroneously re-
peated. The resulting taxonomy follows Ruh et al. (2010)
and is deliberately using phenotypic descriptions instead of
genotypic explanations (in contrast to, e.g., Norman, 1988).

In total, 6359 clicks were observed. 104 (1.6%) of these
were classified as user errors. 56 were omissions, 38 were
intrusions, and 10 were perseveration errors. The persevera-
tion errors were bound to a button for increasing the number
of servings that needed several consecutive presses. As the
video recordings clearly showed that all perseverations were
not caused by the users, but by occasional excesses of UI lag,
they were removed from further analysis.
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Due to the scarcity of errors and the use of repeated mea-
sures, χ2-based significance tests could not be used (Agresti,
2014). The error rates were instead evaluated using a mixed
logit model with subject as random effect (Bates, Maech-
ler, Bolker, & Walker, 2014). They do not vary with de-
vice, UI version, or task necessity (all p > .3). The main
effect of device-orientation points to the expected direction
with device-oriented subtasks showing higher error rates, but
narrowly missed significance (z = −1.82, p = .069). We
found a significant interaction between necessity and device-
orientation (z = 4.07, p < .001). Error rates and 95%-
confidence intervals are given in Figure 2.

Figure 2: Error probabilities for different UI elements.

Cognitive User Model
The theoretical foundation for our model is the memory for
goals theory (MFG, Altmann & Trafton, 2002). The MFG
postulates that goals and subgoals are subject to the character-
istics of human memory traces, in particular time-dependent
and noisy activation, interference, and associative priming.
Lack of activation of a subgoal, possibly connected to little
priming, can cause omissions, while interference with other
subgoals can result in intrusions. While the MFG theory ini-
tially has been validated on the basis of Tower-of-Hanoi ex-
periments, i.e., rather artificial problem-solving tasks in the
laboratory, it has been shown to generalize well to sequence
errors during software use and has been extensively used in
the human-computer interaction domain (e.g., Li et al., 2008;
Trafton et al., 2011).

The cognitive user model presented here has been devel-
oped using the cognitive architecture ACT-R (Anderson et
al., 2004). As shown in previous research, associative prim-
ing can be considered an acceptable explanation of temporal
disadvantages of device-oriented steps (Halbrügge & Engel-
brecht, 2014). The work presented here provides a direct link
from device-orientation to user errors.

This was achieved by using two additional concepts:
firstly, partial matching mimics human memory imperfec-
tions by responding to memory retrievals with similar, but
not completely fitting chunks of information. And secondly,
humans as embodied and situated beings tend to use environ-
mental cues to reduce cognitive load (Wilson, 2002). This led
to the addition of a knowledge-in-the-world (Norman, 1988)
strategy where the user scans the UI for “inviting” elements
instead of relying on the internal representation of the cur-

rent task, only. This attempt also goes in line with Salvucci’s
(2010) criticism of the MFG theory being too focused on
memory while neglecting the user’s interaction with the envi-
ronment.

Technically, the model is run inside the standard Lisp dis-
tribution of ACT-R 6.0.3 The ability to interact with the
HTML interface of the kitchen assistant is provided by ACT-
CV (Halbrügge, 2013). The model receives its instructions
through ACT-R’s auditory system and tries to memorize the
necessary steps for the current trial. No specific knowl-
edge about the kitchen assistant is hard-coded into the model.
When pursuing a goal, the model first uses a knowledge-in-
the-head strategy, i.e., it tries to follow the memorized step
sequence (left part of Figure 3). Once memory gets weak, the
knowledge-in-the-world strategy takes over. Elements on the
screen are randomly attended and a memory recall heuristic
is used to determine whether this element was part of the cur-
rent action sequence. If no matching goal chunk is found, the
visual search for possible targets is continued (right part of
Figure 3).

attend-goal-element

select/click-element

search-goal-element attend-random-ui-element

try-retrieve-goal-for-element

try-retrieve-next-goal

Knowledge in-the-head Knowledge in-the-world

Figure 3: Schematic flow chart of the knowledge-in-the-
head and knowledge-in-the-world strategies of the cognitive
model. Dashed arrows denote retrieval failure, dotted arrows
denote visual search failure.

How does the Model Predict Errors?

Memory activation (and its noise) is the main explanatory
construct used by the model. Omissions are caused by the ac-
tivation of the respective subgoal being too low. As activation
decays over time, omissions are more likely for longer task
sequences and for subgoals that appear late in a sequence.
Task-oriented elements of a sequence receive additional ac-
tivation through priming (Halbrügge & Engelbrecht, 2014)
and are therefore in principle less prone to omissions. This
effect can be mitigated by the application logic, though. If a
subgoal can no longer be retrieved by the knowledge-in-the-
head strategy, its corresponding UI element can nevertheless
be found by the knowledge-in-the-world strategy (see Fig-
ure 3). This is especially probable for mandatory subtasks
like navigating to the following screen because these mark

3The Lisp source code of the model is available for download at
http://www.tu-berlin.de/?id=135088
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situations where no other applicable UI element can be found
by the model.

Intrusions happen when the activation of a similar subgoal
of a previous trial exceeds the activation of the current sub-
goal. The partial matching mechanism adds an additional
penalty to the intruding subgoal’s activation depending on
its dissimilarity to the retrieval request.4 Activation noise is
essential for intrusions, but they can also be caused by an
old subgoal receiving “misguided” priming from the current
goal, e.g., when there is substantial overlap between two con-
secutive trials. Because task-oriented subgoals receive more
priming than device-oriented ones, the model predicts higher
intrusion rates for task-oriented UI elements.

Another cause for intrusions is the knowledge-in-the-world
strategy. ACT-R’s activation spreading mechanism allows
priming from the current focus of the visual system to declar-
ative memory elements, comparable to the horizontal di-
mension of the “Dual Systems” theory (Cooper & Shallice,
2000). When the model searches the screen for “inviting” el-
ements (attend-random-ui-element in Figure 3), the currently
attended element primes subgoals that correspond to it re-
gardless of whether they belong to the current goal or a pre-
vious one.

Model Fit
The model predictions are sensitive to several global ACT-
R parameters that affect activation. We kept activation de-
cay (bll) at the default of .5, varied activation noise (ans) be-
tween .5 and .6, set priming (mas) to 3.5 and varied the partial
matching penalty (mp) between 4.0 and 4.5.

The model was run 1000 times and all errors made were
collected (dotted lines in Figure 4). The quantitative fit as
computed based on the error probability for each combination
of omissions and intrusions and the four UI element types
defined above is promising with R2 = .915 and RMSE = .003.

Figure 4: Empirical error probabilities and model predictions
for different UI elements.

Discussion
We conducted a usability study to examine the effects of
device-orientation and task necessity on procedural errors.

4The dissimilarities are computed by ACT-R based on the num-
ber of mismatching information units, here trial and current subgoal.
No user-specified similarity function is used by this model.

Unsurprisingly, mandatory tasks were less likely to be omit-
ted. They showed slightly higher intrusion rates than their
non-obligatory counterparts, though. Screen elements that
were both device-oriented and non-obligatory showed by far
the highest error, i.e., omission rates.

These results are valuable in themselves for several rea-
sons. First, they show that human error can be studied well
without adding secondary tasks or interrupting the subjects
during their tasks. Secondly, the concept of device- vs. task-
orientation has proven beneficial in principle. And finally, our
results highlight how little we can predict when we base our
predictions on nothing but theoretical concepts (here device-
orientation). Only when we take the application’s interac-
tion logic into account (here focused on obligatory vs. non-
obligatory task steps) we get significant differences that are
worth further analysis.

At first thought, this might lead into a problem: The appli-
cation logic is specific to a single application most of the time.
If we base our analysis on it, we are in danger of limiting the
scope of our research to nothing but that single application.
The choice of cognitive modeling as a methodology helps
resolving this issue. Cognitive models can integrate other
knowledge as long as it is machine readable. In our case,
the meta-information encoded within the MBUID user inter-
face models provides the possibility to model the activation
gains of task-oriented subgoals in a generalizable way. And
even more important, the influencing factor of task necessity
is only implicitly represented within the application. The in-
teraction effect of device-orientation and task necessity is an
emergent phenomenon that is only elicited during the execu-
tion of the cognitive model, i.e., by performing tasks using
the actual application.

We created a cognitive model based on the memory for
goals theory, integrated the MBUID information, and added a
knowledge-in-the-world strategy that the model applies after
facing memory retrieval failure. While the overall goodness-
of-fit of the model is good and especially the case of non-
obligatory device-oriented tasks showing the highest error
rate is reproduced well (see Figure 4), there are several limi-
tations. The sheer number of mechanisms used (decay, prim-
ing, etc.) leads to a complex cognitive model that is rather
sensitive to changes of the respective ACT-R parameters. Fu-
ture research will show whether this affects the generalizabil-
ity of the model. The same holds for the empirical basis of
the model and the representativity of the tasks used during the
experiment.

The model nevertheless provides several improvements
when compared to existing MFG models of procedural error.
Most important, while Altmann and Trafton (2002) discuss
how the environment can provide cues that prime pending
goals, our model is the first one that actively uses this strat-
egy. As a by-product, this leads to the prediction of intru-
sions, an important error class that is often not well captured
(e.g., Trafton et al., 2011; Li et al., 2008).
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Concluding Remarks
As of today, the body of theory and empirical research on
human error is growing, but validated methods for predict-
ing user errors exist only for restricted areas (e.g., Ratwani
& Trafton, 2011). We present a computational user model
grounded in cognitive science research that aims at more gen-
eral error predictions. Taking advantage of UI meta informa-
tion collected during model-based development of different
user interfaces, our cognitive user model can well reproduce
the findings from a usability study conducted before.

In the future, we plan to apply the model to new and differ-
ent interfaces and develop the connection to MBUID towards
higher automation. This way, interface designers could re-
ceive error predictions at early stages of the development cy-
cle, making error prevention much easier.
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Abstract

Models of errors during routine sequential action are typically
interface-independent. We present here evidence that different
task spatial layouts, however, result in different patterns of se-
quence errors. We explain this data by expanding upon the
Memory for Goals framework’s activation-based, sequential
process to include environmental (such as visual) contextual
cues, as well as a richer priming structure. We show a strong
qualitative and quantitative fit to experimental data.

Keywords: Priming; routine sequence errors; cognitive mod-
eling.

Introduction
Sequence errors are errors in the order of steps ideally taken
to complete a task. Typically, routine sequence errors take the
form of either repeating previous steps (perseveration errors),
or skipping one or more steps (anticipation errors) (Reason,
1984).

Various accounts exist for sequence errors (Cooper & Shal-
lice, 2006; Botvinick & Plaut, 2006). One successful model
is the memory for goals (MFG) model (Trafton, Altmann, &
Ratwani, 2011), which uses episodic control codes to direct
step-by-step progression through the task. At any point, the
most activated code is selected as the current step to work on;
this is based on activation strengthening (i.e., frequency and
recency of use), as well as activation from priming effects
(i.e., associated cues from the current goal).

These current theories of sequence errors are interface-
independent; that is, they do not depend on spatial specifics
of the task interface. We present here evidence, however, that
changes in a task’s spatial layout can lead to different pat-
terns of sequence errors. This difference could be explained
by spatial reasoning, but there are not currently spatial reason-
ing theories integrated into sequence error theories. Instead,
we explain this data with a model that utilizes the main prin-
ciples of MFG, including activation and priming; crucially,
however, it expands MFG’s notion of priming with a richer
priming structure, and allows it to capture a fuller environ-
mental context (Hiatt & Trafton, 2013; Thomson, Bennati, &
Lebiere, 2014).

In this work, priming can stem from anything in work-
ing memory, including visual representations, and can be
the result of explicit correspondences between concepts, as
well as more implicit relationships, such as co-occurrence.
This fuller view on priming allows our model to explain the
changes in error patterns stemming from different task inter-
faces, in large part because our account of priming includes
visual cues. We next describe an experiment showing how
task layout affects error patterns; then we discuss our model,

show that we provide a good qualitative and quantitative ac-
count for the data, and end with a discussion of the implica-
tions of our approach.

Experiment
Forty-three participants performed a version of Ratwani and
Trafton’s financial management task (Ratwani & Trafton,
2011). The task is a form-filling task where steps need to be
performed in a specific order to buy or sell stocks. The layout
primarily consists of two columns; unlike previous versions
of the task, where the task step sequence moves down the
columns (a columnar layout; e.g., Ratwani & Trafton, 2011;
Trafton et al., 2011), here, the step sequence goes across be-
fore going down (a horizontal layout; see Figure 1). Each
step, save the first and the last, consists of selecting the appro-
priate widget, and then selecting the appropriate value before
hitting a “submit” button. The first step consisted of choosing
a stock to trade; the last involved hitting a “Complete Order”
button (a post completion step; Byrne & Bovair, 1997). The
task had no place-keeping, so upon completing a step, there
were no cues about the correct step to take next.

