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Abstract 

The nature of capacity limits within human visual working 

memory (VWM) remains the subject of controversy: while 

the capacity-as-objects account predicts that what loads 

VWM capacity is solely the number of objects maintained, 

irrespectively of the number of visual features that need to be 

stored for each object, the capacity-as-features account 

predicts that also (or – primarily) the total number of features 

maintained in VWM loads its capacity (and leads to decreased 

performance). We present novel simulations of a VWM task, 

using our existing, oscillatory computational model that 

describes the binding of features into objects as resulting from 

the proper synchronization and desynchronization of rhythm-

ical changes in neuronal activity. The model predicted (in line 

with wide evidence) that VWM performance decreases with 

the increasing number of objects, but also decreases (although 

not as sharply as predicted by the capacity-as-features 

account) as a function of increasing number of features. The 

model attempts to explain what precise characteristics of 

oscillatory dynamics stand behind such two sources of VWM 

limitation. However, the complete pattern of the model’s 

predictions remains yet to be examined empirically. 

Introduction 

Working memory (WM) is a neurocognitive mechanism 
responsible for the active maintenance of information as 
well as its manipulation for the purpose of the current task. 
Although early research on WM was dominated by verbal 
paradigms and models, for the last 15 years some 
researchers (e.g., Luck & Vogel, 1997) have pointed at the 
crucial role of, relatively simpler than verbal WM, visual 
working memory (VWM; also called robust visual short-
term memory store) in subserving functions of temporary 
storage, binding, and manipulation of information. VWM 
operates on visuospatial representations, usually called 
objects, that are widely thought to consist of bindings of the 
corresponding visuospatial features (like shape, color, 
orientation, size, or location). Although simple, during the 
evolution of the human mind this mechanism, primarily 
responsible for the continuity of perception as well as the 
spatial orientation, most probably has been adapted in 

service of more complex cognition, including the construc-
tion of abstract representations (see Cowan et al., 2011), 
encoding and processing relations (Clevenger & Hummel, 
2014), as well as running mental models and simulations 
(hypothetical models of the world, in abstraction from its 
actual state; Johnson-Laird, 2006). This hypothesis is 
supported by the fact that WM (and VWM in particular) is 
the strongest known predictor of fluid intelligence – the 
crucial ability to solve new, complex problems, that is 
central to human cognitive ability (McGrew, 2009). It has 
been shown that VWM capacity, measured by the number 
of recalled or recognized visual representations, explains up 
to half of variance in fluid intelligence (Fukuda, Vogel, 
Mayr, Awh, 2010), what suggests a key role of VWM in 
reasoning, but also in other types of complex cognitive pro-
cessing, like problem solving, spatial navigation, language 
use, complex learning, and decision making (i.e., those 
strongly correlated with fluid intelligence). 

Research on VWM pertained to such issues as the role of 
attentional selection/filtering in VWM, the profound influ-
ence of global organization of perceptual scene (statistical 
regularity) on the number of objects that can be retrieved 
from VWM, as well as the interaction of VWM and long-
term memory (for a review see Brady, Konkle, & Alvarez, 
2011). Also, a lot is known about neurobiological basis of 
VWM, including localization of VWM subsystems respons-
ible for maintaining object features (within superior parietal 
lobule) versus binding complete objects out of those 
features (within inferior parietal lobule; Xu & Chun, 2009), 
or the relation between individual capacity observed in 
people and the patterns of activity of these subsystems 
(Todd & Marois, 2004). 

