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Abstract 

Integration across capabilities, both architectural and 
supraarchitectural, is critical for cognitive architectures.  Here 
we revisit a classic failure of supraarchitectural capability 
integration in Soar, involving data chunking, to understand 
better both its source and how it and related integration issues 
can be overcome via three general extensions in Sigma. 
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Many of the most important early results from Soar 
concerned how integration across a small general set of 
architectural mechanisms, plus appropriate knowledge 
above the architecture, could yield a wide variety of 
problem solving and learning capabilities (Laird, Newell & 
Rosenbloom, 1987).  Because these capabilities all 
intrinsically involved forms of knowledge above the 
architecture, in addition to mechanisms within the 
architecture, they are on the whole most appropriately 
considered supraarchitectural; i.e., above the architecture. 

Some supraarchitectural capabilities, such as lookahead 
search across metalevels, became part of the toolkit 
available for routine use in more comprehensive systems – 
in this case via a set of default rules that were loaded 
whenever Soar was initialized and usable whenever a tie 
occurred among operators proposed for selection.  However, 
others of these capabilities – such as declarative learning via 
what came to be called data chunking (Rosenbloom, Newell 
& Laird, 1991) – proved impossible to deploy routinely in 
combination with other capabilities, and thus never 
amounted to more than standalone demonstrations. 

Such failures in supraarchitectural capability integration 
loomed over Soar for years as one of its most significant 
flaws.  In the case of declarative learning, the inability to 
integrate it routinely with other capabilities was ultimately 
accepted as a fundamental limitation in Soar, triggering a 
dramatic shift to an approach in which new declarative 
memory and learning modules were implemented in Soar 9 
for routine use in conjunction with other capabilities (Laird, 
2012).  This move then helped trigger an even broader shift 
in Soar from its early emphasis on uniformity to its more 
diverse present state, while also aligning it more closely 
with ACT-R’s long-term approach (Anderson et al., 2004). 

Sigma (Rosenbloom, 2013) is a more recent architecture 
that is based on combining what has been learned from over 
three decades of separate work in cognitive architectures – 
Soar in particular – and graphical models (Koller & 
Friedman, 2009).  One of the three key desiderata driving 
the development of Sigma – functional elegance – is a 

reformulation of Soar’s earlier notion of uniformity.  Sigma 
maintains many of the high level concepts from Soar, yet it 
has revealed an ability both to embody a wider variety of 
supraarchitectural capabilities and to integrate them together 
routinely.  Here we analyze what has enabled Sigma to 
overcome this earlier fundamental limitation in Soar. 

The key to integration of supraarchitectural capabilities is 
to fit them naturally within the system’s overall processing 
and control structure, which for both Soar and Sigma can 
range from reactive to deliberative to reflective.  Reactive 
processing can be thought of as parallel, memory driven, 
automatized, or System 1.  It may include basic forms of 
perception, memory access, reasoning and decisions, but it 
is limited to what can be accomplished within a single 
cognitive cycle; i.e., ~50 msec in people.  Deliberative 
processing can be thought of as algorithmic, knowledge 
intensive, or controlled.  It comprises routine sequential 
behavior based on sufficient expertise to always know what 
to do.  Reflective processing deals with situations that are 
problematic – yielding impasses and metalevels – and can 
be thought of as search driven or System 2. 

Both of the supraarchitectural capabilities mentioned 
earlier – lookahead search and data chunking – are 
implemented reflectively in Soar; that is, an impasse must 
occur that halts normal processing before the metalevel 
processing necessary for the capabilities can proceed.  In the 
former case, hypothetical reasoning about the future occurs, 
as necessary, across metalevels.  In the latter case, 
declarative knowledge structures must be explicitly 
assembled within a metalevel in order for chunking – Soar’s 
sole learning mechanism at the time – to learn new rules 
from them.  Although chunking can occur each decision, it 
is an inherently reflective learning mechanism because it 
learns from traces of rules that fire in metalevels. 