Participants performed three training trials, followed by 20
testing trials. Occasionally, after completing a step, the screen
cleared and the participants were interrupted to perform a
simple arithmetic task; the interruption lasted 15 seconds. Af-
ter the interruption, the participants were expected to resume
the task and continue with the next appropriate step. For five
of the testing trials, there were three interruptions; another
five trials had two interruptions each; five trials had one inter-
ruption each; and five trials had zero interruptions. The trial
order was randomly determined outside the knowledge of the
participants to keep participants from guessing whether a step
would be followed by an interruption.

Occasionally, participants made an error by selecting the
wrong step to work on next. The highest percentage of the
errors by participants occurred when resuming from this in-
terruption, especially given that there was no place-keeping;
these errors are what we analyze and model here. We describe
these sequence errors in terms of how far ahead or behind of
the correct step the selected step was. So, if a step is repeated,
it is considered a -1 (perseveration) error, since the selected
step is one step behind the correct step. If a step is skipped,
it is considered a +1 (anticipation) error, since the selected
step is one step ahead of the correct step. If a step two steps
back is repeated (such as performing step 7, “Associate”, af-
ter performing step 8, “Order Info” in Figure 1), that would
be a -2 error, since the selected step is two behind the correct
next step; and so forth. If an incorrect step was selected, the
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Figure 1: Horizontal stock trader interface. The steps are numbered to indicate the order in which they should be completed;
they are shown here for illustrative purposes only.

system beeped and the correct step was highlighted in a red
color to allow the participant to recover and continue.

The data from the horizontal task show both similarities
and differences with the columnar versions of this task (Fig-
ure 2). As with the columnar versions (and other routine se-
quence error tasks, as well), the most common error for the
horizontal task was the immediate (-1) perseveration error,
and there were more perseveration errors overall than antici-
pation errors. Also in accordance with the columnar data, the
distribution of errors clusters around the +/-1 errors, and falls
away in both directions as the error type gets farther from the
correct step (Altmann, Trafton, & Hambrick, 2014).

The horizontal data, however, also show a different pat-
tern of this gradation: namely, a higher proportion of +/-2 er-
rors that occur, compared to +/-1 errors, caused by its distinct
spatial layout; an effect which other approaches are unable
to explain. The horizontal data also have a wider distribu-
tion spread, overall. To preview our approach, we explain the
higher proportion of perseveration errors as due to differences
in strengthening and priming activation values, which are true
regardless of the task interface. In contrast, the difference be-
tween the two patterns of data stems primarily from visual
priming, which can lead to interface dependent effects. We
discuss this further below.

Model Framework
We investigate our account of error prediction within the cog-
nitive architecture ACT-R/E (Trafton et al., 2013), an em-
bodied version of ACT-R (Anderson, Bothell, Lebiere, &
Matessa, 1998). ACT-R is an integrated theory of human cog-

nition in which a “production system operates on a declarative
memory” (Anderson et al., 1998). In ACT-R, activation of
memories has three main components – strengthening, prim-
ing, and noise – which are added together to represent a mem-
ory’s total activation. We next discuss each in turn.

Activation Strengthening

ACT-R’s well-established theory of activation strengthening
has been shown to be a very good predictor of human declara-
tive memory (Anderson et al., 1998; Anderson, 2007; Schnei-
der & Anderson, 2011). Intuitively, activation strengthening
depends on how frequently and recently a memory has been
relevant in the past. It is designed to represent the activation
of a memory over longer periods of time and, generally, is
highest right after the memory has been accessed in working
memory, slowly decaying as time passes. Activation strength-
ening is calculated according to:

As = ln

(
n

∑
j=1

t−d
j

)

where n is the number of times a memory i has been refer-
enced (e.g., used in working memory) in the past, t j is the
time that has passed since the jth reference, and d is the a
strengthening learning parameter, which defaults to 0.5. Im-
portantly, the negative exponent in this equation implies that
recent memories are more differentiated from each other than
memories farther in the past.
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(a) Distribution of sequence error after an
interruption in a columnar interface. Data is
from Trafton et al., (2011).
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(b) Distribution of sequence errors after an
interruption in a horizontal interface. Note
the higher proportion of +/-2 errors, and
wider distribution spread, that occur.

Figure 2: Contrasting patterns of errors are produced when
task versions have different spatial layouts.

Activation Priming
While priming has long been a part of the ACT-R frame-
work (e.g., Anderson, 1983), we adopt a newer, richer no-
tion of priming as part of our approach (Harrison & Trafton,
2010; Hiatt & Trafton, 2013; Thomson et al., 2014). One
substantial difference is that, here, activation priming sources
from any part of the model’s working memory, including
the model’s goal, intermediate problem representations, and
visual representations of what the model is looking at. It
then spreads, along associations, to other memories related
to those in working memory.

Another main difference is the richer structure of asso-
ciations. Relevant to our discussion here, associations can
be created not only because of explicit correspondences, but
also due to co-occurrence and residual relationships. Co-
occurrence associations are created between memories i and
j when they are both referenced in working memory at the
same time. Residual associations are created between memo-
ries that have been referenced in working memory in tempo-

ral proximity to one another, even if they are not in working
memory at the same time.

Once established, associations have an associated strength
value which affects how much activation is spread along
them. Mathematically, the strengths (S ji) are:

S ji = mas · e
−1

al·R ji

R ji =
f (NiC j)

f (C j)− f (NiC j)+1

These equations reflect two parameters: mas, the max-
imum associative strength; and al, the associative learning
rate. The function f tallies the number of times that memory
j has been referenced, either independently (C j) or at similar
times to when i has been referenced (NiC j). An associative
strength, intuitively, reflects how strongly a memory, when
currently being referenced in working memory, predicts that
a memory it primes will be referenced next, and are a function
of how often the two memories are referenced by working
memory at the same time, versus how often each one is ref-
erenced in working memory without the other (represented
by R ji). These equations are explained further in Hiatt and
Trafton (2013); residual associations are discussed further in
Thomson et al. (2014). The associative strengths’ qualitative
properties are what are key here: namely, that residual associ-
ations are typically weaker than co-occurrence associations.

To summarize, associative priming provides the models
built in this framework with a rich network for spreading ac-
tivation that can capture correspondences between memories
that are frequently relevant at roughly the same time, as well
as correspondences between memories or concepts of differ-
ent modalities. We rely on both of these features of priming
for our model, described below.

Activation Noise
The activation noise of a memory is drawn from a logistic
distribution with mean 0 and standard deviation the parameter
σc. It is a transient value that changes each time it is used, and
models the neuronal noise found in the human brain.

Perception and Action
Finally, the model interacts with the world using ACT-R/E’s
built-in functionality for interacting with the world. Models
can view computer interfaces on a simulated monitor; they
can act on the world by pushing keys on a simulated keyboard
and clicking a simulated mouse.

Activation-Based Model of Sequence Errors
The model’s general principles are that it uses activation
strengthening and priming to drive progression through a se-
quential task’s steps. At all times, the model maintains in
working memory a representation of its goal of completing
the task. Before any given step, the model decides what
step to perform next by first performing a free retrieval of an
episodic code representing the last step that has been com-
pleted (or, if there is already an episodic code in working
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memory, it simply retains it). Once there is an episodic code
in working memory, it then performs a free retrieval of a step,
and considers the retrieved step to be the correct next step to
perform. It then repeats this process to move on to the next
step. At any of these points, as we will show below, prim-
ing can come from any item in working memory, including
what the model is working at, and can greatly influence the
progression of the model through the steps.

Specific to this task, we assume that the representation of
the step includes a visual location for where the step is located
on the screen, which the model uses as a guide when moving
to complete that step. The model is abstract in the sense that
it was not concerned with the actual values to fill in to the
widgets; instead, its primary responsibility is to attempt to
complete the steps of the task in the correct order during each
trial. After selecting a widget to work on, it thus clicks the
submit button without filling in any values. At the end of a
task, the entire working memory is cleared before the model
begins the next trial. The model does not perform the post-
completion step (e.g., step 14 of Figure 1).

During an interruption, the arithmetic task requires the use
of the entire working memory, and so all stock task-related
memories (including goals and episodic codes) are removed
from working memory. Upon completion of the interrupting
task, the model adds a new task goal to working memory,
and decides what step to perform next using the process de-
scribed above. Here, however, in addition to performing a
free retrieval of an episodic code, the model looks at the posi-
tion of the previous step in the interface before attempting
to retrieve the next step. Eye-tracking data collected dur-
ing the experiment showed that, after an interruption, par-
ticipants look at the correct next step only 13% of the time.
Participants, instead, first looked most often at the previous
step upon resumption (15%), with the rest generally looking
at locations or steps in close proximity to the previous step
(such as the step above or below). We assume that this wide
spread of where participants look is, in part, due to error in
the eye tracker as well as due to error stemming from par-
ticipants noisily remembering the last location at which they
were looking before the interruption. We do not have a the-
oretical model of visual location memory, but instead model
the visual location noise by adding a small amount of Gaus-
sian noise to the position of the last step, and focusing the
model’s visual attention on the step nearest to that noisy lo-
cation.

As the sequence process unfolds, many associations are
created between the various components involved. Critical
to our approach, associations are created between nearby se-
quential steps, as well as between the visual representation of
a step and the next step. Figure 3 illustrates associations for
the eighth step of the stock trader experiment; all of the asso-
ciations are created from co-occurrence except for those be-
tween 6.RequestedPrice and 8.OrderInfo, and between 8.Or-
derInfo and 10.MarginRate, which are residual associations.

During a normal, non-resumption step, the free retrieval

8.OrderInfo+

task0state0X+

stock0trade0X+
6.RequestedPrice+

7.Associate+

7.Associate.Visual+

9.Margin+
10.MarginRate+

Figure 3: Illustrative associations for the eighth step of the
stock trader experiment, Order Info. “Task-state-X” is a
placeholder for various episodic codes associated with Order
Info over time. “Stock-trade-X” is a placeholder for various
goals associated with Order Info over time; episodic codes
are associated with the goal in working memory that they co-
occur with. Other associations are made, as well, but for clar-
ity we omit those not relevant to our discussion.

of the episodic code is highly affected by both the very near
recency of the episodic code (activation strengthening), and
from priming from the current goal. Then, the free retrieval
of the next step is primarily influenced by priming stemming
from the episodic code of the prior step in working memory.
These priming and strengthening effects result in a very low
error rate during normal task sequence execution.

When resuming after an interruption, however, the model’s
path is not as clear-cut. For example, since some time has
passed since the previous episodic code was last in use, it is
more apt to be confused with previous episodic codes, po-
tentially leading to an incorrect retrieval; this is exacerbated
by the new goal in working memory, which does not provide
priming cues to the previous episodic code. The model also
may look at the wrong previous step due to its noisy visual
location memory. These potentially incorrect sources of acti-
vation mean that the model does not always retrieve the cor-
rect step to perform after an interruption. Additionally, even
if both these steps do go correctly, priming from the previous
episodic code may lead to an anticipation error, because of
the residual associations between non-sequential steps. These
competing sources of activation comprise the crux of our ap-
proach and are explained in more detail, below.

Model Predictions
The model makes a number of activation-based predictions
for post-interruption errors in this task. There are two factors
that contribute to the final set of activations for a resumption
step: the prior episodic code that is retrieved, and what the
model is looking at. Different outcomes of these two potential
process affect the overall pattern of errors for the retrieved
step:

• Retrieve the correct episodic code: Here, priming activa-
tion from the correct, prior episodic code biases the model
towards the correct answer. It also spreads some activation,
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however, to the +1 anticipation step via residual associa-
tions (such as how 6.RequestedPrice primes 8.OrderInfo
in Figure 3), leading to a possibility of a +1 anticipation
error. Occasionally, residual associations can also result in
a +2/+3/etc. error.

• Retrieve the wrong episodic code: This happens because
of activation strengthening decay. After an interruption,
recent episodic codes are close enough in activation that
earlier codes may be retrieved. This always results in a bias
towards perseveration. A bias towards errors of -1 are the
most common, here, but it is possible that errors of type
-2/-3/etc. could stem from an incorrectly retrieved prior
episodic code as well.

• Look at the right previous step: This biases the model to-
wards performing the correct step next.

• Look at the wrong previous step: Because of visual prox-
imity, the wrong step being looked at is either above or
below the previous one. This will bias the model towards
the incorrect step being looked at.

Based on these potential process errors, the model makes
several predictions for sequence errors. First, the model pre-
dicts more perseveration errors than anticipation errors be-
cause, intuitively, the model is more likely to retrieve an in-
correct past episodic code (potentially leading to an antici-
pation error) than it is to retrieve an incorrect step based on
residual priming (potentially leading to an anticipation step).
More technically, the difference in activation strengthening
between the past episodic codes is less than the difference in
activation priming that an episodic code spreads to the correct
vs. future step, leading to more errors occurring there. It fol-
lows that this difference also predicts that the most common
error type is the -1 perseveration errors. These predictions are
interface-independent.

Because of its inclusion of visual priming, the model also
predicts the pattern of errors will differ depending on the
task’s spatial layout. In the previous columnar layout, look-
ing at the wrong previous step spreads activation to the +/-1
steps. In the horizontal layout, however, looking at the wrong
previous step spreads activation to the +/-2 steps. Based on
this, the model makes two spatial-dependent predictions for
the horizontal task version.

