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Abstract

The concept of device- vs. task-orientation allows to identify
subtasks that are especially prone to errors. Device-oriented
tasks occur whenever a user interface requires additional steps
that do not directly contribute to the users’ goals. They com-
prise, but are not limited to, initialization errors and post-
completion errors (e.g., removing a bank card after having re-
ceived money). The vulnerability of device-oriented tasks is
often counteracted by making them obligatory (e.g., by not
handing out the money before the bank card has been re-
moved), making it even harder to predict where users will have
problems with a given interface without dedicated user tests.
In this paper we show how cognitive modeling can be used
to predict error rates of device-oriented and task-oriented sub-
tasks with respect to a given application logic. The process is
facilitated by exploiting user interface meta information from
model-based user interface development.
Keywords: Human Error; Cognitive Modeling; Model-based
User Interface Development; Memory for Goals; ACT-R

Introduction
Our everyday life is dominated by routine activities, i.e., well-
learned, rule-based tasks like making coffee or buying a train
ticket. And even though we have performed them hundreds
of times, we are still making occasional errors during their
execution (Reason, 1990). While the base error rate for rou-
tine tasks is low, some procedural steps are more problematic
than others. The best-known examples are post-completion
errors, when users fail to perform an additional step in a pro-
cedure after they have already reached their main goal (Byrne
& Davis, 2006; Trafton, Altmann, & Ratwani, 2011; Rat-
wani & Trafton, 2011). This concept can be expanded to
any step that doesn’t directly contribute to the users’ goals,
but is imposed on them by the system and has been coined
device-orientation (Ament, Blandford, & Cox, 2009; Gray,
2000). The opposite, i.e., steps that are noticeably related to
the users’ goals, is called task-orientation in contrast.

Jef Raskin popularized the complaint that “a dialog box
that has no choices (e.g., you can only press ENTER before
you can do any other task) has a productivity of 0” (Raskin,
1997), because the user cannot transfer any knowledge to the
system using it. Raskin’s information theoretic concept fits
nicely with our understanding of device-oriented tasks: they

do not convey any information that is specific to the user’s
current goal.

Even when human interface designers try to avoid device-
oriented tasks in the first place, software or hardware con-
straints do not allow the removal of every single one. As long
as bank cards are used, they need to be placed into some kind
of slot and removed later on. One popular design strategy
in this situation is to make device-oriented tasks obligatory,
i.e., their position in the action sequence is pulled forward
so that the user’s goal cannot be achieved without perform-
ing the device-oriented task. But how does this change affect
error rates?

The objective of this paper is to shed some light on the im-
pact of device-orientation and subtask necessity1 on user er-
rors. We derive a computational user model from the memory
for goals theory (MFG, Altmann & Trafton, 2002) and apply
it to a class of user interfaces (UI) that have been created us-
ing the model-based UI development process (MBUID, Van-
derdonckt, 2008; Calvary et al., 2003). As a by-product of
this process, such interfaces provide meta-information about
their elements (e.g., buttons) that can be used for the creation
of more generic cognitive models (Quade, Halbrügge, Engel-
brecht, Albayrak, & Möller, 2014).

Action Control and Human Error
According to Rasmussen (1983), human action control can
be described on three levels: skill-, rule-, and knowledge-
based behavior. Skill-based behavior on Rasmussen’s lowest
level is generated from highly automated sensory-motor ac-
tions without conscious control. Knowledge-based behavior
on the other hand is characterized by explicit planning and
problem solving in unknown environments. In between the
skill and the knowledge levels is rule-based behavior. While
being goal-directed, rule-based actions do not need explicit
planning or conscious processing of the current goal. The
stream of actions follows stored procedures and rules that
have been developed during earlier encounters or through in-
struction.

1With respect to user tasks, we are using the terms obligatory,
mandatory and necessary synonymously in the course of this paper.
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Interacting with computer systems after having received
some training is predominantly located on Rasmussen’s rule-
based level, with contributions of the skills level to a lesser
degree. We are therefore concentrating our modeling effort
on rule-based behavior. On this this level of action control,
human error is characterized by deviation from the stored pro-
cedure, i.e., either leaving out a step or adding an additional
unnecessary one.

