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Abstract

We demonstrate how basic cognitive functions of learning and
memory can be modeled mathematically and how such models
are first built from a bare minimum of essential information
and then developed systematically in a step by step manner to
include more and more realistic features.
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Introduction

Learning and memory are amongst the basic cognitive at-
tributes of our brain, yet we are only beginning to understand
the physiological mechanisms underlying them. Whatever lit-
tle success we have achieved in recent years in this direction
can be attributed, to some extent, to mathematical and com-
putational modelling of these and related phenomena. We
offer a glimpse of how one approaches this problem through
mathematical modelling.

Developing mathematical models

Learning and memory are related in that we first learn,
and, if what we learn stays in the brain and can be re-
called then we say that we are able to memorise. A ma-
jor break in understanding “learning” was given by Donald
Hebb in 1949 (Hebb, 1949), who pointed out that the synapse
connecting the neurons are plastic in nature and that their
strength can change in an irreversible manner. These changes,
termed as long-term potentiation (LTP) and long-term depres-
sion (LTD), are manifestations of ‘learning’. Leon Cooper
(Cooper, 1973) cast the Hebbian hypothesis in the following
mathematical form,
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where, in a fully connected network of N neurons, J;; repre-

sent the synaptic strengths between neurons i and j, and F,,-(”)
represents the activity of the i neuron, which is taken as /
if the neuron fires and —7 otherwise; u is index for a pat-
tern/vector of £1s. The J;; thus depends on the activities of
the neurons that are connected by it as was hypothesized by
Hebb (Hebb, 1949). It changes cumulatively as new patterns
u are presented successively to the network.

John Hopfield (Hopfield, 1982) used mathematical frame-
work of a physics system called ‘spin glass’ (Edwards & An-
derson, 1975) and incorporated this prescription for learning
in a simple model of firing/not firing (i.e. +1) neurons to
account for numerous memories that the brain can accom-
modate at the same time. In particular, it helped us under-
stand ‘content addressability’ or ‘associative recall’ in which
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if the network encounters a pattern that is similar to but not
the same as an imprinted pattern, then it can associate the
new pattern with the imprinted one. This accounts for a com-
mon feature of cognitive memory in which we can identify a
familiar (or memorized) object from its partial, or obscured,
or noisy appearance. In fact we can imagine around each
imprinted pattern a collection of patterns that bear similarity
with the imprinted pattern in varying degrees. This region in
the configuration space is called “basin of attraction” and the
Hopfield network is called attractor neural network (ANN). A
noisy version of an imprinted pattern falling within a certain
range around it, if presented to the ANN, will by and by con-
verge to the imprinted pattern following the retrieval/recall
prescription,
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where hl(v) is the local field (or post-synaptic potential) on
neuron i due to activities on all the other (N — I) neurons (in
an arbitrary pattern v) projecting onto i via J;;’s. If v pattern
is not one of the the imprinted patterns then the condition,
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will not be met for all i’s. In that case {1 sgn(hlm)} are fed on
the right hand side of equation (2) as {&l(v)} and condition (3)

is checked with the new set {hl(.v) }. After a few iterations the
v pattern converges to the imprinted pattern in whose basin
of attraction the v pattern happens to fall. In physics terms
this means that the imprinted pattern, say u, corresponds to a
minimum of the following total energy function (or Hamilto-
nian),
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This energy function is akin to that of spin-glass (Edwards &
Anderson, 1975). What makes it useful as a model for mem-
ory is that it has an exponentially large number of minima,

which correspond to different configurations of up and down
spins or £1, being fed in through (1).

N =

Random sets of {il(“ )} minimize H as long as the number of
imprinted patterns does not exceed a critical limit (Amit, Gut-
freund, & Sompolinsky, 1985). As new patterns are imprinted
according to (1) noise builds up in the system and beyond a
stage (p/N > 0.14) the noise submerges the signals and we
end up in a situation where none of the imprinted patterns is
retrieved. This catastrophic loss of memory is cognitively un-
realistic.



In figure (1) we show a simulation of the Hopfield model.
It shows the variation of the number of patterns that are
retrieved with 100% accuracy as a function of the number
of stored patterns, p normalised by N. Note that beyond
p/N=0.1, the fraction of stored patterns that are retrieved
accurately begins to reduce, and drops rather steeply for
p/N >0.15. Close to p/N=0.3 hardly any of the stored pat-
terns is retrieved. This marks the memory catastrophe.