First, it intuitively predicts a relatively high proportion of
+/-2 errors because of the increase in priming activation those
steps receive when the model looks at the incorrect step. Sec-
ond, it predicts a wider distribution spread, overall. This is
because the set of steps commonly competing for retrieval
(e.g., {-2, -1, 0, 1, 2}) is larger than the set commonly com-
peting in the columnar task version (e.g., {-1, 0, -1}), making
the distribution of steps ultimately selected more spread out.

To reiterate, the key difference between this model and the
original memory for goals model is the depth to which prim-
ing is utilized by the model. In the MFG model, priming
derived from explicit correspondences between the goal and
episodic code, and so environmental context (such as priming
from visual sources) was not a factor; this makes it unable

to capture correspondences between visual objects and other
memories, and so it does not predict any shift in error patterns
between the two task interface layouts. In addition, MFG
does not include residual priming associations in its account,
making it very difficult for it to account for +2 errors, even in
the columnar version of this task. Finally, in MFG, priming
relied upon explicit correspondences between features, some
of which were assumed a priori, unlike our model which as-
sumes no associations to begin with and builds up its rich
network as it trains for, and then tests on, the task.

Model Fit
We ran the model 43 times to simulate data from each of the
43 participants from the horizontal stock trader study. Before
beginning testing, the model first performs 3 training trials,
where it assumes it is being instructed with the task sequence
as it moves through the steps. During these trials, the frame-
work of associations is set up that it will rely upon as it con-
tinues on to perform the 20 testing trials, where it continues
to learn and update associations as well. Interruptions during
the experiment had the same structure as in the original study.

ACT-R/E includes several parameters that affect activation
dynamics and, thus, model behavior. The associative learning
rate, which affects the rate at which associations are strength-
ened, was set to 6.5, which represents a fairly brisk rate of
learning. There is no standard value for this parameter. The
maximum associative strength was within its normal range at
3.0. The activation noise parameter σc was 0.08, which is
also within its typical range. All other parameters were set to
their default values.

We compared the proportion of errors of each type that the
model made with the proportion of errors of each type from
the study; this allows us to compare the data both qualitatively
(overall error trends) and quantitatively (specific distribution
of results). The results are shown in Figure 4. Overall, the
model’s results matched the data very well, with R2 = 0.99
and RSE = 3.3. It also qualitatively matches the data’s trends,
with -1 perseveration errors being the most common error
type, and with a higher proportion of +/-2 errors and rela-
tively wider distribution.

Discussion
This work utilizes the underlying principles of memory for
goals – that sequential steps are driven by episodic codes,
and that those episodic codes are selected based on activa-
tion – while expanding its scope. In addition to the strength-
ening, goal-based priming and noise activation components
present in the memory for goals model, our model provides
an expanded view of priming that includes priming activation
from all items in working memory, and fosters a richer prim-
ing structure enabled by additional types of associations. This
allows our approach to account for data from sequential tasks
with different spatial layouts, something the MFG model
was not previously able to do, while also keeping it con-
nected with existing MFG models of sequential errors, post-
completion errors, and recovery time that have been shown to
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Figure 4: Graph showing the proportion of each type of se-
quence error from both the experiment and the model.

be successful (Altmann & Trafton, 2002, 2007; Tamborello,
II & Trafton, 2014).

Other models of routine sequence errors, such as the in-
teractive activation network (IAN) model (Cooper & Shal-
lice, 2006) and the simple recurrent network (SRN) model
(Botvinick & Plaut, 2006), also ignore the specifics of the
task interface, and so cannot account for the differences in
error patterns that results from an interface layout shift. The
ideas behind our expanded priming approach, however, could
apply to IAN, which uses environmental and contextual acti-
vation to select between schemas that determine the next step.

Although our model does not account for other types of
errors, such as capture errors, it does provide some intuition
about how those errors take place. Capture errors, for exam-
ple, occur when a task sequence switches, mid-execution, to
a task sequence from a different, but usually related, task; for
example, checking e-mail after sitting down at a computer
when one originally intended to check the weather. Capture
errors, intuitively, involve much environmental context and
visual cues, which can be accounted for by our approach.
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Introduction 
It has been 25 years since Unified Theories of Cognition 
was published (Newell, 1990). In it, Newell outlines a 
vision to inspire generations of cognitive scientists and 
cognitive modelers; a quest for theories that provide 
comprehensive accounts of the human mind. As he put it: 
 

“A single system (mind) produces all aspects of 
behavior. It is one mind that minds them all. Even if the 
mind has parts, modules, components, or whatever, 
they all mesh together to produce behavior… If a 
theory covers only one part or component, it flirts with 
trouble from the start. It goes without saying that there 
are dissociations, interdependencies, impenetrabilities, 
and modularities… But they don’t remove the necessity 
of a theory that provides the total picture and explains 
the role of the parts and why they exist.” (Newell, 
1990, pp. 17-18). 

 
The intervening years have produced a wealth of research 

progress on many fronts. One important measure is the 
number of candidate theories that have emerged. In his 
book, Newell explicitly pointed to the need for multiple 
unified theories of cognition to drive progress through 
model comparison. The 1990’s and early 2000’s saw a large 
expansion in theories providing broad accounts of human 
cognitive capacities (see, e.g., Gluck & Pew, 2005). In 
addition, there have been some attempts to formally 
compare alternative theories to address their associated 
strengths and weaknesses (e.g., Gluck & Pew, 2005; 
Gonzalez, Lebiere, & Warwick, 2009). 

In conjunction with the increase in candidate 
architectures, the scope of these theories also has broadened, 
leading to more complete theories that have incorporated 
many critical aspects of human cognition (e.g., Anderson, 
2007; Bach, 2008; Laird, 2012). This was a critical 
component of Newell’s vision, addressing the need to 
account for a wider array of cognitive mechanisms to 
provide ever more comprehensive and inclusive accounts of 
the capacities and limitations of human cognition. It is 
worthwhile to take stock of these achievements.  

Despite the evidence of progress and sustained 
contributions to cognitive science that have emerged from 
the pursuit of unified theories of cognition, the zeitgeist has 
evolved. Opinions differ significantly within the community 
represented at this conference regarding the current state of 
cognitive architectures, trends in their development, and 

where they should go in the future (e.g., Kurup, 
Gunzelmann, Lewis, Salvucci, & Taatgen, 2012). 

In the broader cognitive science community, there is also 
a tendency to focus on phenomena and challenges that play 
to the strengths of the modeling formalisms that are used for 
model development. As McClelland (2009) notes, different 
approaches are often adopted because they are “particularly 
apt for addressing certain types of cognitive processes and 
phenomena. Each has its core domains of relative 
advantage, its strengths and weaknesses, and its zones of 
contention where there is competition with other 
approaches” (p. 25). This perspective is not new. It contrasts 
with Newell’s vision, which stood in opposition to his 
perception of the prevailing trends in the field. Specifically, 
Newell perceived that cognitive science had become “too 
focused on specific issues and had lost sight of the big 
picture needed to understand the human mind.” (Anderson 
& Lebiere, 2003, p. 587). 

The International Conference on Cognitive Modeling is 
the premier venue for cognitive modeling research. 
Moreover, it emerged from research pursuits directly 
aligned with Newell’s vision. This year’s conference 
provides a unique opportunity to revisit Newell’s vision, 
and look to the future of our community. 

Presenters 
The presenters in this symposium will focus on Newell’s 
vision for unified theories of cognition, discuss whether and 
how that vision drives their research, and comment on the 
extent to which it still defines an appropriate vision for the 
community. The participants in the symposium have been 
selected to represent a cross-section of the community, each 
of whom will provide a unique perspective on the topic. 

Glenn Gunzelmann 
Current cognitive architectures capture many of the 
capacities and limitations of human cognition. However, the 
current state of the art falls well short of Newell’s vision for 
unified theories. Many critical cognitive abilities identified 
by Newell remain poorly understood (e.g., perception, 
language, emotions). In addition, the overwhelming 
majority of computational cognitive models are based on the 
implicit assumption that the human mind continually 
operates in an efficient, effective, and goal-directed manner. 
Our models do not get hungry, fatigued, angry, or 
distracted. Part of Newell’s vision entailed developing 
theories that make it “further down the list” of phenomena 
that characterize the human mind (Newell, 1990, p. 16). 
Unfortunately, too little research in the cognitive modeling 
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community addresses this challenge today. Instead, unified 
theories are used increasingly to explain isolated 
phenomena and validate micro-theories. For cognitive 
architectures to remain relevant in the future of cognitive 
science, the community must take seriously Newell’s vision, 
and refocus on the challenges of developing a theory that 
explains the roles for the various components, why they 
exist, and how they are integrated to create the human mind. 

Paul Rosenbloom 
Newell’s call for integrated approaches to cognition is as 
relevant as ever, but broad progress over the past 25 years in 
both the natural and artificial sciences enables, and even 
demands, we be even more ambitious today when thinking 
about integration. Can we build single systems that span 
from the biological band, through the cognitive and rational 
bands, up to the social band? Can we complete the 
processing path from perception and attention, through 
cognition and affect, out to motor control without arbitrary 
boundaries between these parts? And can integrated 
approaches inform us about both natural and artificial 
cognition? I will discuss how an attempt to answer such 
questions, toward ultimately yielding what could be called a 
grand unification, has driven the development of the Sigma 
cognitive architecture and system (Rosenbloom, 2013). 

Dario Salvucci 
Newell’s vision for unified theories of cognition has no 
doubt stood as the centerpiece of cognitive-architecture 
research since his seminal “20 Questions” paper (Newell, 
1973). In this paper, Newell proposed three complementary 
activities in this effort: the use of “complete processing 
models,” exemplified by production systems; the analysis of 
complex tasks, beyond those involved in simple 
psychological paradigms; and the development of “one 
program for many tasks,” a single model that acts in a 
variety of task domains. Arguably the cognitive-architecture 
community has focused largely on the first and second 
activities, while the third activity has received much less 
attention. I will discuss some recent efforts (e.g., Salvucci, 
2013) that aim to extend the capabilities of cognitive 
architectures in this third direction. 

Iris van Rooij 
New formal and conceptual tools for theorizing about 
cognition have developed since Newell voiced his concerns 
about experimental psychology in his seminal “20 
questions” paper, and proposed specific ways of dealing 
with them. Using these new tools we can cast our theoretical 
net even wider than Newell perhaps envisioned. For 
instance, important advances have been made in theorizing 
about cognition at a level above that of mechanism, viz., 
what Marr (1982) called the ‘computational level’ (and 
Anderson (1990) calls the ‘rational level’). I will discuss 
how theorizing at this level may be useful for addressing a 
challenge that remains to this day: How to make models that 
can scale beyond specific experimental tasks and explain 
cognition in its full domain generality?  

Marieke van Vugt  
As a relative outsider, it struck me that the adoption of 
Unified Theories of Cognition (UTCs) is relatively low. 
Moreover, the community faces criticisms of not being 
falsifiable. Those criticisms are raised especially by 
modelers who focus on modeling a single essential 
cognitive operation. Indeed, I share these concerns, and I 
think it is crucial that the community develops good 
methodology for comparing and testing models, and their 
dependence on model parameters. On the other hand, I think 
UTCs can provide insight not only in what happens during 
the trials of a single task but also what happens between 
those trials as a person gets bored, tired, etc. Furthermore, in 
the domain of neuroscience UTCs have the potential to 
describe how different parts of the brain collaborate to guide 
information flows across different task stages. In the age of 
big data, both simple mathematical models and UTCs are 
more necessary than ever. 
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Abstract

When we get distracted, we may engage in mind-wandering, or
task-unrelated thinking, which impairs performance on cogni-
tive tasks. Yet, we do not have cognitive models that make this
process explicit. On the basis of both recent experiments that
have started to investigate mind-wandering and introspective
knowledge from for example meditators, we built a process
model of distraction in the form of mind-wandering. We then
tested the model by predicting performance on tasks used in
mind-wandering studies. We showed that we could both pre-
dict task performance as well as the participants’ responses to
questions about what they were thinking about. This improved
understanding of mind-wandering could be used in the future
to revise our models of when, how, and why distraction occurs.
For example, our model could be used to examine how the ef-
fect of distraction on task performance depends on the type of
mind-wandering (e.g., rumination versus day-dreaming).
Keywords: ACT-R; mind-wandering; meditation; distraction

Introduction

Reports suggest that we spend more than half of our wak-
ing time mind-wandering (Killingsworth & Gilbert, 2010).
While it is known that mind-wandering also affects task per-
formance, there are very few studies that examine mind-
wandering experimentally, and models of this cognitive pro-
cess are even more scarce. In fact, most studies consider these
distraction processes as some form of mental noise. However,
it is likely that mind-wandering is not a unitary process but is
a collection of different processes. For example, rumination
about ones’ fears may be very different from daydreaming
about an upcoming beach trip. It will be much more dif-
ficult to disengage from the rumination than from the day-
dreaming, and rumination will activate a much smaller set of
memories more strongly. Differentiating between the effects
of these types of mind-wandering requires an explicit model.