Model Based User Interface Development (MBUID)
The main goals of model-based user interface development
are the reduction of complexity and an increased reusabil-
ity of existing patterns and solutions during UI develop-
ment (Vanderdonckt, 2008). For this purpose, there exist
frameworks and description languages that conform to the
CAMELEON reference framework (Calvary et al., 2003)
for structuring the processes and information of MBUID.
While abstract UI (AUI) models describe UI elements on
a modality-independent level, the more concrete UI mod-
els hold modality-specific information and the final UI mod-
els represent specific implementations for different platforms.
Besides these models there exist conceptual models related to
the domain of the application and the task model for describ-
ing the interaction logic.

A widely used approach for modeling tasks in MBUID
is the Concurrent Task Tree (CTT) notation (Paternò, 1999)
which also allows executing tasks in conjunction with UI
models (Mori, Paternò, & Santoro, 2004) by establishing
mappings between these models. CTT comes with several op-
erators for grouping tasks into hierarchical structures, defin-
ing temporal relationships and for describing information
flow between user, application and tasks. Namely interac-
tion tasks describe tasks that user and application perform to-
gether, while application tasks relate to actions by the system.

By combining these different UI development models, in-
formation about the application becomes available that goes
far beyond what is visible to the user. In the context of this
paper, the task information contained within the UI develop-
ment models is especially interesting, as it corresponds di-
rectly to Rasmussen’s rule-based behavior level.

Experiment
The scarcity (yet pervasiveness) of procedural errors during
routine tasks (Reason, 1990) makes statistical analysis diffi-
cult. Researchers have used secondary tasks (e.g., Byrne &
Davis, 2006; Ruh, Cooper, & Mareschal, 2010) or interrup-
tions (e.g., Li, Blandford, Cairns, & Young, 2008; Altmann,
Trafton, & Hambrick, 2014) to increase error rates. We re-
jected both options for reasons of ecological validity, and
chose repeated measures and a medium sized sample instead.

The experiment focuses on procedural errors during the us-
age of a kitchen assistance system for ambient assisted liv-
ing. The kitchen assistant helps preparing a meal for a given
number of persons with its searchable recipe library, adapted
shopping list generator, and by providing interactive cooking
or baking instructions.

Ambient systems like the one used here are characterized
by interconnecting a multitude of physical devices. We se-
lected among these a personal computer with large touch
screen and a tablet computer for the experiment. To match
the characteristics of each device, we created two versions of
the user interface of the kitchen assistant. The first version
is a tablet-oriented, simple one, optimized for portrait mode,
with larger buttons and fonts, and rather few elements per
screen. The other UI version is more complex, using smaller
buttons and fonts so that more elements fit on the screen.
Some screens of the simple UI are shown side-by-side in the
complex version, thereby reducing the necessity of navigation
between screens. The complex UI targets the large personal
computer and is optimized for landscape mode. Annotated
screenshots of the two UI versions are shown in Figure 1.

Analysis of the UI Development Models
Because we are working with an already existing application,
we cannot freely manipulate whether a UI element and its
related subtask is device- or task-oriented. But we can use
the MBUID models to derive this property from them in a
generalizable way. By analyzing the operators of the task
model and the types of AUI elements it is possible to identify
device- and task-oriented subtasks and make these explicit to
the evaluator or modeler.

On the one hand, task-oriented interaction steps are char-
acterized by interaction on UI elements that are modeled on
the level of the AUI model as FreeInput or Choice. These el-
ements are generally used to provide task-oriented informa-
tion from the user to the application using interaction tasks,
e.g., by using text fields, radio buttons or checkboxes. On the
other hand, device-oriented interaction steps describe actions
which let the dialogue proceed to a further step, e.g., when ex-
ecuting buttons labeled “Next” or “Done”. The abstract type
Command denotes such UI elements on the level of the AUI
model which can be used to trigger application tasks.

In order to identify device-oriented subtasks, the models
have to be checked for interaction tasks that are modeled us-
ing Command elements which then enable application tasks.
The process is visualized in Figure 1. In the case of the
kitchen assistant, device-oriented elements are buttons that
lead to the next screen or modify entries from the ingredi-
ents list. Task-oriented UI elements are buttons for toggling
search attributes and selections in search results lists.

Method
Participants Twenty members of the Technische Univer-
sität Berlin paid participant pool took part in the experiment.
There were 5 men and 15 women, with an age range from 18
to 59 (M=32.3, SD=11.9). As the instructions were given in
German, only fluent German speakers were allowed to take
part.