Indeed, one of the most important features of VWM is 
that its capacity is heavily limited and inter-individually 
varied. Usually, the average capacity of VWM equals four 
objects or even less, and in the population it can vary from 
two up to six items (Cowan, 2001). However, the major 
controversy in research on VWM capacity is what exactly is 
its “currency”, that is, which aspect of maintained infor-
mation limits the number of objects stored and retrieved. 
Early theories proposed that VWM is limited in its capacity 
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for storing separate objects, irrespectively of the complexity 
of particular objects (Luck & Vogel, 1997; for a review see 
Fukuda, Awh, & Vogel, 2010). The evidence for this stance 
came from studies in which increasing the number of 
presented objects drastically decreased performance (usually 
measured with the so-called change detection paradigm that 
requires remembering one visual array, as well as its later 
comparison with either the identical array or an array in 
which one item has been changed; Cowan, 2001; Luck & 
Vogel, 1997). At the same time, performance seemed to be 
robust to increasing number of visual features that had to be 
encoded and processed (e.g., people detected the change for 
several simple objects, like squares, that differed only in 
color with a comparable accuracy as they detected the 
multiple-feature objects).  

However, recently many scholars (e.g., Bays, Catalao, & 
Husain, 2009; Bays & Husain, 2008; for a review see 
Brady, Konkle, & Alvarez, 2011) have objected this 
capacity-as-objects account, suggesting that in fact what 
constrains VWM is the total amount of information in a 
perceptual scene, and people remember a larger number of 
perceptually simpler objects than of complex, multiple-
feature objects (Alvarez & Cavanagh, 2004). According to 
the capacity-as-features account, the changes imposed in 
the change detection paradigm are too substantial (e.g., a 
change from red to blue) in order to reveal the influence of 
VWM load on the precision of maintained representations, 
which however does appear when participants are asked to 
reproduce exact values of remembered visual features (i.e., 
“was it light red, dark red, or pink?”). The methodological 
and interpretational issues concerning new paradigms for 
VWM capacity measurement remain controversial (for 
opposing views see Brady et al., 2011, and Fukuda et al., 
2010). However, a recent study (Oberauer & Eichenberger, 
2013) has shown that even in the standard change detection 
paradigm (but probably under better experimental control 
than in previous studies), the VWM performance gradually 
dropped when three objects were presented with one, three, 
or as much as four or six visual features (picked up from the 
following features: color, shape, orientation, size, the 
thickness of bars inside, and the frequency of stripes inside. 

Also other accounts exist, for example a recent view 
(Clevenger & Hummel, 2014) which suggested that the 
“objects” of VWM are neither complete objects or feature-
object bindings, but the pairs of objects. According to this 
capacity-as-paired-relations account, the capacity of VWM 
is constrained by the number of representations of pairs of 
objects, bound with all spatial relations between these 
objects, and encoded in parallel. 

Apart from behavioral experimentation, another way to 
understand the nature of VWM is to develop (and test) 
process models of VWM that show in simulations which 
stages or characteristics of visual information processing are 
the most vulnerable to WM load, and why VWM capacity 
has to be limited (because of certain processing demands). 
The most influential line of such models consists of 
oscillatory models (e.g., Horn & Usher, 1992; Raffone & 
Wolters, 2001; Usher, Cohen, Haarmann, & Horn, 2001; 
Vogel, Woodman, & Luck, 2001) that describe the binding 
of features into objects as resulting from the proper 

synchronization and desynchronization of rhythmical 
changes in neuronal activity, called brain oscillations. 
Binding of features into an object is made with synchronous 
oscillations, whereas the maintenance of separable objects – 
with asynchronous oscillations. Features of the same item 
fire in synchrony, whereas two features of different objects 
are active out of phase. Due to this mechanism, the system 
is able to reconstruct the object from its features. Such an 
oscillatory nature of VWM has recently been demonstrated 
in both primates (e.g., Siegel, Ward, & Miller, 2009) and 
humans (Kaminski, Brzezicka, & Wrobel, 2011).  

The goal of the present study is to analyze how the 
modified version of one such model of VWM, originally 
proposed by Chuderski, Andrelczyk, and Smolen (2013), 
handles different numbers of objects and features in its 
memory, and to identify what characteristics of a dynamic, 
oscillatory system implemented in the model may be 
responsible for its limited capacity to store either objects or 
features, or some product of objects and features. We start 
with a concise description of the above mentioned model. 