Mind-wandering refers to processes of task-unrelated
thinking (see Smallwood & Schooler, 2014, for a review).
This is a process that is not triggered by external distrac-
tors, but rather triggered by the mind itself. Recent studies
have started to investigate mind-wandering experimentally by
means of various tasks in which people are known to zone
out such as slow sustained attention tasks (e.g., Cheyne, Car-
riere, & Smilek, 2009) or reading a boring text (e.g., McVay
& Kane, 2012). To assess mind-wandering, experimenters
may insert thought probes into their task, which ask the par-
ticipants about whether they were on-task or off-task (e.g.,
Cheyne et al., 2009). It has been found that there are more
errors and response time variability increases during self-
reported mind-wandering (Bastian & Sackur, 2013).

Mind-wandering may–depending on circumstances–be ei-
ther adaptive or non-adaptive. While mind-wandering dur-
ing a task that requires continuous cognitive control may
be problematic, mind-wandering during a task that does not
require continuous attention may in fact contribute to im-
proved problem-solving and creativity, since it frequently in-
volves prospective memory (Baird et al., 2012). At present,
there are several theories of mind-wandering that have em-
phasized different aspects of this process. The executive fail-
ure theory states that mind-wandering occurs out of a fail-
ure to focus attention on relevant information (McVay &
Kane, 2009), while the perceptual decoupling theory states
that mind-wandering is primarily a process of decoupling
from the external environment, such that it can be devoted to
internal processes (Smallwood, Beach, Schooler, & Handy,
2008; Smallwood et al., 2011). Evidence for perceptual de-
coupling comes from studies that have found that the ampli-
tude of evoked potentials is reduced during states of task-
unrelated thought (Smallwood et al., 2008). In addition,
the pupil responds less to presented stimuli during states
of mind-wandering (Smallwood et al., 2011). Instead of
processing perceptual stimuli, the brain appears to be en-
gaged in episodic processing during the periods of distrac-
tion (Andrews-Hanna, Smallwood, & Spreng, 2014). Exec-
utive failure theory is based on studies that relate cognitive
control abilities to the ability to resist mind-wandering (Kane
& McVay, 2012). Alternatively, it has been suggested that
mind-wandering results from failures in meta-cognition, the
ability to observe ones’ thoughts (Fox & Christoff, 2014).

None of the above-mentioned theories has been formalized
in computational models. Closest related to studying mind-
wandering come models of distraction and fatigue. For ex-
ample, Gunzelmann, Gross, Gluck, and Dinges (2009) inves-
tigated the effects of fatigue on performance on a monotonous
psychomotor vigilance task. According to his model, fatigue
impacted a parameter used to compute the utility of particular
task strategies (this parameter has been associated with mo-
tivation). This parameter change made random key presses
more likely as the participant became more tired. In addi-
tion, they modelled lapses in behavior by having productions
that had a sufficiently low activation that they would only be
performed as a result of random fluctuations in their activa-
tion parameter. Note how their model does not model dis-
traction through mind-wandering as an explicit process, but
instead assumes that the cognitive system is not functioning
during distraction. Similarly, Gonzalez, Best, Healy, Kole,
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and Bourne Jr. (2011) modelled the effects of fatigue on a
data entry task as a reduction in motivation in combination
with a reduction in attentional control. This attentional con-
trol parameter affects the activation of different pieces of in-
formation, and the larger this parameter is, the better these
pieces of information can be distinguished.

A previous ACT-R model of a sustained attention task that
is often used in mind-wandering studies (Peebles & Both-
ell, 2010) focused primarily on explaining response times
decrease just preceding an attentional lapse (as reflected in
an error). They produced this phenomenon by a competition
between two response strategies: one strategy is responding
whenever a stimulus is detected, which is very fast, while an
alternative strategy first checks the stimulus before respond-
ing. When the fast strategy fails then ACT-R will switch to
the most costly slow strategy. Note that this model does not
implement an explicit cognitive mechanism for what happens
during distraction. Here we intend to build on that previous
model by implementing a competition between a “distracted”
and an “attentive” model, where the distracted model makes
the mind-wandering process explicit.

Model

Our model of distraction (Figure 1) consists primarily of a
competition between a sub-model for paying attention to the
task and a sub-model for mind-wandering. The model was
implemented in the Adaptive Control of Thought-Rational
(ACT-R) cognitive architecture (Anderson, 2007). Tasks are
implemented in this cognitive architecture by specifying a set
of if-then statements (production rules) that describe how dif-
ferent cognitive resources interact. Two ACT-R mechanisms
are of crucial importance for our model. First, ACT-R has a
memory store, where the activation of each memory chunk
determines its use and its retrieval time. The activation in
turn is determined by how often a chunk is retrieved, its ac-
tivation at baseline, and how much activation spreads from
other, related memory chunks. The second mechanism that
determines what happens in the model at a particular moment
is the utility associated with each production rule. When pro-
duction rules help to generate rewards, their utility goes up,
leading them to be used more frequently. However, given that
in mind-wandering there are no external reward processes
that guide the process, we will not make use of this second
mechanism in our model.

In this application, the model starts out by focusing its at-
tention on the stimulus on the screen. When there is a stim-
ulus, it will process the stimulus and perform the appropriate
action. When there is no stimulus, it will continually run a
production which checks what the most active goal (“paying
attention” or “distraction”) is in declarative memory (“check
whether attending” in Figure 1). The activations of the goals
in declarative memory are governed by rules from episodic
memory decay (Altmann & Gray, 2008). This means that
items that are retrieved in activation, but over time the acti-
vation decays. At the start of the task, the “paying attention”

Figure 2: Model simulation of performance in the SART
task described by Mrazek and colleagues (2012). The model
(blue) captures both the number of SART errors and variabil-
ity in response time observed empirically (red).

goal is activated because it has been retrieved from episodic
memory. This goal then decays over time, and at some point
the “distraction” goal becomes stronger (Figure 1). When the
“distracted” goal is retrieved by this checking production, the
mind-wandering model commences.

Mind-wandering consists of a continuous retrieval of
declarative memories. The retrieval process keeps continuing
until at some point a memory that says “remember to attend”
is retrieved. At that point, the model returns to paying atten-
tion and the whole cycle can start again. There is spreading
activation between memories, which ensures that–as in real
life–memories that are of the same valence (positive, nega-
tive, or neutral) tend to be recalled in sequence (van Vugt,
Hitchcock, Shahar, & Britton, 2012).

Our main goal in this paper is to find out whether the hy-
pothesized mind-wandering model can in fact describe em-
pirical mind-wandering data. Studies have experimentally
studied mind-wandering by giving participants a very boring
task, in which participants are likely to drift off. Here, we
will model data from two experiments: Mrazek, Smallwood,
and Schooler (2012) (Experiment 1) and Bastian and Sackur
(2013) (Experiment 2). Both experiments are variants of the
sustained attention to response task (SART), in which partic-
ipants are requested to press a button as quickly as possible
every time a target is presented, but to withhold a button press
to a more rarely presented non-target (Cheyne et al., 2009;
Smallwood et al., 2004).

When the distraction model is inserted in a model of
the SART task, we assume performance is determined by
the following mechanisms, building on Peebles and Bothell
(2010)’s model. When task stimuli are presented while the
model is in paying attention mode, the model will look at
the stimuli and retrieve the relevant stimulus-response map-
ping from episodic memory. Conversely, when the model is
distracted, it will not retrieve the stimulus-response mapping
from episodic memory but instead respond with the habitual
response. However, responding may take a little while, be-
cause the model will only be able to respond when it is not
busy retrieving a memory in its mind-wandering train. This
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Figure 1: Model time line. Each box cor-
responds to a production (some less im-
portant productions have been left out).
The model starts on the left top with
retrieving its current goal, correspond-
ing to goal checking. Initially, the “at-
tending” goal has the highest activation
(see dashed blue box), but over time the
attending goal declines in activation to
become similar to the distracted goal.
When this “distracted” goal is retrieved,
the model switches to retrieving memo-
ries from declarative memory, represent-
ing mind-wandering. Mind-wandering
(cyan) continues until “remember to at-
tend” (purple) is retrieved. At that time,
the model goes back to monitoring goals.
When a stimulus is presented (pink line),
then the model identifies it and retrieves
the stimulus-response mapping in case it
is attending. When it is distracted, it fin-
ishes retrieving the current distraction and
then presses the default response.

potential delay before responding is responsible for creating
the increase in response time variability that is typically ob-
served in mind-wandering studies (Bastian & Sackur, 2013;
Mrazek et al., 2012). In Experiment 2, thought probes may
also be presented. Whenever a thought probe occurs, the
model will press the “on-task” button whenever it is in paying
attention mode, while it will press the “off-task” button when
it is busy retrieving memories from episodic memory during
distraction. The models can be retrieved from http://www

.ai.rug.nl/

˜

mkvanvugt/mindwanderingModels.zip. A
flow chart of the model is shown in Figure 1.

Model testing

Experiment 1

We first used our model to simulate the average data pub-
lished by Mrazek et al. (2012). In this experiment, the targets
consisted of the letter “O”, and non-targets consisted of the
letter “Q.” Stimuli were presented for 2 s with an interstimu-
lus interval of 2500 ms. There were in total 240 stimuli; 216
targets and 24 non-targets.

Figure 2 shows that the simulated performance of the
model reproduces both the observed number of SART errors
and the coefficient of variation of the response time. Errors
are produced whenever the model is mind-wandering. The
coefficient of variation results from variability in memory re-
trieval time.

Having established the model can produce behavior sim-
ilar to human participants, it becomes possible to examine
how the model produces this behavior. Figure 6 shows that
according to our model, the frequency of distractions shows
a U-shape: initially, there are quite a few distractions, which

Figure 3: Behavior produced by a model in which the thought
pump is ended with a production “end-thought-pump” rather
than a specific memory retrieval.

reduces in the middle of the task, and increases at the end.
While there is evidence for an increase in the frequency of
distraction towards the end of the task (Bastian & Sackur,
2013), it is not clear whether the distraction at the beginning
of the task is plausible. Future studies that have better mea-
sures of the frequency of distraction (e.g., Katidioti et al., sub-
mitted) should clarify this issue.

An important question is how crucial the proposed mech-
anism is for terminating mind-wandering. A simpler mecha-
nism for achieving this goal may be a direct competition be-
tween the “distraction” and “paying attention” goals. In other
words, at any moment during mind-wandering, a production
could fire that reflects the end of the mind-wandering pro-
cess. Figure 3 shows that this alternative mechanism makes
too few mistakes because the episodes of mind-wandering are
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Figure 4: Model simulation of performance in the SART task
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tures both accuracy and variability in response time observed
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Figure 5: Response time distribution of SART performance
of Experiment 2, overlaying actual data (blue) with model
predictions (red).

terminated much too quickly. A caveat in this assertion is that
there may potentially be ways to change ACT-R parameters
to increase the duration of mind-wandering episodes.

The duration of mind-wandering is determined by the
episodic memory retrievals that make up the mind-wandering
process. When the pool of to-be-retrieved memories is
larger, then distractions will tend to persist longer, because
the chance that the distraction-ending memory is retrieved
is smaller. A larger number of retrievable memories corre-
sponds to something akin to the number of retrieval cues. In
some contexts, people may be able to think of many different
things, while in other context they can only retrieve a limited
number of items. A further determinant of distraction dura-
tion is the association structure of the distracting memories.
When memories spread activation to the memory that ends
the distraction, this will decrease distraction duration; when
they spread activation to other memories, this increases dis-
traction duration. These factors could potentially be manipu-
lated to account for individual differences in distractability.

Together, these results show that it is possible to use
our model of mind-wandering to simulate performance on a
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Figure 6: Predicted frequency of distractions in Experiment
1.

SART task. However, the results are fairly weak since we
only fit two average numbers: the number of errors and re-
sponse time variability. More data are needed to adequately
constrain our cognitive model. We therefore use the com-
plete dataset collected by Bastian and Sackur (2013) to fur-
ther test the model, which allows us to examine more behav-
ioral measures. An additional advantage of that dataset is that
the task was interspersed with thought probes that asked the
participant to report on the content of their thoughts. The re-
sponses to thought probes are another constraining factor for
our model. Moreover, it highlights an important advantage of
modeling mind-wandering explicitly, as we did here. When a
model has no explicit process description of mind-wandering,
it cannot predict responses to thought probes.

