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Abstract 

We are using an algorithm based on a computational model of 
human memory to optimize the scheduling and repetition of 
individual items within a learning session. The model 
estimates the rate of forgetting for each participant to 
determine the order in which items should be repeated and to 
decide when previous items have been learned well enough to 
introduce a novel item. To improve the model further, we 
conducted an experiment to test how stable the parameter 
estimates are over time and across different materials. We 
have found that estimated rates of forgetting are stable over 
time within one type of material but not across different types 
of material. This finding has important implications for how 
information about a learner should be preserved between 
study sessions.  

Keywords: spacing effect; testing effect; cognitive model; 
learning; parameter stability. 

Introduction 
Fact learning is a big part of learning a new skill. In many 

school curricula, students are evaluated based on how well 
they learned a certain array of facts. With the advance of 
computers into classrooms and workplaces, tutoring systems 
have been developed to help learners master the required 
material. Over a hundred years of memory research have 
singled out two robust effects that developers of such 
systems can use to enhance that goal: the spacing effect and 
the testing effect. By making optimal use of both of them 
and adjusting the system to the individual learner, such 
systems can make learning a lot more efficient. As of now, 
however, most optimizing systems treat each learning 
session in isolation; user-specific characteristics are 
estimated during a learning session to optimize each 
learning session but are not preserved between learning 
sessions. In this study, we investigated to which extend 
user-specific parameters relevant to such a tutoring system 
are stable over time and across different materials to gauge 
to which extent they can be preserved between learning 
sessions. 

The tutoring system used here works by balancing the 
benefits of the spacing and the testing effect. The spacing 
effect describes the finding that performance on tests of 
recall is improved when study time is distributed over 
multiple sessions with time in-between rather than massed 
study (Cepeda, Pashler, Vul, Wixted, & Rohrer, 2006; 
Dempster, 1988). The optimal spacing schedule ultimately 
depends on how much time is available and when the 
material is tested (Cepeda, Vul, Rohrer, Wixted, & Pashler, 
2008). However, it has been shown convincingly that long-
term retention can be increased by spacing items within a 
single learning session (Lindsey, Shroyer, Pashler, & 
Mozer, 2014; van Rijn, van Maanen, & van Woudenberg, 
2009) as well as spacing individual learning sessions 
(Cepeda et al., 2006). 

The testing effect, on the other hand, describes the finding 
that active memory retrieval during practice is more 
beneficial for long-term retention than passive study 
(Karpicke & Roediger, 2008; Roediger & Butler, 2011). 
That is, being forced to retrieve the answer from memory 
leads to better learning than simple re-studying (i.e. looking 
at) the cue-answer pair (Carrier & Pashler, 1992). This 
effect has been studied extensively in the laboratory 
(Cepeda et al., 2008) but also holds in more realistic 
classroom settings (Agarwal, Karpicke, Kang, Roediger, & 
McDermott, 2008; van Rijn et al., 2009). 

Given our knowledge of the spacing and testing effects 
and the quasi-lawful behavior of memory, it seems possible 
to devise a learning schedule that would make optimal use 
of each effect's benefits. This would require balancing two 
seemingly opposing goals: (1) maximizing time between 
repetitions of an item to get the biggest spacing effect, and 
(2) minimizing time between repetitions of an item to make 
sure it can still be retrieved from memory to take advantage 
of the testing effect. Such computer adaptive practice 
models have been developed and have been shown to 
outperform flashcard control conditions (Nijboer, 2011; van 
Rijn et al., 2009).  
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As a starting point for the development of such models, 
Anderson and Schooler (1991) showed that data on memory 
performance (i.e. practice and retention) across time courses 
ranging from seconds to years can be fit nicely by power 
functions. Interestingly, this corresponds closely with 
environmental relationships (Anderson & Milson, 1989). 
That is, the likelihood that people still remember a non-
sense syllable they learned today at a certain point in the 
future (i.e. the original Ebbinghaus data) can be described 
with the same power functions that can be used to describe 
the likelihood of receiving an e-mail  (Anderson & 
Schooler, 1991). This leads Anderson and Schooler (1991) 
to conclude that the human "memory system is adapted to 
the structure of the environment" (p. 400). 