An oscillatory computational model 

 of visual working memory 

The main part of the model consists of a buffer, which con-
tains a certain number of elements. Each element roughly 
approximates a neuronal assembly representing one specific 
feature of the world. Like in many other models (e.g., Horn 
& Usher, 1992; Raffone & Wolters, 2001), a level of 
internal activation xi is assigned to each element i. The 
following equation defines the change in the level of 
activation x of ith element from time t to time t+1: 

 
 

 
 
 
 
 
 
 
 
 

This equation consists of five components. The first 

component is simply the activity of element i in the 

preceding cycle. The second component represents the self-

recurrent increase of the activation of element i, reflecting 

the reverberatory nature of neuronal assemblies constituting 

WM. The output of i is fed back to i in order to increase i’s 

activity. The parameter ω impacts the frequency of 

oscillations given a particular time scale, but has no 

significant influence on the model’s capacity. The output of 

the element i in time t has been defined using a commonly 

applied sigmoid function of xi. 
The third component of the formula represents the 

coactivation of i by the mean activity of elements j that fire 

in close proximity with i, that is, whose activity xj falls 

within [xi – δ, xi + δ]. Such a range denotes the activity 

horizon in which all oscillating elements are treated as 

)(

1
1

||

||
5.0

1

nxx

xx

x

xx

itkt

itkt

itjt

itjt

it

xx

xx

itit

e

e

e
εβ

α
ω

δ

δ

+−−

−+

−
+

+=

∑

∑

>−

≤−
−

+

167



forming one binding that integrates features into a particular 

object, an object with its context, or a role-argument pair. 

This component accounts for the known fact that neurons 

that all fire in synchrony with a given neuron more strongly 

influence its potential as well as synaptic connections than 

when they fire out of phase. The less active element j is, the 

less it can coactivate i. Moderate values of δ have no 

negative influence on the model’s capacity, unless δ is either 

too small (δ < 0.01) or too large (δ > 0.1), that is, when the 

bound elements are either highly prone to random changes 

in activation (i.e., they easily fall apart) or there is no place 

in the activity space to add new distinct items (i.e., xi + δ 

approaches x of another, more activated item), respectively. 

Parameter α regulates the amount of coactivation that is 

spread from j to i. Initial computational simulations showed 

that it has a limited influence on the model’s capacity, as its 

low value (α = 0.0004) used in the present simulation 

yielded quite similar capacity (5.1 two-element items) as 

(5.5 items) its optimal value (α = 0.0012; no further gains in 

capacity were noted). 

The fourth component implements the most important 

mechanism of the model: lateral inhibition exerted by the 

bindings that are treated as encoding distinct representations 

from a representation encoded by elements i and j; that is, 

the elements denoted by k, which fall outside the range [xi – 

δ, xi + δ]. The less active element k is, the less it inhibits i. 

The larger the activation of an inhibiting binding, the more 

it suppresses element i. Parameter β controls the strength of 

that inhibition. Previous simulations (see Chuderski et al., 

2013) demonstrated that β is the main factor controlling the 

capacity of our oscillatory model. An increase in β 

negatively impacted available capacity, as higher values of 

β made more elements to fall out from VWM (drop 

permanently below the threshold arbitrarily set to .2).  

The last component consists of the noise ε, drawn from 

the normal distribution with the mean equal to zero, and the 

variance dependent on the parameter n. Large noise 

(n>0.00005) negatively influences capacity, as oscillations 

of elements become more random; however, its small values 

(n<0.00001) affect the capacity only slightly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1: The model dynamics under increased VWM load. 

