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Abstract
In order to formally validate cyber-physical systems, analyti-
cally tractable models of human control are desirable. While
those models can be abstracted directly from human data, lim-
itations on the amount and reliability of data can lead to over-
fitting and lack of generalization. We introduce a methodol-
ogy for deriving formal models of human control of cyber-
physical systems based on the use of cognitive models. An-
alytical models such as Markov models can be derived from
an instance-based learning model of the task built using the
ACT-R cognitive architecture. The approach is illustrated in
the context of a robotic control task involving the choice of
two options to control a robotic swarm. The cognitive model
and various forms of the analytical model are validated against
each other and against human performance data. The current
limitations of the approach are discussed as well as its implica-
tions for the automated validation of cyber-physical systems.
Keywords: Cyber-physical systems; ACT-R cognitive mod-
els; Markov models; Robotic control

Introduction
As robotic platforms become more robust, teams of au-
tonomously coordinating robots (robotic swarms) may be de-
ployed for various tasks including environmental exploration,
large-scale search and rescue, border protection, etc. One of
the most important challenges in the design and deployment
of such systems is making them amenable to effective human
control. This requirement is complicated by the nonlinear dy-
namics of robotic swarm systems, the need to make realistic
environmental assumptions, and the limitations and capabil-
ities of human cognition. There has been much recent inter-
est and research activity in control theory for formal system
verification of safe operation of automation. In such work
either the human has not been modeled at all, or the human
has been modeled as a system disturbance. Modeling mixed
human-autonomous systems where human cognition is taken
into account is in its infancy. Formal and validated models of
human-autonomous systems’ safe operation, where the hu-
man element is modeled realistically, would be beneficial not
only because these models would provide guarantees of per-
formance, but also because they may uncover parts of the
control space where human performance can deteriorate to
unacceptable levels. Human cognitive limitations, the nonlin-
earity of the state-evolution dynamics of autonomously coor-
dinating robots, and the high dimensionality of the joint state
space of such systems preclude the possibility of a human
maintaining or predicting the joint state of the whole sys-
tem. Furthermore, the human may perform a broad spectrum

of tasks ranging from reactive tasks, like manual control, to
high-level deliberative tasks, like taking go/no-go decisions
for a particular sub-mission. Cognitive modeling based on
cognitive architectures such as ACT-R (Anderson & Lebiere,
1998; Anderson, 2007) has existed for many years. However,
the resulting models are not in a mathematical form that is
amenable to the techniques of formal verification. One way
of meeting this challenge is creating an analytic model of hu-
man performance based on a cognitive model. Such an an-
alytic model is cognitively compatible by construction, and
because of its mathematical nature, is in the appropriate form
for formal verification. In the case of a human operator con-
trolling a robotic swarm, the analytic model can be integrated
with a formal model that describes the swarm dynamics so
that the overall mixed human-swarm system can be formally
verified.

This paper presents the methodology of development of
such an analytic model based on an ACT-R cognitive model.
The task for which the cognitive model and the analytic
model were constructed was the control of a robotic swarm
simulation. The analytic model development process starts
with data from human experiments. Human-in-the-loop ex-
perimentation supports the development and validation of de-
scriptive cognitive models in two stages. Initial develop-
ment and data collection from the simulation are used to
bound expected performance and familiarize experimenters
with the domain and its issues, as well as to constrain the task-
independent control model to reflect general procedures. The
data provides the experience needed to train the model using
the Instance Based Learning (IBL) methodology (Gonzalez,
Lerch, & Lebiere, 2003) in order to generate appropriate
knowledge representations in memory in the form of con-
trol instances that guide decisions, as well as to tune gen-
eral architectural parameters that modulate performance. At-
tentional routines can also be integrated to represent limita-
tions in the speed and capacity of processing information in
complex situations. Instances are grounded in specific situ-
ations, making them easy to learn through direct experience
with the system in an automated process sometimes called
chunking. Instances generalize dynamically to similar situa-
tions, providing predictions of performance in not previously
experienced or partially experienced situations and resulting
in situation-specific representations in short-term memory.
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In building a (stochastic) state space model of a human the
primary challenges are defining the relevant states and trans-
forming the human constraints in the neuroscience and psy-
chology literatures into state space constraints. We use the
cognitive model as a proxy for the human operator and run
simulations to produce the decisions made by the model as a
function of operator cognitive state and cognitive limitations.
The methodology and resulting model will be described in
detail in the rest of this paper.