Experiment 2

In Experiment 2, participants performed a very similar task
as in Experiment 1, although the timing was a little bit dif-
ferent. Importantly, we did not change the model parameters
at all to predict performance in this task. In this experiment,
the non-target consisted of the digit 3, and the target con-
sisted of all other digits. The digits were presented for 500
ms with an interstimulus interval of 1500 ms. There were
in total 888 stimuli; 811 targets and 77 non-targets. In addi-
tion, 24 thought probes that were randomly interspersed in the
task. These thought probes asked a series of four questions
about task performance. First, participants were asked “How
focused were you on the task? 0: on-task, 1: task-related
thought, 2: distraction, 3: mind wandering.” Secondly, “Did
you know that you were in the just-reported mental state or
did you only notice it when asked? 0=aware, 1=unaware.”
The third question concerned the phenomenology/type of the
thoughts, while the fourth question assessed the temporal ori-
entation of the thoughts (past, present, future, or no particular
time). In this paper, we will only model the question about
whether the participant is on-task.

Figure 4 shows that task performance could be modelled
accurately with the model for Experiment 1, although in this
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case, the model is performing slightly too well for the partici-
pants. Potentially, model fits could be improved by adjusting
parameters.

In addition to average responses, it is also important to
consider the entire response time distribution (e.g., Ratcliff,
2002). Figure 5 shows that the modeled and observed re-
sponse time distributions for task performance overlay con-
siderably, although the response time variability predicted by
the model is too small.

Finally, our explicit model of mind-wandering allows us
to model the responses to questions about the contents of
thoughts. At random moments in the task, the participant is
asked whether they were on-task or off-task. Figure 7 shows
that the model over-estimates the proportion of being on-task
relative to human participants, which is consistent with the
model’s overperformance evident in Figure 4. Another no-
table feature visible in Figure 7 is that participants require
about 3–4 seconds to formulate their response to the ques-
tion “Were you on-task.” This response time is much longer
than those observed for cognitive tasks, and our model is not
able to predict it. Two potential mechanisms that could be
involved in generating this time are (1) the conversion of a
pre-verbal into a verbal response (Teasdale & Chaskalson,
2011) or (2) mental time travel to several moments before
the thought probe appeared to retrieve the memories that oc-
curred at that time (Howard & Kahana, 2002; Tulving, 2002).
Future modeling efforts should investigate these ideas.

Discussion

We proposed a model that describes mind-wandering mech-
anistically. We showed how it could account for task per-
formance in two experiments featuring the Sustained At-
tention to Performance task (without changing model pa-
rameters between the two). While previous models only
treat distraction abstractly as noise in the cognitive sys-
tem (VandeKerckhove & Tuerlinckx, 2007) or an absence of
cognitive activity (Gunzelmann et al., 2009), we made an ex-
plicit model of the mind-wandering process. This allowed
us to not only model task performance, but also responses to
thought probes. Our model provides a potential implemen-
tation of the executive failure theory, where in our case ex-
ecutive failure is implemented as a failure to keep checking
what the current goal is. It is also related to perceptual decou-
pling in that perceived stimuli are not further analyzed, but it
places the constraints at a higher level than initial stimulus
processing.

In the future, our explicit model of mind-wandering could
allow us to examine the effect of different types of mind-
wandering on cognitive processing. For example, depres-
sive rumination impairs task performance, and our model can
make predictions about exactly how it does so. By describing
the thought process from moment to moment, we will be able
to investigate how not only cognitive control factors affect
task performance, but also the content of thought. For this to
be done, it will be important to populate the model with mem-

0.00

0.25

0.50

0.75

1.00

data simulation

fra
ct

io
n 

on
−t

as
k

0

1000

2000

3000

data simulationRT
 to

 th
ou

gh
t p

ro
be

s 
(m

s)

(a) (b)

Figure 7: Observed (red) and modeled (blue) responses to
thought probe (“Are you on-task?”) in Experiment 2. (a) frac-
tion of on-task responses, (b) median time taken to respond
to thought probes.

ories that reflect the distribution of memories that is observed
in actual participants. Such data can be obtained from studies
that report the content of thoughts in thought probes (Bastian
& Sackur, 2013).

While our model makes a promising start with modeling
task performance, there is still some work to be done. Our
model predicts better performance in Experiment 2 than is
produced by the participants (Figure 4). In addition, the fre-
quency of mind-wandering episodes (Figure 6) shows a U-
shape, rather than the previously reported increase Bastian
and Sackur (2013).

The most dramatic discrepancy is in the response times to
thought probes, which are much faster in our model than in
real participants. A future iteration of our model may need
to include a mechanism by which the participant converts the
content of thoughts into a verbal report.

At the same time, we have relatively few datapoints and
cannot make strong inferences about our model. One pos-
sible future direction may be predicting the frequency of dis-
tractions. We have recently started to measure those by means
of eye movements to an ambient video monitor (Katidioti et
al., submitted). Our model could potentially describe how
the frequency of distraction changes over time, and depends
on different factors such as task difficulty. This is particu-
larly important because it is often thought that introspective
judgments are unreliable (Larson, Perlstein, Stigge-Kaufman,
Kelly, & Dotson, 2006).

In short, we have developed a mechanistic model of mind-
wandering. This model can in the future be used to disen-
tangle different types of mind-wandering. In addition, future
experiments should elucidate the neural correlates of distrac-
tion and mind-wandering, such that those measures can be
used to track distraction online (Bengson, Mangun, & Maza-
heri, 2012).
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Abstract 
We compare how the same cognitive model completes a task 
within two alternative modifications to a cognitive architecture 
to represent sleep deprivation. One modification (ACT-R/F) 
has a module that uses a biomathematical model of the effects 
of sleep deprivation on performance to drive parameter 
changes in the architecture that impact behavior and 
performance. The second, new, modification (ACT-R/Φ) 
represents the effects of sleep deprivation on physiological 
systems and has these systems modulate cognition. The model 
completes the psychomotor vigilance task (PVT) within both 
ACT-R/Φ and ACT-R/F. We found that the two 
implementations produced similar response times (means) in 
simulated days one and two. However, the distribution of the 
response times across the two days of sleep deprivation varied 
between models. The ACT-R/Φ model shows a wider 
distribution in both days 1 and 2 due to an increased and 
modulating production utility noise that affects its ability to 
select the correct rules consistently. Though they represent 
sleep deprivation in different ways, and on different levels, 
both of these implementations lead us towards a more unified 
understanding of how sleep deprivation affects our bodies, how 
we think and behave over time, and how to represent these 
effects. 

Keywords: ACT-R, sleep deprivation, behavioral moderators, 
HumMod. 

 

Introduction 
Extensive empirical research has demonstrated that 
performance varies in systematic ways over time as a result 
of time awake, time on task, circadian rhythms, and a variety 
of other factors that impact the effectiveness and efficiency 
of cognitive processing (e.g., Gluck & Gunzelmann, 2013). 
Despite the obvious importance of these factors, collectively 
referred to as cognitive moderators (e.g., Ritter et al., 2007; 
Ritter et al., 2003; Silverman et al., 2006), their roles in 
human cognition, are rarely considered in cognitive science 
research. Instead, nearly all computational and mathematical 
models in the literature treat the cognitive system as an 
optimally functioning information processing machine, 
which does not waver in its performance over seconds, 
minutes, hours, or days of performance. As increasingly 
sophisticated models of various cognitive processes are 
developed, it is critical to improve the fidelity of moderating 
functions to capture human performance across the broad 
range of situations being modeled. 

This research focuses on one of these factors—the impact 
of fatigue brought on by extended time awake. Sleep and 
circadian rhythms are features of nearly all life on earth, yet 
their function and impact on cognitive functioning and 
performance remain poorly understood and infrequently 
modeled. We examine two ways to model these features. 

ACT-R/F 
In recent years, some research using computational modeling 
has begun to expose how human information processing is 
impacted by fatigue and related factors (e.g., Gunzelmann et 
al., 2009). This research manipulates parameters in a 
cognitive architecture, ACT-R, to capture performance 
changes associated with time awake and circadian rhythms 
(e.g., Gunzelmann et al., 2012; Gunzelmann et al., 2009), as 
well as time on task (e.g.,Gartenberg et al., 2014; 
Gunzelmann et al., 2010). At a theoretical level, the approach 
integrates a theory of the dynamics of alertness into the ACT-
R architecture, creating the ACT-R/F (ACT-R/Fatigue) 
system. At its core, it demonstrates how fluctuations in 
alertness can influence performance by impacting the 
functioning of information processing mechanisms within the 
cognitive system. 

The primary component of the theory is a mechanism 
associated with fatigue that disrupts ongoing cognitive 
processing. In the model, the disruptions are implemented as 
micro lapses, which are small gaps in the information 
processing in central cognition. These gaps lead to small 
delays in performance (10’s of ms). However, their 
probability increases with fatigue, which can lead to 
substantial impairments in performance. In conjunction with 
this mechanism, there is a compensation mechanism that 
reduces the likelihood of microlapses, but also increases the 
likelihood of executing inappropriate, or less useful, 
cognitive actions. 

The mechanisms are implemented in ACT-R’s central 
cognitive module, a production system that coordinates the 
activity of the other modules to maintain goal-directed 
cognitive activity (Anderson, 2007). This system operates in 
cycles, each lasting about 50 ms each. On each cycle, where 
appropriate actions are identified, one is selected based on a 
utility calculation, and then the action is taken, provided the 
utility surpasses the utility threshold. Microlapses occur 
when the threshold is not reached. In the traditional version 
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of ACT-R, the model run is terminated when actions fail to 
exceed the utility threshold. When this situation occurs in 
ACT-R/F, the cognitive cycle is “skipped,” producing a gap 
of about 50 ms in the goal-directed processing of the model. 
Because there is noise in the utility calculation mechanism, it 
is possible that a production will exceed the utility threshold 
on a subsequent cycle. Compensation is represented in the 
architecture by reducing the utility threshold. Although this 
decreases the likelihood of a microlapse, it also increases the 
probability that actions with a lower utility will be selected 
and executed in the model. 

To control the dynamics associated with fluctuations in 
alertness, a biomathematical model of alertness was 
integrated into ACT-R as a new module. The 
biomathematical model is described in detail in McCauley et 
al. (2013). Generally, the McCauley model accounts for 
changes in overall cognitive functioning stemming from time 
awake and circadian rhythms, incorporating the two-process 
theory of alertness (Achermann & Borbély, 1992).  

The biomathematical model produces a numerical estimate 
of fatigue. The function of the module is to connect the 
numerical output of the biomathematical model to parameters 
in the ACT-R architecture related to the information 
processing mechanisms that are hypothesized to be affected 
by fatigue. For instance, within central cognition 
biomathematical model outputs, F, influence the utilities of 
candidate actions and the utility threshold. This is achieved 
by computing scaling factors, FP and FT, for the utility of 
productions and the threshold as follows: 

 
Eq. 1 𝐹𝑃 = 1 − 𝑎𝐹𝑃𝐹 
Eq. 2 𝐹𝑇 = 1 − 𝑎𝐹𝑇𝐹  

In these equations, 𝑎𝐹𝑃 and 𝑎𝐹𝑇  are parameters that define the 
slope of a linear mapping of fatigue values to the utility and 
threshold scalars, respectively.  FP and FT are constrained to 
be between 0 and 1. The scaling factors, in turn, influence the 
utility values and threshold in ACT-R:  

 
    Eq. 3 𝑈𝑖

′ = 𝑎𝐹𝑃𝐹𝑈𝑖 
    Eq. 4 𝑇𝑖

′ = 𝑎𝐹𝑃𝐹𝑇𝑖  
 
Here, 𝑈𝑖’ is the computed utility value for production (𝑖), and 
𝑇𝑖’ is the utility threshold used to determine if the selected 
production is executed. These mechanisms have been 
demonstrated to capture in detail changes in human 
performance on a sustained attention task with sleep 
deprivation. The model predicts the response time 
distribution of individual participants, at a level of precision 
that is equivalent to the detail provided by a diffusion model 
of the same task (Walsh et al., 2014). 

ACT-R/Φ 
As more models of cognition and information processing 
moderators are developed, it will also be important to find a 
way to tie these separate models together. However, 

understanding the interactions between moderators can be 
difficult as the models are often developed in isolation.  

One way to make the modeling of the interactions between 
moderators and the effects of these interactions on 
information processing more straightforward and tractable is 
to model these effects on the physiological, as well as the 
cognitive, level. Common physiological systems involved in 
changes in cognitive mechanisms can be used as a basis for 
understanding the interactions between moderators.  

The ACT-R/Φ architecture (Dancy et al., In Press) 
combines a cognitive architecture (ACT-R) and an 
integrative computational model of physiology (HumMod; 
Hester et al., 2011) so that the bidirectional connections 
between physiological and cognitive systems can be 
simulated. HumMod is a computational modeling and 
simulation system that provides an integrative computational 
model of human physiology, to simulate the interaction 
between physiological, affective, and cognitive change. The 
ACT-R/Φ architecture has been used to model the dynamic 
effects of physiological change due to a psychological 
stressor (Dancy et al., In Press) and due to affective thirst 
(Dancy & Kaulakis, 2013). These moderators affect some of 
the same basic cognitive mechanisms in the 
architecturesImportantly, because these models have been 
developed within a single unified architecture, their 
interactions can also be modeled. 
    The stress-related pathways between physiological and 
cognitive processes in ACT-R/Φ are also important for 
modeling the effects of sleep loss due to the involvement of 
the Locus Coeruleus (LC) System and Hypothalamic-
Pituitary-Adrenal (HPA) axis, which are important in 
circadian components of sleep (Saper et al., 2005). 
    The ACT-R/Φ architecture uses variables from the 
physiological (using HumMod) and affective systems (using 
theory from affective neuroscience and emotion research) to 
determine a level of memory-based arousal. Arousal is 
determined using cortisol, epinephrine, corticotrophin 
releasing hormone (CRH), and a FEAR value (e.g., Panksepp 
et al., 2011) as shown in equation 5.  
 