When the output of element i surpasses unity (this reflects 

the strongest possible firing of a neuronal group), the 

parameter ω for that element is temporarily reversed 

(reflecting the well-known phenomenon of neuronal hyper-

polarization), causing this element to fall quickly below the 

threshold of activation (0.2), what represents the mechanism 

of refraction (afterhyperpolarization). When xi becomes 

smaller than the threshold, ω value is reset to a previous 

positive value, and the element starts building up its 

activation above the base level. However, in certain cases 

the inhibition signals may be so strong that the activation of 

i is too slow, and just after ω is reversed the activation of i 

decreases permanently below the threshold – the minimal 

activation necessary to stay in WM. If this happens, element 

i falls out of WM, meaning that it can no longer impact 

other elements in WM, nor can be recalled (but it may 

potentially be encoded in the active part of long-term 

memory). This latter mechanism underlies the function of 

emptying WM in order to encode incoming information. 
Generally, the number of elements which can be bound 

together within one synchronic oscillation is not limited. 
However, in Chuderski et al. (2013) only pairs of syn-
chronized elements (an object identity and one its feature) 
were added to the model’s VWM. So, how the model works 
when an object is composed from more visual features?  

Workings of the oscillatory model 

The aim of the model is to maintain as many separate oscil-
lations as necessary, for a given time interval. Two elements 
making one oscillating pair (e.g., an object and the infor-
mation about its a shape) are added to the buffer in the same 
time. The pair which is added as the first one is added with a 
random level of activation. Subsequent pairs can be added 
when activation of all other pairs is less than the value of 1 
– 4 × δ, and those subsequent pairs are added at a level of x 
= xmax + δ + (1 – xmax) / 2, where xmax denotes the x value of 
the most active pair. So, this mechanism checks if there is 
enough place in the activation space for new elements, and 
grants that at least on entering the buffer the new pairs will 
be sufficiently distinctive from all pairs already maintained.  
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In the model, the capacity limit arises because when the 
total amount of inhibition in the model is very large, it 
overcomes the results of activation, and the elements with 
the lowest activation levels start falling out of the buffer. If 
one element from the pair falls out, then the coactivation is 
no longer possible, and the chance that the other element 
from that pair would also fall out drastically increases. 
However, a certain amount of inhibition is necessary, 
because it secures that oscillations will evenly occupy a 
respective time interval, helping to separate them. So, the 
values of β reflect the trade-off between low inhibition 
(many objects can be maintained, but their bindings more 
easily fall apart) and high inhibition (less objects can be 
maintained, but their bindings are more robust). 

Simulating the effects of objects and features’ 

load on visual working memory capacity 

Below, we report simulations in which, apart from the 
number of objects presented to our oscillatory model in the 
(simulated) change detection task, we varied the number of 
features per object. When the arrays in the task changed, 
than a random number of features were altered in the 
highlighted target (i.e., from one feature to the maximum 
number of features possible). Thus, the model had to main-
tain in its VWM all features of an object, because if it 
encoded only some features, and the changed feature was 
among remaining ones (was not encoded), the model would 
commit an error of omission. We compared the results of 
our simulations to existing empirical data. The classic study 
(Vogel et al., 2001; Experiments 11 & 14) yielded a large 
effect on the change detection accuracy of the number of 
objects that were required to maintain (either 2 or 4 objects), 
but no effect of the number of features per object (1 or 4). In 
contrast, Oberauer and Eichenberger (2013) used eight 
feature values per each featural dimension, and observed a 
significant drop in participants’ performance when the 
number of featural dimension increased from one to four. 
So, can our oscillatory model replicate this data (see Fig.3)? 
 We simulated the variant of the change detection task 
similar to the variant applied by Oberauer and Eichenberger, 
as their results seem to be the most reliable data available. 
However, unlike their use of only sets of three objects, we 
manipulated the number of presented objects at three levels: 
two, three, and four, in order to observe whether any 
interaction of the numbers of objects and features occurs. 
First, the model was presented with symbolic descriptions 
(no perceptual module was modeled) of objects that 
contained the numerical identity of an object (e.g., Object1) 
plus one, two, or four values of distinct features. The task of 
the model was to encode the objects in its oscillatory VWM, 
and to maintain these objects until the description of the 
second array arrived. This array could be identical (in half 
trials) or could differ in a random number of features for 
exactly one object indicated (in the remaining half of trials). 
Finally, the model decided if the target object matched the 
corresponding contents of VWM, or differed. The accuracy 
of the model’s responses was recorded. 