Experiment Task
The human-swarm system studied followed that described
in (Bullo, Corts, & Martinez, 2009). Participants control a
swarm of twenty simulated robots in a web interface. No
control can be exerted over individual robots, only over the
swarm as a whole, and only by the choice of one of two
strategies controlling how the robots collectively move: Ren-
dezvous or Deploy. The two strategies correspond to two
different algorithms for the evolution of the robots’ motions,
Rendezvous causing the positions to largely converge, and
Deploy to largely diverge. In addition to the robots them-
selves, the simulated environment also contains a set of fixed
obstacles. Each of the sixty trials begins with a set of ini-
tial positions of the robots, and of the obstacles. These po-
sitions were sampled from bivariate Gaussian distributions, a
different pair of distributions used at each trial. The means
and variances of these distributions were themselves sam-
ples from a uniform distribution. While each participant saw
roughly the same sets of positions, in the same order, a small
amount of noise was introduced into each.

The interface presents the initial positions of the robots and
the positions of the obstacles, and solicits a choice of Ren-
dezvous or Deploy from the human. The robots then move
according to that strategy, and leave a visual trail of where
they have been (Figure 1). The interface also displays direct
feedback in the form of a number representing the percentage
of the environment’s area that the ensemble of robots has cov-
ered. The human’s goal in each trial is to select the strategy
that can be expected to result in the larger coverage, for that
set of initial robot positions and obstacles.

Figure 1: The interface to the simulated swarm experiment.

Fifty participants were recruited within Amazon Mechan-
ical Turk1, of whom forty-eight completed the experiment.

1https://www.mturk.com/mturk/welcome

Each of the forty-eight participants was presented with sixty
trials. The first ten were training trials. In these training tri-
als participants were asked to choose Rendezvous or Deploy
and observe the resulting coverage. They were then asked
to choose the forgone strategy and see its resulting cover-
age. After the training trials they were only able to select
one of the strategies, and saw only the coverage result for
the chosen strategy, with no feedback on the forgone strategy.
Each of the first thirty post-training trials were unique, but the
last twenty were alternately unique, and recapitulations of the
training trials, modified slightly by the addition of noise. The
participants were not told that there would be such recapitu-
lated trials.

Cognitive Model

The cognitive model is implemented in the neurally-inspired
cognitive architecture ACT-R and follows the instance-based
learning (IBL) methodology. In IBL decisions are made pri-
marily based on experiences of a task. In our model these
experiences are stored in the chunks of ACT-R’s declarative
memory, each such chunk corresponding to a relevant expe-
rience. Instance chunks typically contain a description of the
context in which each decision is made, the decision itself,
and the outcome of that decision. The mean initial position
of the robots (eccentricity) and its variance (dispersion) were
used to characterize the context of each trial. Other dimen-
sions were considered, especially characterizing the distribu-
tion of obstacles, but were found upon further analysis both
relatively inconsequential to the outcome and generally ig-
nored by human participants. Both possible decisions were
represented in each instance chunk, with the outcome in terms
of coverage for each action stored in dedicated slots. Each
instance chunk therefore contains four slots mapping the ec-
centricity and dispersion of the robot swarm to the coverage
percentage for the Rendezvous and Deploy actions.