Going beyond, with corrections

To remove the above hurdle we have improved the Hopfield
model to eliminate the noise from the system, which is pro-
duced by “cross-talks” between the imprinted patterns. Our
hypothesis is that when an information comes to be recorded,
it is first “orthogonalized” with respect to all the information
in the memory, and then the orthogonalized version is
stored in the memory following the Hebbian hypothesis
(1). Orthogonalization is a mathematical transformation that
converts a set of vectors into a mutually perpendicular set.
Orthogonalization amounts to identifying similarities and
differences that the new pattern may have with all those in the
memory and then storing these similarities and differences in
the synapses. While the mathematical details can be found
in (Srivastava & Edwards, 2000), we will highlight here a
curiously interesting aspect of our hypothesis.

Suppose a set of vectors {E®} is to be stored in the

Hopfield like neural network. In the orthogonalization
hypothesis E<’1)’S will be orthogonalized sequentially (for
u=1,2.3...p) following Gram-Schmidt’s procedure (Srivastava
& Edwards, 2000). This will give us a set {f§*}, which
will be inscribed/stored in the network following (1) using
{n®™} instead of {£*)}. However, we find that we can study
the retrieval, or recall, of the original vectors E(")’s from
the network. Most significantly N E(m’s in a network of N
are retrieved efficiently, i.e. with 100% accuracy in a single
iteration of prescription (2).
The red plot in figure (1) displays that the fraction of p stored
patterns that can be retrieved perfectly stays at 1 for all values
of p upto p=N when the orthogonalized versions of the given
p patterns are stored. The orthogonalization scheme gives
new insight into the basins of attraction of E(m’s and their
stability conditions (Sampath & Srivastava, manuscript in
preparation).

In sum we have shown that mathematical modeling plays
a crucial role in understanding the mechanisms of cognitive
functions. Such models not only provide quantitative results
which can be substantiated by experiments, but also have
almost indefinite scope for improvement and generalization
to include new parameters, and relax approximations and
simplifying assumptions to make the model more and more
biologically realistic. In the present model, for instance,
we need to (a) dilute the connectivities between neurons
(a neuron is typically connected to 15% or less of other
neurons), (b) take into account the fact that J;; need not be
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Figure 1: Fraction of perfect retrieval vs load parameter
(p/N), in conventional Hopfield model (magenta) and after
introducing orthogonalization for learning (red), (N=1000) .

equal to Jj;, and (c) treat a multinary neuron rather than
binary to account for the fact that a neuron may fire at
different rates, etc. Also, an incoming new information
need not be orthogonalized with respect to all the previously
stored information; it should be orthogonalized with respect
to a selected set of old and stored information - i.e., the
memory ought to have a hierarchical structure. Moreover, we
should generalize the model to go beyond sequential learning
symbolized by Gram-Schmidt orthogonalization and include,
e.g. episodal memories.

Acknowledgements : This work is supported by the Royal
Society (London, UK) and the cognitive science research ini-
tiative of the Department of Science and Technology, Gov-
ernment of India.

References

Amit, D., Gutfreund, H., & Sompolinsky, H. (1985). Storing
infinite numbers of patterns in a spin-glass model of neural
networks. Physical Review Letters, 55, 1530-1533.

Cooper, L. (1973). A possible organization of animal mem-
ory and learning. In Nobel symposium on collective prop-
erties of physical systems (pp. 62—84). Aspensagaerden,
Sweden: The Nobel Foundation.

Edwards, S., & Anderson, P. (1975). Theory of spin glasses.
Journal of Physics F: Metal Physics, 5, 965-974.

Hebb, D. (1949). Organization of behaviour. New York:
Wiley.

Hopfield, J. (1982). Neural networks and physical systems
with emergent collective computational abilities. Proceed-
ings of the National Academy of Sciences, 79, 25542558.

Sampath, S., & Srivastava, V. (manuscript in preparation).
New results from basins of attraction in attractor neural net-
works.

Srivastava, V., & Edwards, S. (2000). A model of how the
brain discriminates and categorises. Physica A: Statistical
Mechanics and its Applications, 276, 352-358.