Reflective integration is unproblematic for lookahead 
search because an impasse has already brought normal 
processing to a halt.  However, normal processing could 
continue in the absence of data chunking, and an artificially 
induced impasse is in fact required to enable it.  Thus, 
reflective integration is natural in the former case, but both 
artificial and intrusive in the latter case, where reflection is 
in service of learning for the future rather than solving the 
current problem. This is not to say that deliberate reflective 
learning can’t be appropriate or natural, as in after-action 
review or post-problem metacognition, or that reflective 
learning can’t occur naturally as a side effect of metalevel 
problem solving – as with chunking – but it can be 
inappropriate and intrusive when pursued deliberately 
during task performance. 
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Yet, declarative learning – both semantic and episodic – 
must be able to occur continually on a routine basis.  Since 
data chunking could not achieve this, and Soar’s 
formulation of supraarchitectural reactivity – in terms of 
parallel knowledge access (i.e., rule firing) until quiescence, 
followed by a decision – could support no other approaches, 
distinct semantic and episodic memories and learning 
mechanisms were added in the Soar 9 architecture to enable 
declarative learning to proceed reactively and in parallel. 

Sigma, in contrast, succeeds because of three general 
extensions to the reactive level.  The first extension is to 
support a more general form of knowledge structure – one 
that is hybrid (discrete + continuous) and mixed (symbolic + 
probabilistic) – and thus also a more general form of 
reactive reasoning.  This enables Sigma not only to perform 
symbolic reasoning in parallel – as was supported by Soar’s 
parallel rule system – but also probabilistic reasoning and 
signal processing.  Data chunking was a purely symbolic 
approach to declarative memory, but declarative memory in 
Soar 9, and in ACT-R before it (Anderson et al., 2004), has 
a strong activation-based subsymbolic component.  This 
aspect is provided in Sigma’s supraarchitectural declarative 
memories via reactive probabilistic reasoning. 

The second extension is that, instead of only making 
decisions about which action to perform next, Sigma can in 
parallel make decisions about any of the values in working 
memory.  This enables not only reactive retrieval of 
distributions from declarative memory, but also reactive 
selection of the best choices from these distributions.  In 
Sigma, declarative retrieval is thus inherently reactive, with 
deliberative retrieval arising only as necessary (through 
explicit manipulation of cues across decisions).  Declarative 
retrieval in Soar has traditionally been deliberative, even in 
Soar 9, although a more reactive mode has recently been 
introduced (Li & Laird, 2015). 

The third extension is the inclusion of a reactive learning 
mechanism based on gradient descent that updates 
parameters everywhere in long-term memory once per 
cognitive cycle (Rosenbloom, Demski, Han & Ustun, 2013).  
Instead of embodying one general reflective learning 
mechanism, as in the early days of Soar, or this plus 
multiple memory-specific reactive learning mechanisms, as 
in Soar 9, Sigma supports a single general reactive learning 
mechanism.  This is adequate for learning not only the 
contents of semantic and episodic memory (Rosenbloom, 
2014), but it can also acquire: Q functions in reinforcement 
learning; models of actions that are experienced; maps (as 
part of SLAM); and perceptual and transition functions in 
speech recognition (Joshi, Rosenbloom & Ustun, 2014).  
Moreover, because it operates in parallel over all parameters 
in Sigma’s long-term memory, multiple reactive 
supraarchitectural learning capabilities can proceed without 
interference with each other or with other capabilities. 

These three extensions together enable a full reactive path 
from perception through memory access, reasoning, 
decisions and learning (and, hopefully, ultimately affect and 
motor control as well).  In the process they yield a major 

expansion of what can occur in general via parallel reactive 
processing, in moving from Soar to Sigma, and thus which 
reactive supraarchitectural capabilities can be implemented 
and integrated together in a routine manner.  Declarative – 
semantic and episodic – memory and learning provide 
compelling examples, but so do perceptual memory and 
learning – as in speech recognition and parameter learning  
– and imagery (e.g., mental map) memory and learning. 

None of this implies that Sigma will not eventually need 
additional learning mechanisms – such as for acquiring new 
types of memory structures rather than just new instances of 
existing types – but it does imply that a suitably general 
reactive cycle can support much broader supraarchitectural 
capability integration than was previously thought. 
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