Before the model proper begins executing, chunks con-
taining the ground truth values of both the Rendezvous and
Deploy values for each of the ten training trials are added
directly to declarative memory. For each of the fifty non-
training trials of the experiment the model is presented with
the eccentricity and dispersion values, and estimates, from the
chunks stored in declarative memory, expected coverage frac-
tions for Rendezvous and Deploy. These estimates are gener-
ated using ACT-R’s blending mechanism (Lebiere, 1999), us-
ing partial matching of the chunks representing instances that
are already in memory. This partial matching is done using
a linear similarity function between the eccentricity and dis-
persion values, as well as the usual ACT-R declarative mem-
ory retrieval’s activation computation, including recency and
noise. The model selects as its decision whichever of the
two actions produces the larger expected coverage percent-
age. The model then receives as feedback the ground truth
coverage for the chosen Rendezvous or Deploy action, and
registers it instead of its estimate in its representation of the
current trial. The coverage value in this chunk for the forgone
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option is, instead of the ground truth, left as the model’s esti-
mate. Upon completion of the trial the representation of the
problem is added as a new chunk in declarative memory. The
model thus starts out with ten instances, those from training,
and builds up to sixty by the conclusion of the experiment as
its experiences accumulate.

The ACT-R model is stochastic, and was run 1,000 times to
generate stable estimates, each with a distinct random num-
ber seed. Most ACT-R parameters were left at their default
values. The main deviation from standard values was to set
the activation noise parameter to a relatively high value of
0.75 to reflect the high stochasticity of decisions made by the
Mechanical Turk subjects. For each run declarative memory
is reinitialized with just the ten training trials, and the full set
of sixty instances is built up afresh, with potentially differ-
ent values in them reflecting the stochasticity of the model’s
judgment at each step, and most specifically the fact that it
receives feedback on only its chosen option and its poten-
tial implications for the dynamics of its behavior ((Lebiere,
Gonzalez, & Martin, 2007)). The results are aggregated both
for comparison to the human results and for constructing the
Markov model.

Abstraction Procedure
The knowledge state in IBL models is characterized by the set
of instance chunks and their activation. The evolution of the
cognitive state as the model accumulates experiences can be
thought of as a k-dimensional discrete-time signal, which is
the time-trajectory of activation levels of the different mem-
ory chunks through various decision cycles, in response to
particular inputs.

As stated before, an IBL memory chunk in ACT-R consists
of a representation of the context and outcome of the control
actions. In this setting, context involves the centrality and
dispersion of the robots, while the outcome involves a rep-
resentation of the percentage coverage achieved by the avail-
able decisions. Environment and system observations change
the activation levels of the existing memory chunks as well
as add new chunks to the model, thus reflecting the system
state as observed by the operator. Abstracting that distributed
state of knowledge contained in the cognitive model’s declar-
ative memory in an analytical model requires coarsening it
into discrete states, such as the degree of preference toward
one strategy or the other. To reflect the context-sensitive na-
ture of the IBL decision process, distinct sets of states are
created for each context neighborhood. The number and na-
ture of the states is left to the modeler. The changes that each
experience causes to the activations (and number) of instance
chunks in memory are reflected in a probabilistic transition in
the analytical model. The transitions in the analytical model
are trained from Monte Carlo runs of the cognitive model.

For this specific model, our approach starts with an in-
terface to the multi-robot system that explicitly represents
two actions, “Deploy” and “Rendezvous”, and the percentage
coverage obtained by the action. In this setting, the decision
context involves the centrality and dispersion of the robots.

The memory chunk also contains a representation of the ac-
tion taken as well as the action not taken, and the resulting and
expected outcome, respectively. Environment and system ob-
servations change the activation levels of the memory chunks
in the cognitive model, thus reflecting the system state as ob-
served by the operator. Previously created chunks decay with
time and are reinforced with retrieval, while new chunks are
added to reflect recent observations. The time-trajectory of
the activation levels of the memory chunks can be clustered
to produce the Markov model. States of the Markov model
are defined to correspond to a pattern of memory chunk ac-
tivation levels. In this domain, they would correspond to a
temporary preference for one action over the other. In gen-
eral there can be k events that correspond to the consistent
states of the system as observed by the operator.