Eq.  5  𝐴𝑟𝑜𝑢𝑠𝑎𝑙 = 𝑓(𝑐𝑜𝑟𝑡) ∗ [𝛼 ∗ 𝑔(𝑐𝑟ℎ) +  𝛽 ∗ ℎ(𝑒𝑝𝑖)] 
 
    The equation reflects evidence that cortisol seems to serve 
more of a multiplicative than additive role in memory-based 
arousal due to the LC system (e.g., Roozendaal & McGaugh, 
2011; Roozendaal et al., 2006). In Equation 5, α and β are 
parameters that determine the slope of the linear relation 
between deviation from the normal physiological state; 
𝑓(𝑐𝑜𝑟𝑡), 𝑔(𝑐𝑟ℎ), and ℎ(𝑒𝑝𝑖) is a function of the change in 
cortisol, CRH, and epinephrine (respectively) from the 
baseline state.     
    The systems involved in stress and arousal (e.g., the LC 
system and the HPA axis) have also been shown to modulate 
both declarative and procedural memory (e.g., see  Sara & 
Bouret, 2012; Schwabe & Wolf, 2013). Thus, this arousal 
factor affects both declarative and procedural memory in the 
ACT-R/Φ architecture by affecting related noise parameters, 
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that is, : 𝑎𝑛𝑠 (declarative memory noise) and : 𝑒𝑔𝑠 
(procedural memory utility noise) are both modulated using 
Equation 6 (𝐴 stands for Arousal). 
 

Eq. 6  𝑛𝑜𝑖𝑠𝑒 = {
1−𝐴 
0.5

− 1 ∀ 𝐴 ≤ 0.5
𝐴

0.5
− 1 ∀ 𝐴 > 0.5

 

 
Both low arousal (below a nominal value) and high arousal 
cause an increase in noise, making it more difficult to retrieve 
chunks (declarative memory) and to select the correct 
productions (procedural memory). In addition to its effects on 
procedural memory noise, arousal also modulates utility 
threshold of matched rules when it goes below the nominal 
arousal value. We chose to alter both noise and threshold in 
this case because of existing evidence that as neural arousal 
decreases below basal values (as measured by activity in the 
LC-system), distractibility tends to increase (e.g., Aston-
Jones & Cohen, 2005). One way to interpret this result is that 
decision utilities are more affected by a noise as neural 
arousal lowers. 

Implementing Biomathematical Models of 
Fatigue in HumMod 

 
    We implemented a mathematical model of the HPA-axis 
in HumMod to simulate circadian and sleep homeostatic 
changes in adrenocorticotropic hormone (ACTH) and 
cortisol. We modified the effect of CRH on ACTH so that 
ACTH levels show circadian fluctuations; this causes related 
circadian fluctuations in cortisol levels. A sleep homeostatic 
variable was also added that directly affects cortisol. This 
variable represents the direct modulatory effects the SCN can 
have on cortisol outside of the HPA-axis (e.g., see Saper et 
al., 2005).  
    The arousal representation was modified (Equation 7a) to 
include a neural sleep homeostatic variable that decreases 
(and has an accelerating decline) as time awake increases.  
𝐻𝑆_𝑁 is a neural sleep homeostatic variable that causes arousal 
to decrease as the time awake increases. As with equation 5, 
the parameters α and β are parameters that determine the 
slope of the linear relation between deviation from the normal 
physiological state. 

 
Eq. 7 
A  𝐴𝑟𝑜𝑢𝑠𝑎𝑙 =  𝐻𝑆_𝑁 ∗  𝑓(𝑐𝑜𝑟𝑡) ∗ [𝛼 ∗ 𝑔(𝑐𝑟ℎ) +  𝛽 ∗ ℎ(𝑒𝑝𝑖)] 
B  𝑐𝑜𝑟𝑡 =  𝐻𝑆_𝐶 + 𝑆𝑒𝑐𝑟𝑒𝑡𝑖𝑜𝑛𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ∗ 𝐴𝐶𝑇𝐻𝐸𝑓𝑓𝑒𝑐𝑡 + 𝐷𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 

 

C  𝐻𝑆_𝐶 =  {
𝑆𝐴𝑀𝑎𝑔 ∗ (1 − 𝑆𝐴𝑅𝑎𝑡𝑒

𝑇𝑠)  [𝑤ℎ𝑖𝑙𝑒 𝑎𝑠𝑙𝑒𝑒𝑝]
𝑊𝐴𝑀𝑎𝑔 ∗ (1 − 𝑊𝐴𝑅𝑎𝑡𝑒

𝑇𝑤) [𝑤ℎ𝑖𝑙𝑒 𝑎𝑤𝑎𝑘𝑒]
 

D  𝐴𝐶𝑇𝐻 = 𝑆𝑒𝑐𝑟𝑒𝑡𝑖𝑜𝑛𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ∗ 𝐶𝑅𝐻𝐸𝑓𝑓𝑒𝑐𝑡 ∗   ∑ [𝜌𝑖 ∗ ( 𝑆𝑖𝑛 [𝑖∗𝜋∗𝑡
720

−  𝜃])] + 14
𝑖=1  

 

                                                           
1 Equations 7-C & -D are modified from Thorsley et al. (2012) 

Cortisol (Equation 7-B) fluctuates over the course of the 
day due to circadian rhythms and a sleep homeostatic 
parameter (Equation 7-C). ACTH (Equation 7-D) has 
circadian fluctuations, and this variable directly modulates 
cortisol secretion via the ACTHEffect variable, though the 
proportion of cortisol secretion that is caused due to ACTH 
varies by time of day and sleep-wake transition time1. In this 
equation, 𝑡 (for current time of the day) is represented at 
minutes. 

These equations in the HumMod physiological model 
create a fluctuating HPA-axis, governed by time of day 
(assuming a stable entrained normal sleep and wake time) and 
homeostatic pressure created by time spent asleep or awake. 
Figure 1 shows changing cortisol levels over the course of 
two days in the updated model. The model displays a peak in 
cortisol levels at the point of waking (6am in this case) and a 
trough at 12am. 

 
Figure 1. Cortisol levels over the course of two days 

([uG/dL]/minutes). 

If we cause the model to go two days without sleeping, 
cortisol in HumMod shows a different, but still circadian, 
rhythm (Figure 2). The peaks and troughs are roughly at the 
same positions, but Figure 1 shows a higher minimum and 
maximum that occur near sleep-wake transitions. The cortisol 
profile of the sleep deprived model shows a steady increase 
in peak and trough across days as sleep deprivation time 
increases. 

 
Figure 2. Cortisol levels over the course of two days with the 
model sleep deprived ([uG/dL]/minutes). 

ACT-R/F, ACT-R/Φ, and the PVT 
To get a further understanding of how model behavior may 
change when using these alternative implementations, we 
implemented a model of the psychomotor vigilance task 
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(PVT) within both ACT-R/F and ACT-R/Φ. In the task, a 
millisecond counter is presented at the center of a monitor at 
a random delay of 2-10 seconds from the previous response. 
The task is to respond to the appearance of the counter by 
pressing a response button. 

The pervasive use of this task in sleep research makes it an 
important task for theories of fatigue to address. In addition, 
the subtle changes to response time distributions of fatigued 
individuals in the task imposes a critical test of the capacity 
of a computational theory to make detailed, quantitative 
predictions about human performance. 
 The model includes three rules—one each for waiting, 
attending to a stimulus, and responding to the stimulus. 
Partial-matching is enabled in the model to allow rules that 
match some, but not necessarily all, of the rule conditions. 
Thus, when the rules are affected more by noise, whether by 
increasing the actual noise (ACT-R/Φ) or lowering the utility 
values of all of the rules (ACT-R/F), false starts (responding 
before a stimulus is presented) can occur.  
    Overall means (and std. dev.) of response times were 
similar between models for both days 1 and 2: 237.4 (14.84) 
and 235.1 (15.26) for the ACT-R/ Φ model, and 238.3 (12.85) 
and 238.4 (11.48) for the ACT-R/F model. Despite the 
overall similarity, the distributions of means for days 1 and 2 
differed between models (Figure 3 and 4). 
    Figure 4 shows slightly different mean response time 
distribution between days 1 and 2 with day 1 showing a more 
uniform density distribution. The increased noise due to 
physiological change in the ACT-R/Φ implementation 
caused a wider distribution of response times as compared to 
the ACT-R/F implementation.  

 

 

Discussion and Conclusions 
 
Both of the implementations discussed provide a novel way 
of modeling and simulating the effects of sleep deprivation 
on cognition, albeit in different ways and on different levels 
of representation. The ACT-R/F implementation takes a 
tested biomathematical performance model and applies it to 
procedural memory in the ACT-R architecture (see also 
Gunzelmann et al., 2012). Implementing sleep deprivation in 
ACT-R/Φ required adding circadian rhythms and sleep 
homeostatic modulation to physiological variables and 
having these variables modulate cognitive systems.  

Comparison of the two architectures 
We found that there are similarities and differences between 
the two approaches. Both approaches include aspects of sleep 
behavior, and the resulting predictions are similar in how they 
predict that there are increases and decreases in performance 
across a day.  

They are different in the initial quality of their predictions 
and their extendibility.  ACT-R/F is more accurate in its 
predictions.  ACT-R/Φ is more extendable, in that it would 
be very feasible to represent in a plausible way how other 
factors will interact with sleep, such as caffeine.   

 Including HumMod in ACT-R/Φ raises the question of 
usability, however.  HumMod, while a useful system, is 
another large system that has to be run and understood. It 
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Figure 3. Mean response times of the PVT model used in the ACT-R/F extension. Distribution density shape of show a 
different pattern between day 1 and 2 than the model using ACT-R/Φ extensions (Figure 4). 
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takes ACT-R/Φ longer to run, and it takes a little more 
interpretation.  Future work will need to explore potential 
software optimization methods and implementations that can 
be used with high performance computing (e.g., Harris et al., 
2009). It will also be useful to explore possible combinations 
of the approaches as some mathematical variables in the 
performance model used in ACT-R/F have been connected to 
neural representations (McCauley et al., 2013). At this point, 
we are not able to make recommendations about which is 
better, but the two approaches are at least different.  

This work will also raise new problems about 
understanding architectures.  The combined architecture, that 
is, ACT-R/Φ, will have further variables and will require 
further validation, crossing between cognitive psychology 
and physiology.  This will raise new challenges.  

Future Work 
We will expand upon the new ACT-R/Φ implementation by 
performing parameter sweeps so that the most realistic model 
predictions can be found. The performance costs inherent in 
running the HumMod and expanded ACT-R systems in 
tandem means that using existing work and theory related to 
the parameters/variables for performance optimization will 
be especially important. In addition to continuing to solidify 
and validate components of these implementations, there are 
two particular research directions in which this work can 
expanded: the effects of caffeine on cognition and 
interactions between sleep deprivation and stress.  

As caffeine continues to play a significant role in modern 
society, it will be important to have a quantifiable 
understanding of its modulation of cognitive performance 
over time and to have the same understanding of the ways 
time of day may interact with this modulation. More recent 
work in modeling the effects of caffeine on vigilance 

(Ramakrishnan et al., 2014) and on declarative memory (e.g., 
Ritter et al., 2009) provide a useful roadmap for continued 
expansion of the work presented here. Working within 
HumMod to represent the effects of caffeine on physiology 
and then and thus on cognition provides a principled way to 
combine the effects of moderators.   

There also exist several parallels between work on sleep 
deprivation and work on stress systems. It has even been 
suggested that sleep deprivation can be seen as a form of 
stress, causing allostatic physiological and behavioral change 
(McEwen, 2006). Many of the neural systems implicated in 
the behavioral change due to sleep deprivation and stress 
systems overlap and are influenced by one another (e.g., the 
LC system, basal ganglia, and hippocampus). Thus, the 
generalization of these implementations to the study of stress 
would be a fairly natural evolution of the work. 

Summary 
As we continue to study the ways behavioral moderators 
affect the way we think, feel, and perform during daily 
activities, it will be vital to keep in mind the effects of these 
moderators across time, and during different parts of the day. 
In addition, it will be important that the models and 
architectures we develop to describe and predict these 
behavior are generalizable and can be understood in the 
context of separate, but related cognitive, affective, and 
physiological behavior. Both of these implementations lead 
us towards a more unified understanding of how sleep 
deprivation affects our bodies, as well as the way we think 
and behave over time. 