Based on this assumption, it is argued that the practice 
and retention of facts can be approximated using the same 
equations that can be used to describe the behavioral effects 
in the data. Pavlik and Anderson (2003, 2005) developed a 
model that formalizes this process and show how it can be 
used to compute the optimal schedule of practice, taking 
into account the effects of practice, retention, and spacing 
(Pavlik & Anderson, 2008). Their model assumes that there 
is some stable effect based on each individual's rate of 
forgetting and additional effects based on item difficulty. In 
this original work, it is assumed that these effects are stable 
over time and, for the rate of forgetting, across knowledge 
domains/materials. That is, someone's rate of forgetting is 
assumed to be a property of their memory and therefore 
stable, regardless of whether they study vocabulary, 
topographical information, or word definitions. 

The success of such models (Nijboer, 2011; Pavlik & 
Anderson, 2008; Van Rijn et al., 2009) is very promising 
but the stability of participants' rate of forgetting across time 
and knowledge domains has never been demonstrated 
empirically. The goal of the present study is to investigate to 
which extent participants' rate of forgetting varies over the 
course of three weeks as well as across four different types 
of material. 

Methods 

The Model 
The model used in this experiment is based on ACT-R's 

declarative memory equations (Anderson, 2007). In the 
ACT-R framework, each item that is learned is assigned an 
activation value. Activation is highest at the moment an 
item is encountered and then decays as a function of time. 
The activation of an item at any point in time can be 
computed using the following equation: 

 𝐴!(𝑡)   =    (𝑡 − 𝑡!)!!!
!

!!!

 Eq. 1 

According to this equation, the activation of item i at time 
point t depends on all previous time points at which item i 
has been encountered. After each previous encounter j the 
activation associated with that encounter decays with dj, 
which translates to a smaller contribution to the current 

activation if encounter j has occurred long before time point 
t. The rate with which the activation decays after each 
encounter is calculated as follows: 

 𝑑!"   =   𝑐𝑒!!(!!)   +   𝛼! Eq. 2 
In this equation, c is the decay scale parameter that 

determines the relative contribution of the activation 
component. Alpha represents the decay intercept, which 
represents a minimum decay value (and will be used as the 
decay value for the first encounter). This equation has been 
developed by Pavlik and Anderson (2008) to deal with the 
spacing effect. In the ACT-R framework, an activation 
value can be directly converted to an estimated response 
time by scaling the activation and adding a fixed time that 
accounts for non-memory related processes. The following 
equation is used to convert the activation of item i at time 
point t to an estimated reaction time: 

 𝑅𝑇!(𝑡)   =   𝐹𝑒!!!(!) +   fixed  time Eq. 3 
Pavlik and Anderson (2003, 2005, 2008) have shown that 

the three equations outlined here can be used to fit a wide 
range of data from learning-related experiments and can 
account for additional benefits gained through the spacing 
effect. The system has not only been used to describe 
collected data but also to devise a system that predicts, in 
real-time, the order in which items should be repeated to 
yield optimal retention. More recently, Van Rijn and 
colleagues (2009) and Nijboer (2011) have developed the 
system further and showed that a scheduling algorithm that 
compares observed with predicted reaction times (derived 
from an item's estimated activation) leads to even better 
learning than the Pavlik and Anderson (2008) model. The 
same algorithm is used in this study and a graphical 
representation of the procedure is depicted in Figure 1. 

 

 
 

Figure 1: A graphical representation of how the model 
determines the order in which to repeat old and present new 
items. 
 

The algorithm selects the order in which items are 
presented to the learner dynamically and adjusts the order of 
repetitions based on the learner's behavior. This is done as 
follows: The model simulates the activation of all items that 
have already been encountered n seconds from now using 
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the equations described above. If n seconds from now, the 
activation of any item is below the retrieval threshold, that 
item will be presented next (because this indicates that the 
item is about to be). If no item is below the threshold, a new 
item is presented as long as novel items are still available. 
Otherwise, the item with the lowest activation n seconds 
from now is presented. At the time the selected item is 
presented, the model uses the estimated activation of the 
item in the learner's memory to compute the estimated 
reaction time (see Eq. 3). The item's alpha parameter is 
updated by comparing the estimated reaction time with the 
observed reaction time. If the estimated reaction time was 
too slow, this indicates that the estimated activation was too 
low. That, in turn, indicates that the decay value for the 
previous encounter was estimated to be too high. To 
compensate for this discrepancy, the alpha parameter for the 
given item is adjusted in a step-wise procedure to improve 
the model's estimate on the following trial (see Nijboer 
(2011) for details). After the parameter has been updated, 
the model checks whether the learning session should 
continue and then either stops or starts the next repetition. 
The mechanism is depicted graphically in Figure 1. 