Markov Model
Following the approach described in (Gray, 2002), we em-
ploy a Markov model as the analytic model for ACT-R cogni-
tive processes of human control. Let D denote the selection of
Deploy and R denote the selection of Rendezvous. Special-
ized for the human-swarm task, the overall Markov model of
the cognitive processes is decomposed into two sub-Markov
Models indicated by superscripts in the edges of the graphs
that correspond to two basic outcomes of the action chosen
(see right-hand side of Figure 2): a) Model U : the ground
truth coverage is larger than the estimation of the ACT-R
model; b) Model L: the ground truth coverage is less than or
equal to the estimation of the ACT-R model. Model U is pa-
rameterized by four probabilistic action selection transitions:
1) pU

D→R, 2) pU
D→D (where pU

D→R + pU
D→D = 1); 3) pU

R→D, and
4) pU

R→R (where pU
R→D + pU

R→R = 1). Symmetrically, Model
L is also parameterized by four probabilistic state transitions:
1) pL

D→R, 2) pL
D→D(where pL

D→R + pL
D→D = 1); 3) pL

R→D, and
4) pL

R→R (where pL
R→D + pL

R→R = 1). The switching between
these two sub-models is parameterized by the probabilities
pGrd>Est and pGrd≤Est where pGrd>Est + pGrd≤Est = 1 and
where Grd is the ground truth and Est is the ACT-R esti-
mation. As a result, we establish a Markov model of action
selection assuming that any action selection is independent
of the history given the previous action and the chosen sub-
model (either U or L).

To situate the Markov model in the human-swarm environ-
ment, we discretize the observation space (the dispersion and
eccentricity) as a grid of cells (see the left-hand side of Figure
2). Each cell in the grid is associated with an overall Markov
model as described above.

After the ACT-R model generates the data, the training and
prediction test procedure is as follows: (1) locate the cells to
which the data instances belong; (2) train a Markov model for
each cell; (3) make predictions for each instance in test data
based on the Markov transition probabilities.

Training Procedure
Situated in the grid of the environment, a Markov model
(see the right-hand side of Figure 2) is trained for each cell.
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Figure 2: The framework for the training procedure in the
Markov model.

The nodes Xa/b = D indicate the selection is Deploy and
the nodes Xa/b = R indicate the selection is Rendezvous. In
each cell, the data is represented as a sequence of selections
X = {x1, ...,xt}. During the training procedure, scanning
through the sequences of action selections X , we record the
counts of action selection transitions (xi,xi+1). Formally, the
count ck

si→s j
is the number of transitions from selection si to

s j (si,s j ∈ {D,R}) of the sub-model k (where k∈ {U,L}). For
example, when an action selection transition (D,R)∈ X is en-
countered — the current selection is Deploy and the next se-
lection is Rendezvous — and the feedback is that the ground
truth is less than the estimation (in sub-model L), then the
count is updated as: cL

D→R ← cL
D→R + 1. After counting all

the instances in the data set, these counts are normalized into
the transition probabilities following:

pk
si→s j

=
ck

si→s j

∑st∈{D,R} ck
si→st

. (1)

In addition, the switching probability pGrd>Est (pGrd≤Est =
1− pGrd>Est) between the sub-models is estimated by simply
computing the ratio of the times that the ground truth cov-
erage is larger than the estimation of ACT-R over the times
that the ground truth coverage is less than or equal to the es-
timation of ACT-R. It can be proved that the above parameter
estimation process computes the model parameters that max-
imize the posterior probability of generating the data condi-
tional on the parameters.