31 530028527025524022521 0

0.05

0.04

0.03

0.02

0.01

0.00

31 530028527025524022521 0

Mean 237.4
StDev 14.84

1

Mean 235.1
StDev 15.26

2

1

Mean response time (ms)

D
en

sit
y

2

Histogram of mean response time for ACT-R/Φ model

Panel variable: Day

Figure 4. Mean response times of the PVT model used in the ACT-R/ Φ extensions. Distribution density shape of mean values 
changes between day 1 and day 2. 

262



Acknowledgments 
This was funded by the Air Force Research Laboratory’s 711 
Human Performance Wing through a contract from L3. The 
opinions and assertions contained herein are the personal 
views of the authors and are not to be construed as official or 
as reflecting the views of the US Air Force, or the US 
Department of Defense. 

References 
 
Achermann, P., & Borbély, A. A. (1992). Combining different 

models of sleep regulation. Journal of Sleep Research, 1(2), 144-
147. 

Anderson, J. R. (2007). How can the human mind occur in the 
physical universe? New York, NY: OUP. 

Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of 
locus coeruleus-norepinephrine function: Adaptive gain and 
optimal performance. Annual Review of Neuroscience, 28(1), 
403-450. 

Dancy, C. L., & Kaulakis, R. (2013). Towards adding bottom-up 
homeostatic affect to ACT-R. In Proceedings of the 12th 
International Conference on Cognitive Modeling, pp. 316-321. 
Ottawa, Canada. 

Dancy, C. L., Ritter, F. E., Berry, K., & Klein, L. C. (In Press). Using 
a cognitive architecture with a physiological substrate to represent 
effects of psychological stress on cognition. Computational and 
Mathematical Organization Theory. 

Gartenberg, D., Veksler, B. Z., Gunzelmann, G., & Trafton, J. 
(2014, September 1, 2014). An ACT-R process model of the 
signal duration phenomenon of vigilance. In Proceedings of the 
Proceedings of the Human Factors and Ergonomics Society 
Annual Meeting, pp. 909-913. Thousand Oaks, CA. 

Gunzelmann, G., Gluck, K. A., Moore, L. R., & Dinges, D. F. 
(2012). Diminished access to declarative knowledge with sleep 
deprivation. Cognitive Systems Research, 13(1), 1-11. 

Gunzelmann, G., Gross, J. B., Gluck, K. A., & Dinges, D. F. (2009). 
Sleep deprivation and sustained attention performance: 
Integrating mathematical and cognitive modeling. Cognitive 
Science, 33(5), 880-910. 

Gunzelmann, G., Moore, L. R., Gluck, K., Van Dongen, H. P. A., & 
Dinges, D. F. (2010). Fatigue in sustained attention: Generalizing 
mechanisms for time awake to time on task. In P. L. Ackerman 
(Ed.), Cognitive fatigue: Multidisciplinary perspectives on 
current research and future applications (pp. 83-96). 
Washington, DC: American Psychological Association. 

Harris, J., Gluck, K. A., T., M., & Moore Jr, L. (2009). 
MindModeling@Home ...and anywhere else you have idle 
processors. In Proceedings of the 9th International Conference of 
Cognitive Modeling, Manchester, United Kingdom. 

Hester, R. L., Brown, A. J., Husband, L., Iliescu, R., Pruett, D., 
Summers, R., & Coleman, T. G. (2011). HumMod: A modeling 
environment for the simulation of integrative human physiology. 
Frontiers in Physiology, 2(12). 

McCauley, P., Kalachev, L. V., Mollicone, D. J., Banks, S., Dinges, 
D. F., & Van Dongen, H. P. A. (2013). Dynamic circadian 
modulation in a biomathematical model for the effects of sleep 
and sleep loss on waking neurobehavioral performance. Sleep, 
36(12), 1987-1997. 

McEwen, B. S. (2006). Sleep deprivation as a neurobiologic and 
physiologic stressor: Allostasis and allostatic load. Metabolism - 
Clinical and Experimental, 55, S20-S23. 

Panksepp, J., Fuchs, T., & Iacobucci, P. (2011). The basic 
neuroscience of emotional experiences in mammals: The case of 
subcortical FEAR circuitry and implications for clinical anxiety. 
Applied Animal Behaviour Science, 129(1), 1-17. 

Ramakrishnan, S., Laxminarayan, S., Wesensten, N. J., Kamimori, 
G. H., Balkin, T. J., & Reifman, J. (2014). Dose-dependent model 
of caffeine effects on human vigilance during total sleep 
deprivation. Journal of Theoretical Biology, 358(0), 11-24. 

Ritter, F. E., Kase, S. E., Klein, L. C., Bennett, J., & Schoelles, M. 
(2009). Fitting a model to behavior tells us what changes 
cognitively when under stress and with caffeine. In Proceedings 
of the the Biologically Inspired Cognitive Architectures 
Symposium at the AAAI Fall Symposium Series. Keynote 
presentation, pp. 109-115. Washington, DC. 

Ritter, F. E., Reifers, A. L., Klein, L. C., & Schoelles, M. J. (2007). 
Lessons from defining theories of stress for cognitive 
architectures. In W. D. Gray (Ed.), Integrated Models of 
Cognitive Systems (pp. 254-262). New York, NY: OUP. 

Ritter, F. E., Shadbolt, N. R., Elliman, D., Young, R. M., Gobet, F., 
& Baxter, G. D. (2003). Techniques for modeling human 
performance in synthetic environments: A supplementary review. 
DTIC Document. Wright-Patterson Air Force Base, OH: Human 
Systems Information Analysis Center.  

Roozendaal, B., & McGaugh, J. L. (2011). Memory modulation. 
Behavioral Neuroscience, 125(6), 797-824. 

Roozendaal, B., Okuda, S., Van der Zee, E. A., & McGaugh, J. L. 
(2006). Glucocorticoid enhancement of memory requires arousal-
induced noradrenergic activation in the basolateral amygdala. 
Proceedings of the National Academy of Sciences, 103(17), 6741-
6746. 

Saper, C. B., Scammell, T. E., & Lu, J. (2005). Hypothalamic 
regulation of sleep and circadian rhythms. 
[10.1038/nature04284]. Nature, 437(7063), 1257-1263. 

Sara, S. J., & Bouret, S. (2012). Orienting and reorienting: The locus 
coeruleus mediates cognition through arousal. Neuron, 76(1), 
130-141. 

Schwabe, L., & Wolf, O. T. (2013). Stress and multiple memory 
systems: From ‘thinking’ to ‘doing’. Trends in Cognitive 
Sciences, 17(2), 60-68. 

Silverman, B. G., Johns, M., Cornwell, J., & O'Brien, K. (2006). 
Human behavior models for agents in simulators and games: part 
I: enabling science with PMFserv. Presence: Teleoperators & 
Virtual Environments, 15(2), 139-162. 

Thorsley, D., Leproult, R., Spiegel, K., & Reifman, J. (2012). A 
phenomenological model for circadian and sleep allostatic 
modulation of plasma cortisol concentration. 
[10.1152/ajpendo.00271.2012]. American Journal of Physiology 
- Endocrinology and Metabolism, 303(10), E1190-E1201. 

Walsh, M. M., Gunzelmann, G., & Van Dongen, H. P. A. (2014). 
Comparing accounts of psychomotor vigilance impairment due to 
sleep loss. In Proceedings of the 36th Annual Conference of the 
Cognitive Science Society, pp. 877-882. Austin, TX. 

 
 

263



A Model of Distraction using new Architectural Mechanisms  
to Manage Multiple Goals 

 
Niels A. Taatgen (n.a.taatgen@rug.nl),  Ioanna Katidioti (i.katidioti@rug.nl), 
Jelmer Borst (j.p.borst@rug.nl) & Marieke van Vugt (m.k.van.vugt@rug.nl) 

Institute of Artificial Intelligence, University of Groningen, 
 Nijenborgh 9, 9747 AG Groningen, Netherlands 

 
 

Abstract 

Cognitive models assume a one-to-one correspondence 
between task and goals. We argue that modeling a task by 
combining multiple goals has several advantages: a task can 
be constructed from components that are reused from other 
tasks, and it enables modeling thought processes that compete 
with or support regular task performance. To achieve this, we 
updated the PRIMs architecture (a derivative of ACT-R) with 
the capacity for parallel goals that have different activation 
levels. We use this extension to model visual distraction in 
two experiments. The model provides explanations for the 
finding that distraction increases with task difficulty in a 
memory task, but decreases with task difficulty in a visual 
search task.  

Keywords: Cognitive Control, Task representation, PRIMs, 
Distraction, Multitasking 

Introduction 
Whenever we are faced with something new to learn or to 
do, we can rely on a vast array of skills and knowledge. 
Given what we usually call a task, we need to recruit the 
right procedural and declarative knowledge and find the best 
way to piece this knowledge together, and, if necessary 
expand it with the missing pieces. One might think this 
challenge should be a centerpiece in the cognitive modeling 
and cognitive architecture research tradition, but 
unfortunately it isn't.  

In almost all flavors of cognitive modeling, whether 
symbolic, hybrid or connectionist, it is tacitly assumed that 
there is a one-to-one relationship between tasks and goals. 
In this context, we consider a goal to be an internal 
representation that is used to recruit the appropriate 
knowledge to achieve that goal. Most models model just use 
a single task and a single goal, and all the knowledge 
incorporated in or acquired by the model is just for that task. 

The one-task-one-goal approach puts many restrictions on 
what can be achieved by cognitive modeling. It ignores the 
question how goals are set, prioritized and abandoned. It 
cannot answers questions about what other things people are 
thinking about when they carry out a task, which might 
affect the task either positively or negatively. For instance, 
metacognitive planning ahead may have a positive effect on 
performance, whereas distraction may have a negative 
effect. But distraction may be a positive influence if it 
prevents us from pursuing a hopeless goal.  

An alternative for the one-task-one-goal approach is to 
have several active goals to support a single task. The 
traditional method of doing this is through subgoaling. In 

particular the Soar cognitive architecture has pursued the 
idea that a new task or goal can use several subgoals that 
have already been learned as part of other tasks (Laird, 
Rosenbloom, & Newell, 1986). Unfortunately, in most Soar 
models subgoals were specifically designed for a specific 
main goal. Moreover, the goal stack is now considered by 
many as a too rigid representation, because typically only a 
single goal in the hierarchy is active (Anderson & Douglass, 
2001), while in reality goals typically compete with each 
other (i.e. calling while driving).  

An alternative for a goal hierarchy is to have several goals 
active at the same time, as for example implemented in the 
threaded cognition extension to ACT-R (Salvucci & 
Taatgen, 2008). Threaded cognition, however, has mainly 
been used to model multi-tasking, so although a model 
would have multiple tasks and multiple goals, there was still 
a one-to-one mapping between tasks and goals (with some 
exceptions, e.g., Taatgen, Juvina, Schipper, Borst, & 
Martens, 2009).  

Another effort to break the monolithic goal structure is 
the PRIMs (Primitive information processing elements) 
theory, another extension to ACT-R (Taatgen, 2013). 
PRIMS allows us to go beyond the original tasks by 
breaking down task-specific rules into combinations of 
primitive information processing elements that in 
themselves are task-general. Learning a new task involves 
combining those primitive elements into task-specific rules, 
but the byproduct of the learning trajectory is that the model 
also learns task-general rules that it can use for other 
purposes. This means that PRIMs can model knowledge 
transfer from one task to another. A limitation of PRIMs is 
that task knowledge is still specified in terms of task-
specific operators that are linked to a single goal. 

Altmann and Gray (2008) explore a different aspect of 
goals: the current goal is not set by production actions, as is 
the case in most models, but the goal with the highest 
activation determines the actions. Their goal representations 
are susceptible to decay, and therefore the reaction times for 
a particular goal gradually increase as subjects continue 
doing the same task. Rehearsal processes can influence goal 
activations, which is the primary process to control what the 
current goal is. Still, at any moment a single goal is active 
for a single task. 

In this paper we will combine these three approaches as 
part of a new version of PRIMs (PRIMs 2.0), in which a 
single task is implemented by multiple goals. These goals 
are specified in such a way that they are can be reused for 
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other tasks, and have associated activation levels that 
determine which goal is most influential at a certain 
moment. We will then use this to build a model of 
distraction. Distraction, or self-interruption, is a major 
problem in our information society, because regular work 
progress is threatened by email-checking and Facebook 
updating. It is therefore of importance what factors 
influence self-interruption, which may enable us to find 
ways to mitigate or control it. First, we will explain the new 
version of PRIMs in detail.  

The PRIMs 2.0 goal representation 
As an example to illustrate the goal representation we will 
use part of a task that we will use later on: solving simple 
equations. The task of solving an equation like 5x + 2 = 12 
is represented by four parallel goals: reading the equation 
into working memory, transforming the equation, doing 
arithmetic, and giving the answer (Figure 1). The four goals 
are not carried out in parallel, of course, but their 
representations are all active. Active goals spread activation 
to operators in memory that can carry out that goal. 
Operators are the declarative counterpart of production 
rules, so they have conditions that are tested, and actions 
that are carried out when the conditions are satisfied (see 
Taatgen, 2013, for details). When solving an equation, first 
operators are retrieved that are associated with the reading 
goal, because there is no mental representation of the 
equation yet. Once there is a representation, operators 
associated with the transformation and arithmetic goals 
alternate in solving the equation, until the answer goal can 
key in the answer.  