Procedure 
Each person participated in the study for three sessions on 

three days, each session spaced one week apart. Within each 
session, there were two blocks. Each block was made up of 
a 20-minute study session, a five-minute distraction task, 
and a test of the studied material that took about five more 
minutes. At the beginning of the first session, each 
participant also completed a short questionnaire regarding 
demographic information (age, gender, nationality, and 
language skills). The five-minute distraction was a simple 
variation of the puzzle game Tetris which participants 
played until they were automatically re-directed to the test 
that concluded each block. 

During a study block, novel items were presented on 
study trials and subsequent repetitions were presented on 
test trials. On a study trial, participants saw both the cue 
and the correct response and had to type in the correct 
response to proceed. On a test trial, participants only saw 
the cue and had to type in the correct response. Feedback 
was provided in both trial types and lasted 0.6 and 4 seconds 
for correct and incorrect answers, respectively. The 
feedback always resembled a study trial and displayed both 
the cue and the correct response. Jang, Wixted, Pecher, 
Zeelenberg, & Huber (2012) have shown that for non-
retrievable items, an additional study trial is very effective 
because participants do not benefit from the testing effect 
(but unsuccessful retrieval attempts can still enhance 
learning (see Kornell, Hays, & Bjork, 2009). Furthermore, 
they showed that four-second study trials yield the highest 
benefit. During the test at the end of each block, participants 
were provided with a list of all possible items and could 
provide their responses in any order they preferred. 

Material 
For each block, a list of 25 items was compiled. The lists 

of items were identical for all participants but during each 
study block, the model randomized the order in which items 
were presented based on their participant numbers. There 
were four types of material that were studied by each 
participant: 

Vocabulary. There were 75 Swahili-English word pairs 
that were taken from Van den Broek, Segers, Takashima, & 
Verhoeven (2014). Swahili-English word pairs are common 
stimuli in vocabulary learning (e.g. Carpenter, Pashler, 
Wixted, & Vul, 2008; Pyc & Rawson, 2010; Van den Broek 
et al., 2014) because most university students do not have 
any prior knowledge. 

Flags. A list of 25 items was compiled from Wikipedia's 
list of sovereign states. The authors strived to pick the flags 
of countries that were not likely to be known by the 
participants, using their own familiarity with the countries' 
flags and a pilot study as a benchmark. 

City Locations. A list of 25 items was compiled by 
searching for smallish cities on Google Maps, making sure 
the cities are more or less evenly spaced across the 
continental United States of America. Cities were picked so 
their names are unique, not too difficult to spell, and do not 
contain information about their geographical location.  

Bio-Psychology Facts. A list of 25 bio-psychology facts 
was compiled from the Glossary in Kalat (2012). The facts 
were chosen so that the answer would always be a single 
word and that there is some variations in how difficult the 
words are to spell. 

Participants 
Of the 76 first-year psychology students from the 

participant pool of the University of Groningen that signed 
up for this study, 71 completed all three sessions and 70 
fulfilled the minimum requirement of having seen at least 
10 unique items in each study block. It was assumed that if 
the participant was not able to perform well enough to be 
presented with at least 10 unique items within a 20-minute 
study block, there would likely be a problem that was 
beyond them being a poor learner so their data was 
dismissed. Participants were also removed when they 
answered less than 25% of the items they had seen during 
the study block correctly on the subsequent test, which 
applied to 3 participants. Of the remaining 67 participants, 
50 were female and the median age was 20 (SDage = 1.73; 
rangeage = [17; 26]). No one indicated familiarity with 
Swahili, 35.8% were Dutch, and 52.2% were German. All 
participants indicated to be fluent in English and gave 
informed consent. 

Results 
Figure 2 summarizes the performance on the final test that 

concluded each block. The black bars in the plot are 
traditional box plots and the white dots highlight the group's 
median. The colored areas are scaled density plots that 
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depict the distribution of each group's values. The data 
suggest that performance was very high overall. Especially 
in the three vocabulary sessions, performance was very high 
for most participants with a little more variation in the other 
blocks. The city location block (CI) seems to have been the 
most difficult followed by the bio-psychology fact block 
(BIO). The overall excellent performance suggests that 
participants actively engaged with the material during the 
study session, which makes us confident that the alpha 
parameters that were obtained during the study sessions 
contain meaningful information about the participants' 
engagement with and acquisition of the studied material. 