Prediction Procedure
After the training procedure, we obtain the overall Markov
model, which is characterized by the probabilities from De-
ploy to Deploy pD→D, from Deploy to Rendezvous pD→R,
from Rendezvous to Deploy pR→D and from Rendezvous to
Rendezvous pR→R, as a switching mixture of the two sub-
models (Model U and Model L):

pD→D = pGrd>Est ∗ pU
D→D + pGrd≤Est ∗ pL

D→D (2)

pD→R = pGrd>Est ∗ pU
D→R + pGrd≤Est ∗ pL

D→R (3)

pR→D = pGrd>Est ∗ pU
R→D + pGrd≤Est ∗ pL

R→D (4)

pR→R = pGrd>Est ∗ pU
R→R + pGrd≤Est ∗ pL

R→R. (5)

This overall model can be exploited to predict the next action
selection si+1 of the human players given the current action
selection si following the decision rule:

si+1 = argmax
x∈{D,R}

psi→x.

For example, if the overall model states that pD→D > pD→R,
and the current selection is Deploy, the predicted next action
will be Deploy; otherwise, the next prediction is Rendezvous.

Results
The resulting Markov model is evaluated by two measures:
Accuracy and MSE (Mean Square Error). The Accuracy is
defined as:

Accuracy =
|I(SELpred,SELACT-R)|

|trials|
(6)

where I(SELpred,SELACT-R) = 1 if the prediction selec-
tion is the same as the ACT-R selection; otherwise
I(SELpred,SELACT-R) = 0 . And MSE is defined as:

MSE =
1

|trials|
(PMarkov-Grd−PACT-R-Grd)

2 (7)

where PMarkov-Grd is the precision of the Markov model (i.e.
the Markov model conforms with the ground truth) and
PACT-R-Grd is the precision of the ACT-R model (i.e. the ACT-
R model conforms with the ground truth).

We evaluate our Markov model given the following dis-
cretization of the observation space: 17×17, 10×10, 5×5,
3×3 and 1×1. The model prediction performance is shown
in Table 1. From Table 1, we can see that the performance im-
proves as the granularity of the grid is increased but reaches a
plateau around a 5×5 grid, which is a plausible discretization
level. The limit on accuracy of about 75 percent fundamen-
tally reflects the variability of human decisions. The limit on
mean square error fundamentally reflects the discretization
of the problem space and other factors averaged over by the
Markov model training procedure.

Number of cells Accuracy Mean Square Error
17×17 75.07% 0.06718
10×10 74.90% 0.07671

5×5 74.48% 0.08449
3×3 69.61% 0.11254
1×1 52.99% 0.29963

Table 1: The prediction results of different numbers of cells.

Figure 3 presents the trial-by-trial performance of the hu-
man participants, the cognitive model, and three versions of
the analytical model using various degrees of state coarse-
ness. The cognitive model generally captures quite well the
pattern of fluctuations of human performance across trials.
The fluctuations reflect both the impact of previous outcomes,
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Figure 3: Fraction of decisions correct by trial number

which are captured in the cognitive model by the addition of
a new chunk for each experience as well as the recency effect
from activation decay, and the effect of each new trial context
on the decision. The analytical models show occasional de-
viations from that pattern, which reflects the coarse nature of
their state space and other simplifying factors. A learning ef-
fect can be observed in the increasing consensus across runs
for each action choice, whether correct or incorrect.

Figure 4 graphs the fraction of choice of a specific option
(Rendezvous) as a function of the difference in coverage be-
tween that option and the alternative (Deploy) in the ground
truth data. The sharp sigmoid curve centered around the ori-
gin fit to the data indicates that both human participants and
cognitive model learn to perform the task quite well, and
nearly identically. Their errors primarily reflect contexts in
which the two actions provide very similar performance. The
analytical models are also sensitive to differences in cover-
age, but not nearly as sharply as their sigmoid fits are much
flattened. This presumably reflects the coarse state represen-
tation that aggregates nearby contexts in identical bins as op-
posed to the more graded similarity-based partial matching of
the cognitive model. In addition, when limited to 3x3 cells,
the analytical model shows an inability to converge to the
same certainty as the cognitive model for large differences
in coverage.