Materials The experiment was conducted in our fully
equipped lab kitchen. A personal computer with 27” (68.6
cm, landscape mode) touch screen and a 10” (25.7 cm, por-
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Figure 1: Screenshots of the kitchen assistant. Ingredients list of the simple UI on the left, recipe search of the complex UI with
two screens side-by-side on the right. UI element type is indicated by solid arrows, AUI type indicated by dashed arrows.

trait mode) tablet, both placed near the sink, were used to
display the interface of the kitchen assistant. All user actions
were recorded by the computer system. The subjects’ perfor-
mance was additionally recorded on videotape for subsequent
error identification.

Design We applied a four-factor within-subjects design, the
factors being UI version (simple vs. complex), physical de-
vice (screen vs. tablet), device- vs. task-orientation, and
task necessity (non-obligatory vs. oligatory). Every sub-
ject went through all four combinations of UI version and
physical device in randomized order. User tasks were analo-
gously grouped into four blocks of eleven to twelve individual
tasks. Block orders were counterbalanced across participants
as well. We call the combination of the device-orientation and
task necessity factors UI element type in the following. While
device-orientation can be derived from the MBUID models
(see above), task necessity is only implicitly represented in
the assistant’s interaction logic. Mandatory subtasks are re-
lated to all elements that lead to the next screen or unhide
buttons on the current screen, the latter being the case for the
selection of a recipe in the search result list (see Figure 1).

Procedure Every block started with comparatively easy
recipe search tasks, e.g., “search for German main dishes
and select lamb chops”.2 Users would then have to change
the search attributes, e.g., “change the dish from appetizer to
dessert and select baked apples”. The second half of each

2We give English translations of the actual instructions here for
reasons of comprehensibility. The original instructions are available
for download at http://www.tu-berlin.de/?id=135088

block was made of more complex tasks that were spread over
more screens of the interface and/or needed memorizing more
items. The subjects either had to create ingredients lists for a
given number of servings, or had to make shopping lists using
a subset of the ingredients list, e.g., without salt and flour. All
instructions were read to the subjects by the experimenter.
Every individual trial was closed by a simple question the
subjects had to answer to keep them focused on the kitchen
setting, e.g., “how long does the preparation take?” With an
initial training phase and exit questions the whole procedure
took less than an hour.

Results

We identified errors by comparing the observed click se-
quences with optimal ones. Whenever a step of the opti-
mal sequence was missing, we recorded this as an omission.
Unnecessary additional steps performed by the subjects were
analogously recorded as intrusions. A special case of intru-
sions are perseverations, when an action is erroneously re-
peated. The resulting taxonomy follows Ruh et al. (2010)
and is deliberately using phenotypic descriptions instead of
genotypic explanations (in contrast to, e.g., Norman, 1988).

In total, 6359 clicks were observed. 104 (1.6%) of these
were classified as user errors. 56 were omissions, 38 were
intrusions, and 10 were perseveration errors. The persevera-
tion errors were bound to a button for increasing the number
of servings that needed several consecutive presses. As the
video recordings clearly showed that all perseverations were
not caused by the users, but by occasional excesses of UI lag,
they were removed from further analysis.
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Due to the scarcity of errors and the use of repeated mea-
sures, χ2-based significance tests could not be used (Agresti,
2014). The error rates were instead evaluated using a mixed
logit model with subject as random effect (Bates, Maech-
ler, Bolker, & Walker, 2014). They do not vary with de-
vice, UI version, or task necessity (all p > .3). The main
effect of device-orientation points to the expected direction
with device-oriented subtasks showing higher error rates, but
narrowly missed significance (z = −1.82, p = .069). We
found a significant interaction between necessity and device-
orientation (z = 4.07, p < .001). Error rates and 95%-
confidence intervals are given in Figure 2.

Figure 2: Error probabilities for different UI elements.

Cognitive User Model
The theoretical foundation for our model is the memory for
goals theory (MFG, Altmann & Trafton, 2002). The MFG
postulates that goals and subgoals are subject to the character-
istics of human memory traces, in particular time-dependent
and noisy activation, interference, and associative priming.
Lack of activation of a subgoal, possibly connected to little
priming, can cause omissions, while interference with other
subgoals can result in intrusions. While the MFG theory ini-
tially has been validated on the basis of Tower-of-Hanoi ex-
periments, i.e., rather artificial problem-solving tasks in the
laboratory, it has been shown to generalize well to sequence
errors during software use and has been extensively used in
the human-computer interaction domain (e.g., Li et al., 2008;
Trafton et al., 2011).

The cognitive user model presented here has been devel-
oped using the cognitive architecture ACT-R (Anderson et
al., 2004). As shown in previous research, associative prim-
ing can be considered an acceptable explanation of temporal
disadvantages of device-oriented steps (Halbrügge & Engel-
brecht, 2014). The work presented here provides a direct link
from device-orientation to user errors.