 
Figure 2: Performance on the final test across the six blocks. 
SW1 and FL were tested in the first session, SW2 and CI in 
the second session, and SW3 and BIO in the third session. 
The sessions were spaced one week apart. 
 

As described in the sub-section The Model, each item that 
each participant studied is assigned one alpha value. Each 
item starts with an alpha value of 0.3 but then the alpha 
value is adjusted on each repetition of trial, depending on 
how the participant responds to the item and how well that 
response matches up with the model's prediction. To address 
the research question of whether the estimated rate of 
forgetting is stable (1) over time and (2) over materials, we 
looked at the variation in alpha values across time and 
materials. For this analysis, the alpha values of items that 
have been presented at least three times have been included. 
That is, each participant contributed multiple alpha values 
and the exact number depended on how many items that 
participant encountered at least three times within each 
block. 

For the analysis, the alpha values were log-transformed to 
satisfy assumptions of homoscedasticity and normality. The 
aim of the analysis was to check whether alpha scores 
differed across time and materials and whether both factors 
influenced each other in their effect on the alpha values. To 
test this, we used linear mixed-effects model regression with 
dummy coding. The mixed-effects model allows accounting 
for the interdependency between observations due to by-
subject and by-item variation. Three variables were included 
in the model to test our research question: The first variable 
coded the session (that is, the day) on which the blocks were 
completed. This allowed us to check whether there is any 
significant variation over time across all blocks. The second 
variable was coded 0 for blocks in which participants 
studied Swahili words and 1 for those in which non-Swahili 
material was studied. This allowed us to directly compare 
the differences between multiple blocks of learning Swahili 

to non-Swahili blocks. The third dummy was coded -0.5 for 
the flags block (FL), 0.5 for the city location block (CI), and 
0 for all other blocks. This allows us to compare the 
individual blocks (that is, types of material) in more detail. 
The results of the analysis are shown in Table 1. 

 
Table 1: Results of the linear mixed-effects regression.  

 beta SE df | t | p 
intercept -1.394 0.040 112 34.38 <0.001 
session -0.036 0.028 73 1.30 0.198 
SW vs. ¬SW 0.182 0.011 9506 16.50 <0.001 
FL vs. CI 0.364 0.013 9457 27.87 <0.001 
session *  
SW v. ¬SW 

-0.051 0.028 82 1.81 0.074 

 
The alpha scores do not significantly differ between 

sessions (t(73)=1.3, p=0.198). However, the contrasts 
between the Swahili and non-Swahili blocks and between 
the flags and city location blocks significantly influence the 
alpha values (t(9506)=16.5, p<0.001; t(9457)=27.87, 
p<0.001, respectively). More specifically, participants had 
smaller alpha values in the Swahili blocks compared to the 
flag and city location blocks (a decrease of 0.049) indicating 
a faster forgetting rate for the latter two blocks. This effect 
was stronger for the city location block, which is suggested 
by the positive coefficient of the flags vs. city locations 
contrast. Specifically, the forgetting rate increases by 0.109 
in the city compared to the flags block. The interaction 
between the sessions and the contrast Swahili vs. non-
Swahili is not significant (t(82)=1.81, p=0.074). In other 
words, the increase of the forgetting rate in performing the 
flag or city task compared to the Swahili task is independent 
of when (that is, in which session) one performs the task. 

While the regression analysis examined overall effects of 
difference in alpha values, it might also be informative to 
take a closer look at the development of estimated alpha 
values throughout the course of a study session. Figure 3 
shows how the alpha values for each item change as a 
function of time. The items are color-coded (the legend is 
shown at the top of the graph) and it can be seen that each 
item has an alpha value of 0.3 when it is first introduced. On 
each subsequent repetition, the alpha value is adjusted and 
the magnitude of the change depends on the discrepancy 
between the estimated and the observed reaction time. The 
data shown in Figure 3 come from a very good participant 
so that many items end up with an alpha value lower than 
the default they started with. It can be seen, however, that 
there are substantial differences in alpha values within this 
participant, indicating that some items were more difficult to 
learn than others. The peak and frequent rehearsal of the 
25th item is particularly obvious. This pattern was likely 
caused by a series of incorrect responses, which led the 
model to believe that the item was not learned yet, in 
response to which the alpha was corrected upwards step-by-
step. The higher alpha than resulted in a more frequent 
rehearsal (see Figure 1). The plot also makes clear that the 
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model does a good job of interleaving items that were 
learned early in the session with those learned later on.  