Figure 5 graphs the pattern of choices in the two-
dimensional context space of robot dispersion (x-axis) and
eccentricity (y-axis). Green circles are associated with a cor-
rect choice of Rendezvous, and are typically associated with
large dispersion values, while yellow circles are associated
with a correct choice of Deploy, and are typically associated
with small dispersion values. The size of the circle represents
the probability of choosing the correct action. Larger choice
probabilities are typically seen for extreme dispersion values,
while smaller probabilities are seen for mid-range dispersion
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Figure 4: Fraction choice of the Rendezvous action as a
function of the difference in percent coverage between Ren-
dezvous and Deploy

values that correspond to the boundary between the two do-
mains where the difference between the two actions is small.
For each trial, circles centered on the same point are plotted
for both human and cognitive model choices. Most pairs of
circles overlap perfectly but specific discrepancies between
human and model choice are visible, corresponding to trials
18, 20, 23, 30, 41, 45 and 59 (see corresponding data on Fig-
ure 3). All those trials are located in the boundary region
where small differences in perception or experience might
easily make the difference between choosing one action over
the other.

Conclusion and Future Work
This approach can be understood as one of incremental ab-
straction in model development. We start with the full detail
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Figure 5: Performance of human participants and cognitive
model (circles) graphed in the two-dimensional context space
for Rendezvous (Green) and Deploy (yellow) trials. Crosses
indicate training trials.

of the human data. In this case, it included only the choice be-
tween two competing actions. However, it could also include
latency to make the decisions, individual variations, or any
other observable relevant aspect of human performance. A
process model of human control of the cyber-physical system
is then developed using a cognitive architecture. The bene-
fit of using a cognitive architecture is that it already includes
many constraints on performance that do not need to be red-
erived from data. A further advantage of using the IBL mod-
eling methodology is to further limit modeler choices and
improve the automated nature of this approach by limiting
modeler decisions to the representation of the context. Fur-
ther abstraction can then be achieved by specifying the struc-
ture of a formal analytical model, such as the cells and states
of the Markov model used here. Unlike limited and noisy
human data, the cognitive model can then be run as many
times as needed and the resulting data used to train the formal
model to the needed accuracy. The models can be validated
against each other and against the human performance data
at each level of development: (a) the initial cognitive model
can be compared to the human data that it is meant to capture,
(b) the formal analytical model can be compared to the cog-
nitive model from which it is abstracted, and finally (c) the
formal analytical model can be validated against the human
performance data.

One important question is which aspects of the cognitive
model performance can be readily captured by this approach?
We saw that in this domain the model’s Markovian assump-
tion was quite accurate at capturing the impact of experi-
ence on decisions. Coarsening the high-dimensional nature
of declarative memory representation into a limited number
of states can lead to some distortions but seems fairly accurate

if the state space is above some minimum threshold. Another
limitation is the need to restrict contextual generalization to
an all-or-none division into independent cells. Another im-
portant question is how to generalize the Markov model for
more realistic applications which have 1) larger action space
(more than 2 actions), 2) higher dimension of the observa-
tion space (more than 2 observed parameters), and 3) more
sophisticated performance dependency over action selections
and environment observations.

Finally, the analytical model is trained on the entire data
set generated by the cognitive model, including the model’s
initial learning curve. As it is, the analytical model is akin to
a representation of average or asymptotic performance. More
contextual elements would have to be added to enable a rep-
resentation of cognitive learning processes in the analytical
model.

Our future work involves two parallel thrusts. We want to
generalize our approach to modeling human control of other
cyber-physical processes to test its breadth of applicability.
Also, we need to incorporate the resulting analytical models
into formal verification frameworks, e.g. (Oishi, Mitchell,
Bayen, & Tomlin, 2008), that can be used to derive formal
guarantees on the human control of cyber-physical systems.
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