In this example all four goals are active throughout 
problem solving, and the conditions of the operators ensure 
that they are carried out in the right order. This is not always 
possible, so sometimes goals have to be added or removed. 
However, this requires a particular control strategy, which 
makes learning harder. 

Ultimately, goals only influence the activation of 
operators. This means that a goal doesn't guarantee a 
matching operator is selected, it only makes it more likely. 
Other factors can influence the retrieval of operators, 
though, for example external stimuli or the content of 
particular declarative retrievals. It is therefore possible that 
an operator is retrieved that has nothing to do with the 
current goals, leading to distractions. As we will see later 
on, it is in between operators for different goals that 
distractions have an opportunity to intervene. 

Key Principles 
The key principles of the PRIMs 2.0 goal representation are 
as follows: 
Goals are carried out by operators that are associated 

with that goal. This is of course true for almost any 
symbolic architecture, but uniquely in PRIMs multiple 

goals can be active, and operators can also be associated 
with multiple goals. Operators do not refer directly to 
goals or vice versa, there are connected through strength 
of association only. 

Goals have an activation value that is susceptible to all 
ACT-R memory processes. As a consequence, not all 
goals are equal, and the goal with the highest activation 
has a higher probability of recruiting operators it needs.  

The activation value of a goal determines how much 
activation it spreads. All active goals are stored in slots 
in ACT-R's goal buffer. This means that they are sources 
of spreading activation. However, instead of the standard 
spreading activation of W/n, as is in regular ACT-R, the 
Wj of a goal is equal to its activation. This means that 
operators that are associated with a certain goal receive 
spreading activation proportional to the activation of that 
goal. 

 

 
 
Figure 1. Illustration of how operators associated with 

different goals together solve an equation 
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The most active operator whose conditions are satisfied is 
carried out. This is not necessarily an operator for the 
most active goal, because it may have no operators that 
currently match. Moreover, other influences can add 
activation to operators to influence the selection, in 
particular spreading activation from other sources 
(perception, working memory, memory retrieval, etc.). 

Activation of a goal can be increased by explicitly 
retrieving it (possibly repeatedly). Retrieval is a 
deliberate strategy to influence the priority of goals. 
Increased influence can be achieved by multiple 
retrievals (rehearsal, cf. Altmann & Trafton, 2002). 

Activation of a goal decays over time. This means that if 
goals aren't maintained, or reinforced in any other way, 
they decay and disappear. 

Operators associated with the same goal are also 
associated with each other. This makes it more likely 
that an operator for the same goal as the previous 
operator is chosen. 

To demonstrate the power of this approach, we will use it 
to model a distraction experiment. 

 Experiment 
The main idea of the experiment is that subjects had to carry 
out different tasks of varying difficulty level. While they 
carried out the task, a video played at the other side of the 
screen. The video was unrelated to the task. The extent to 
which subjects in the experiment were distracted by the 
video was measured with an eye tracker. 

The experiment involved two different tasks, one focusing 
on mental operations, and the other on visual operations. 
Each had three different levels of difficulty. In the memory 
game, subjects played the game of Memory or 
Concentration with cards with equations instead of pictures. 
Sixteen cards were displayed on the screen. Subjects had to 
click on the cards, which would reveal the equation on the 
back. Clicking on two consecutive cards with the same 

solution to the equation would remove them, with the 
eventual goal of removing all sixteen cards (Katidioti, Borst, 
& Taatgen, 2014). There were three levels of difficulty: the 
easiest level had equations of the form 4 + 2 = x, basically 
simple arithmetic. Medium level equations were of the form 
x + 4 = 16, requiring a transformation followed by 
arithmetic, and hard question had the form 5x + 2 = 12, as 
illustrated in Fig. 1, requiring several operations to solve. 
Figure 2 shows a screen-shot of the experiment. 

 
Figure 3. Example of the find-the-differences game in the 

medium condition, just after feedback. 
 
In find-the-differences game, subjects were presented with 

two pictures on the top and bottom of the screen that each 
consisted of a number of random shapes (colored ovals and 
rectangles). Both pictures were identical except for one 

 
 

Figure 2. Example of the memory game on the left, and the movie on the right. The memory game is in the medium 
condition, and two of the cards have already been matched. 
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small difference in one of the shapes (Figure 3). The task 
was to find the difference, and click on it. In the easy 
condition, each picture consisted of 2-4 shapes, in the 
medium condition 15-17 shapes, and in the hard condition 
40-42 shapes. Like in the memory game, a movie that was 
unrelated to the task also played at the other side of the 
screen. 

Subjects in the experiment either did the find-the-
differences game or the memory game (25 participants per 
task). They performed one of the tasks for 15 minutes at 
each level of difficulty, for a total of 45 minutes. 

Our theory about choice in multitasking is that people 
tend to switch to another task if that task needs resources 
that are not currently used by the present task. In the 
experiment, the distraction requires use of the visual 
resource, so the prediction is that if the main task needs 
fewer visual resources, the frequency of distractions by the 
video will be higher. We therefore predict that the frequency 
of distraction increases with difficulty for the memory 
game, because solving an equation temporarily requires 
fewer visual resources, which are then free to move to the 
video. In contrast, distraction decreases with difficulty for 
the find-the-differences game, because visual resources are 
more occupied by the more difficult games. 

 

 
 

Figure 4. Results of the experiment. Error bars represent 1 
standard error. 

 
Figure 4 shows the mean number of distractions (i.e., eye-

movements to the video) per subject in each of the 15 
minutes blocks of playing either game (distractions between 
games were removed). The effect of the level of difficulty 
on the number of distractions is highly significant: when we 
fit generalized linear mixed effect models based on a 
Poisson distribution to the data, all differences between 

different levels of difficulty are significant with p values 
less than 0.001.  

To conclude, the experimental results support the theory 
that distraction increases if the resources that are available 
match the resources that the distraction requires (in this case 
visual resources). We have similar, although weaker, 
evidence that this is also the case for working memory, 
where subjects tended to switch to a secondary task 
involving memory more often at moments that the memory 
requirements of the main task had just decreased (Katidioti 
et al., 2014). The next challenge is to construct a model that 
reproduces this behavior. 

A Model of Distraction 
In the new PRIMs 2.0 representation, tasks are represented 
by multiple goals. However, these goals only spread 
activation to applicable operators, so they do not enforce 
that only task-relevant operators are chosen. This means that 
at any point an operator can be retrieved that is not related 
to the task, assuming that operator has a high enough 
activation. In our case, the video is a perceptual input that is 
associated with operators that propose to attend the video. A 
condition of these operators is that the visual resource is 
available. 

A model of the memory game 
For simplicity, we have not constructed a model that plays 
the whole game, but a model that just solves equations of 
varying difficulty. We think that this partial model captures 
the essential characteristics of the task as a whole. Figure 1 
already gave a clear representation of the structure of the 
model: the task is represented by four goals, read, transform, 
arithmetic and answer. Each of these goals has a small set of 
associated operators that implement that goal. The hard 
equations require the sequence as it is shown in Figure 1, 
involving 12 operators. The medium and easy equations use 
the same operators, but omit some of them: the medium 
equations skip the second transform and arithmetic 
sequence, and therefore only require 8 operators. The easy 
equations require no transformations, just the final 
arithmetic, and one fewer read operator, so a total of 5 
operators.  

In addition to the task-related operators, the model has 
two operators that respond to the distraction. The first of 
these has as a condition that the visual resource is not used, 
and moves attention to the video. The second operator 
activates at the moment that the video is attended, and 
disengages immediately. This reflects the empirical fact that 
in the experiment, subjects typically attended the video for 
only 200-400ms.  

Most of the time, the distraction operators do not have 
much of a chance to intervene in the equation solving 
process. When reading operators are engaged they have no 
chance at all, because the visual resource is in use, whereas 
a condition of distraction is that the visual resource is free. 
Whenever the model transitions between an operator for a 
transform step and one for an arithmetic step (or the other 
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way around), however, distraction has a small probability of 
winning the competition due to activation noise.  

The model can explain the data, because the distraction 
operator only competes when the model is not reading the 
equation (which takes proportionally more time as the 
equation is easier), and because in the harder conditions the 
model switches more often between transformation and 
arithmetic, providing more opportunities for distraction.  

A model of the find-the-differences game 
The model of find-the-differences is relatively simple. It 
consists of three goals: a search goal that attends an 
unattended feature in the top picture, a compare goal that, 
given an attended feature in the top picture, finds the 
corresponding location in the bottom picture, and then 
compares the two. If they are the same, search continues, 
and if they are different, the click goal then clicks on the 
location where the difference was found. 

Figure 5 illustrates the process: it first attends an arbitrary 
unattended feature, in this case an oval feature in the top 
figure at location (10,10). It represents this as "Oval4", 
which in this simplified representation stands for an oval of 
a particular shape and size. The compare goal then takes 
over, and finds the matching location in the bottom picture 
(O2), and concludes that that location also contains an 
Oval4. It therefore clears the visual buffer, allowing the 
search goal to find a new feature. In the second attempt, the 
feature in location (20,15) turns out to be different, which 
allows the click goal to retrieve the operator that clicks the 
location. The model keeps track of object it has checked, so 
will no revisit those.  

 

 
 
Figure 5. Illustration how the find-the-differences model 
operates on the picture in the top-left of the Figure. 
 

Distraction is modeled in exactly the same way as in the 
memory game: whenever the visual resource is unused (i.e., 

when it is empty, so after each comparison), the distraction 
operator can direct visual attention to the movie. However, 
the model makes an additional assumption about the 
strength of this distraction, namely that it is proportional to 
the number of yet unattended visual features on the screen. 
If there are many unattended features on the screen, the 
video spreads less activation to the distraction operator than 
when that number is low. Nyamsuren and Taatgen (2013) 
have extensively modeled this spreading activation from 
perception to declarative memory: the spreading in this 
model is based on that work.  

The model can explain the data because in the easier 
version of the task there are fewer visual objects on the 
screen, causing the movie to spread more activation to the 
distraction operator, and therefore increasing the probability 
that it is selected. 

Results 
Figure 6 shows the results of the simulation. Although the 
quantitative fit with the data is very good, it required fitting 
of the parameter that determines how much activation the 
distraction operator receives. The main quality of the model 
is therefore the ability to match the qualitative nature of the 
data.  

 
Figure 6. Model fit of the experimental data (from Fig. 4) as 
a function of task and difficulty level. Error bars indicate 1 

standard error. 
 
Although we cannot compare the performance on the 

memory task directly with the data, because we only 
partially modeled that task, we can compare performance on 
the find-the-differences task. Figure 7 shows the results. 
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Figure 7. Comparison of number of problems solved 

between model and data in the find-the-differences game 
 

Discussion and Conclusions 
An important problem not addressed by previous models is 
how task- and non-task goals interact in producing behavior. 
This makes it hard, or impossible, to model why people 
suddenly change or give up on tasks. The example of 
distraction shows that the extension of PRIMs offers new 
options of modeling phenomena that would be hard to 
model in existing architectures. More monolithical 
approaches would probably have a hard time explaining 
why in some cases distraction increases with workload, and 
in other cases decrease with workload. In the case of a task 
that is heavy on reasoning, like the memory game, 
distraction can slip in at moments where one goal takes over 
processing from another goal, explaining why problems that 
require more of such switching are more susceptible to 
distraction. However, distraction can only intervene if it can 
latch on to resources that are currently unused. In the 
experiment, the distraction is visual, and can therefore only 
succeed if the visual resource is unused. 

There is, of course, a danger in weakening the role of the 
task goal, because we don't want it to be derailed all the 
time by distraction or irrelevant other skills. This will 
require a more robust approach to modeling. However, other 
skills are not necessarily always distractions, but can be 
beneficial for the actual task, and thereby increase 
robustness. 

In this experiment, distractions were relatively neutral: it 
didn't help nor hurt performance on the main task. However, 
in general other thought processes may be added as goals 
with slightly lower priority than the main task goals. For 

example, planning ahead is useful to do at moments that 
resources are available for such planning. A more "neutral" 
form of parallel processing may involve mind-wandering, 
which may be harmless, or may eventually turn into a self-
induced distraction, and explain why people sometimes 
suddenly decide to check their email while doing something 
that is mentally taxing. PRIMs 2.0 opens possibilities for 
investigating mental processes that we all believe are taking 
place during experiments, but that we never model. 

Another feature of PRIMs 2.0 is the option to build a 
model of a task by selecting certain existing goals that are 
connected to appropriate operators. That means that learning 
a new task involves the selection of goals, filling in certain 
specific values for those goals, and specifying a control 
strategy. A control strategy can be very simple: in our 
example here all goals were active in parallel. But in other 
cases it may be necessary to actively reinforce goals, in the 
same manner as Altmann & Gray (2008) did in their model 
of task switching.  
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