In the following simulations, we used exactly the values 
of parameters fitted to data in the previous simulation 

(Chuderski et al., 2013). That is, we set parameter α to a 
value of .0004, parameter ω was drawn from the normal 
distribution with µ = 0.05, and σ = 0.005, and parameter δ 
was set to δ = .05. The only parameter we analyzed, and 
fitted in the present study, was the value of β (in the original 
paper the mean value of β = .0026 was used).  

Simulation results 

First, we analyzed how parameter β determines the overall 

accuracy in the current version of the model. We simulated 

450 trials in the change detection task per each reasonable 

value of β (.0010, .0015, .0020, .0025, and .0030), using 

only the set sizes of three objects, as well as applying the 

number of features equaling one, two, or four (i.e., the exact 

values used by Oberauer & Eichenberger in their Exp. 3). 

The results, shown in Fig. 2, indicated that a moderate level 

of β between .0015 and .0020 was optimal. At either higher 

or lower values of  β accuracy dropped substantially. The 

probable cause of the fact that too low inhibition deterio-

rated VWM maintenance results from stochastic effects that 

pertain to the activations of oscillated elements. When the 

model tried to maintain many bindings, low inhibition was 

not able to optimally separate the consecutive oscillations, 

the activations within one binding (object) might vary more 

than was the distance (in the activation space) to subsequent 

bindings, and some elements might fall into the attractor of 

another binding. Obviously, a high level of inhibition was 

not effective either: bindings mutually inhibited themselves 

so strongly that elements that entered the afterhyperpo-

larization phase were easily eliminated from the model.  

Thus, in the following simulations we adopted the optimal 

levels of β, picking it up on random from [.0014 – .0021] 

range. The simulation contained set sizes of two, three, and 

four objects, which could be the bindings of two elements 

(an object’s numerical identity + the value of one its 

feature), three elements (an object + two features), and five 

ones (an object + four features). Thus, for each set size we 

calculated three data points (i.e., nine data points were 

obtained with fitting only one parameter). In total, 1800 

trials were simulated per each data point. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Fig. 2. The average accuracy of the model in the three-
object change detection task under varying levels of β. 
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Not surprisingly, the model replicated the effect of the 
number of to-be-remembered objects on accuracy, overall 
matching the usual pattern of empirical data. Regarding the 
number of features, the results of set size equaling three 
nicely matched data of Oberauer and Eichenberger (2013): 
the model aptly mimicked the fact that accuracy decreased 
when the number of features increased, F = 92.02, p < .001, 
however the simulated decrease (19%) was slightly larger 
than the one observed by Oberauer and Eichenberger (10%).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. Upper panel: data from Vogel et al. (2001) for set 
sizes two and four, and from Oberauer and Eichenberger  
(2013) for set size three. Bottom panel: data simulated by 
the oscillatory model (black line = mean from all set sizes). 
Bars = 95% confidence intervals.  
 
For set sizes two and four, we could compare simulated data 
with the results of Vogel et al., who used exactly such set 
sizes. For set size four, our data diverged from their results, 
because there was a similar drop in accuracy as a function of 
the number of features, F = 6.57, p = .001, as was in the 
three-objects condition. The same occurred when only two 
objects were presented to the model, F = 39.26, p < .001. 
The simulated data as well as data of Vogel et al., and 
Oberauer and Eichenberger, are presented in Fig. 3. What is 
apparent in Vogel et al., data is the huge ceiling effect, and 