 
Figure 3: Development of the alpha values for each item for 
one participant in one block as a function of time. 

Discussion 
In this study, we investigated the stability of individual 

rate of forgetting parameters in a model of optimal fact 
learning. The emphasis is on scrutinizing the stability of the 
parameter values across time and across different materials. 
Knowing more about the circumstances under which a 
learner's estimated rate of forgetting is stable in time and 
across materials will enable us to further develop the model 
by carrying over what we learned about the participant in 
one learning session to the next. 

The results of the analysis demonstrate that the estimated 
rates of forgetting do not differ significantly over time. 
There is a difference in estimated rates of forgetting, 
however, when different types of material are studied. 
Given the non-significant interaction between time point of 
study and type of material, differences between materials 
seem to be independent of time. 

When looking at the data of the performance on the final 
test depicted in Figure 2, one can see that there was a clear 
ceiling effect. The effect is especially pronounced in the 
three Swahili blocks and the block in which participants 
learned flags. This might be considered to be an issue 
because it would facilitate the stability of results within 
those Swahili-learning blocks. It should be noted, however, 
that by using the parameter values that were estimated 
throughout the learning session instead of the results of the 
learning session (test performance), one gets a much more 
fine-grained view on the differences between conditions. 
There is much more variation in estimated rates of 
forgetting than the corresponding results on the test suggest. 
This conclusion is further supported by the fact that there 
was no significant difference across the three sessions (see 
Table 1) even though the comparison did include the blocks 
for which final performance was not at ceiling. In addition 
to that, using the estimated rates of forgetting for each item 
from each block can also serve as a diagnostic tool to get a 
better idea of the inner mechanics of the model and detect 
ways in which the model might not perform optimally and 

why. By plotting the development of the parameters over 
time for a single participant in one of the six blocks (see 
Figure 3) can indicate problems that would not be apparent 
from measures taken at the end of a learning session. 
Therefore, we think an analysis based on the estimated 
parameter values is much more interesting and insightful 
than one based on the performance on the final test. 

As discussed in the Introduction, the model does not 
currently preserve estimated parameter values across 
multiple study sessions. That is, when a learner uses the 
model to study a number of Swahili-English word-pairs and 
then returns to the system the day after and starts another 
study session, the model will revert back to the default 
parameter values at the beginning of the second session. 
This seems both wasteful and inefficient. One would think 
that by observing the learner's behavior in the first session 
and comparing it to the model's estimates (which are based 
on the current parameter values), we have learned 
something about that particular learner. And updating the 
internal parameters of the model dynamically to capture this 
learning-about-the-learner is an essential part of the model. 
Therefore, it would be a logical next step to determine a 
way in which we could preserve what we have learned 
about the learner in the first session. That way, we can give 
the model a head start at the beginning of the second session 
instead of forcing the model to start from scratch.  

The data reported here show that there is substantial 
stability of parameter values over time, especially if the 
same type of material is studied: Swahili vocabulary. We 
reckon it is reasonable to assume that these findings 
generalize to languages other than Swahili. It would be 
interesting, however, to test whether a transfer from Swahili 
to, for example, French is better than the transfer from 
Swahili to bio-psychology. A challenge for the future will 
be to determine the optimal transfer of parameter values 
between sessions that do not deal with the same type of 
material. In this study, we made an effort to devise material 
that is very different from each other (word-pairs (Swahili), 
visual information (flags), topographical information (city 
locations), and factual knowledge (bio-psychology)) but this 
leaves open the question of how similar material has to be to 
still allow smooth transfer of suitable parameter values. 

Conclusion 
The data presented here suggest that participants' rate of 

forgetting varies between materials but is relatively stable 
within a domain over time. This indicates that rate of 
forgetting is not purely a feature of a learner's memory 
system but also influenced by the type of material studied. If 
the same material is studied, though, the data suggest that 
the rate of forgetting is stable over time. Therefore, we 
should be able to improve the model further by carrying 
over what we learned about a learner from one session to the 
next, given that the sessions deal with the same type of 
material. 
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