only marginal drop in accuracy from set size two to four. In 
consequence, the null effect of the number of features in 
Vogel et al. for some unknown reason might have resulted 
from their ceiling effect. In contrast, simulated data more 
closely matched Oberauer and Eichenberger data, who 
observed much lower accuracy for set size three than did 
Vogel et al. for set size four (and even than their set size 
six). Thus, the prediction of Oberauer and Eichenberger that 
the number of features maintained loads on WM and affects 
accuracy, congruent with our simulation results, seems to be 
more realistic. 
 In the model, both the number of objects and features 
affected accuracy because increasing each number increased 
the total amount of lateral inhibition. However, the impact 
of additional objects was stronger than the impact of 
features (i.e., it was easier to maintain two two-feature 
objects than four one-feature objects). The likely cause of 
such an effect consists of the fact that increasing the number 
of features increased both inhibition (decreasing overall 
capacity) and – to some extent – coactivation (increasing 
capacity). Thus, the negative effect of additional features 
was partially attenuated by more robust representation of 
each object. Increasing the number of objects increased only 
inhibition, but not coactivation, so it impact was stronger. 

Discussion 

Using a novel oscillatory model, which aimed to describe 
the functioning of human VWM, in line with the capacity-
as-objects account we showed that the major limitation of 
VWM in our simulations resulted from the number of to-be-
maintained objects. However, we also demonstrated that, 
apart from the number of objects, also the number of visual 
features maintained in VWM may be limited. When the 
number of features became increased (especially, to four 
features), the system, being close to the maximum overall 
amount of lateral inhibition it could handle, could not 
maintain additional features with the same accuracy as one 
feature. This mechanism seems to explain well the data 
obtained within the capacity-as-features account (Oberauer 
& Eichenberger, 2013; Cowan et al., 2013).  
 Although the present model is limited by both the number 
of objects and the number of features it can effectively 
maintain, the model does not support the explanations of 
VWM capacity in terms of the total informational resource 
that is consumed by both the objects and the features (Bays, 
Catalao, & Husain, 2009; Bays & Husain, 2008). First, 
although the drop in accuracy did result from additional 
features, the performance of the model decreased much 
more slowly than did increase the total number of features. 
For example, accuracy for four features stored in the four-
objects-one-feature condition was only 10% higher than 
accuracy in the four-objects-four-features condition, even 
though the total number of features maintained increased 
from 4 to 16 features. This is not in line with predictions of 
the sheer limited-resource account. Additional assumptions 
made to this approach that would explain that the more 
features, the less VWM resource on average is consumed by 
a feature, help only a little. As cogently noted by Oberauer 
and Eichenberger (2013), such add-ons supplementing the 
limited-resource account made it virtually unfalsifable. 
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 However, even though the present model is more 
compatible with those accounts of capacity that postulate 
that its currency are available slots in VWM (one slot = one 
object), but with more features per object the probability 
that surplus features will not be encoded effectively, it 
seems to nicely extend these accounts. Most of existing slot 
models were formulated as pure mathematical formulae that 
yield the probability of the correct change detection as a 
function of the number of objects, the number of features, 
and sometimes some additional parameters (e.g., Cowan et 
al., 2013; Oberauer & Eichenberger, 2013). In contrast, the 
present model is a process (i.e., computational) model that 
not only describes the relation between the characteristics of 
the change detection task and the resulting detection 
accuracy, but also generates the very complex dynamics 
(interpreted at the neural level) underlying the performance 
on this task. For example, the model explains the nature of 
slots in terms of dynamic bindings that interact mutually, 
and are prone to stochastic as well as chaotic effects. 
 To conclude, the presented dynamic model of VWM 
provided the prediction that although the VWM capacity is 
strongly constrained by the number of maintained objects 
(which is a widely observed fact), it is also, though more 
weakly, limited by the number of features per object (the 
factor that so far has not been examined exhaustively, and 
still awaits the comprehensive empirical study). In general, 
the study implies that in cognitive science at least for some 
research problems more can be theoretically understood 
from the development of process models, generating a 
particular phenomenon, than from pure mathematical 
models that only describe such phenomenon. 
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