This was achieved by using two additional concepts:
firstly, partial matching mimics human memory imperfec-
tions by responding to memory retrievals with similar, but
not completely fitting chunks of information. And secondly,
humans as embodied and situated beings tend to use environ-
mental cues to reduce cognitive load (Wilson, 2002). This led
to the addition of a knowledge-in-the-world (Norman, 1988)
strategy where the user scans the UI for “inviting” elements
instead of relying on the internal representation of the cur-

rent task, only. This attempt also goes in line with Salvucci’s
(2010) criticism of the MFG theory being too focused on
memory while neglecting the user’s interaction with the envi-
ronment.

Technically, the model is run inside the standard Lisp dis-
tribution of ACT-R 6.0.3 The ability to interact with the
HTML interface of the kitchen assistant is provided by ACT-
CV (Halbrügge, 2013). The model receives its instructions
through ACT-R’s auditory system and tries to memorize the
necessary steps for the current trial. No specific knowl-
edge about the kitchen assistant is hard-coded into the model.
When pursuing a goal, the model first uses a knowledge-in-
the-head strategy, i.e., it tries to follow the memorized step
sequence (left part of Figure 3). Once memory gets weak, the
knowledge-in-the-world strategy takes over. Elements on the
screen are randomly attended and a memory recall heuristic
is used to determine whether this element was part of the cur-
rent action sequence. If no matching goal chunk is found, the
visual search for possible targets is continued (right part of
Figure 3).

attend-goal-element

select/click-element

search-goal-element attend-random-ui-element

try-retrieve-goal-for-element

try-retrieve-next-goal

Knowledge in-the-head Knowledge in-the-world

Figure 3: Schematic flow chart of the knowledge-in-the-
head and knowledge-in-the-world strategies of the cognitive
model. Dashed arrows denote retrieval failure, dotted arrows
denote visual search failure.

How does the Model Predict Errors?

Memory activation (and its noise) is the main explanatory
construct used by the model. Omissions are caused by the ac-
tivation of the respective subgoal being too low. As activation
decays over time, omissions are more likely for longer task
sequences and for subgoals that appear late in a sequence.
Task-oriented elements of a sequence receive additional ac-
tivation through priming (Halbrügge & Engelbrecht, 2014)
and are therefore in principle less prone to omissions. This
effect can be mitigated by the application logic, though. If a
subgoal can no longer be retrieved by the knowledge-in-the-
head strategy, its corresponding UI element can nevertheless
be found by the knowledge-in-the-world strategy (see Fig-
ure 3). This is especially probable for mandatory subtasks
like navigating to the following screen because these mark

3The Lisp source code of the model is available for download at
http://www.tu-berlin.de/?id=135088
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situations where no other applicable UI element can be found
by the model.

Intrusions happen when the activation of a similar subgoal
of a previous trial exceeds the activation of the current sub-
goal. The partial matching mechanism adds an additional
penalty to the intruding subgoal’s activation depending on
its dissimilarity to the retrieval request.4 Activation noise is
essential for intrusions, but they can also be caused by an
old subgoal receiving “misguided” priming from the current
goal, e.g., when there is substantial overlap between two con-
secutive trials. Because task-oriented subgoals receive more
priming than device-oriented ones, the model predicts higher
intrusion rates for task-oriented UI elements.

Another cause for intrusions is the knowledge-in-the-world
strategy. ACT-R’s activation spreading mechanism allows
priming from the current focus of the visual system to declar-
ative memory elements, comparable to the horizontal di-
mension of the “Dual Systems” theory (Cooper & Shallice,
2000). When the model searches the screen for “inviting” el-
ements (attend-random-ui-element in Figure 3), the currently
attended element primes subgoals that correspond to it re-
gardless of whether they belong to the current goal or a pre-
vious one.

Model Fit
The model predictions are sensitive to several global ACT-
R parameters that affect activation. We kept activation de-
cay (bll) at the default of .5, varied activation noise (ans) be-
tween .5 and .6, set priming (mas) to 3.5 and varied the partial
matching penalty (mp) between 4.0 and 4.5.

The model was run 1000 times and all errors made were
collected (dotted lines in Figure 4). The quantitative fit as
computed based on the error probability for each combination
of omissions and intrusions and the four UI element types
defined above is promising with R2 = .915 and RMSE = .003.

Figure 4: Empirical error probabilities and model predictions
for different UI elements.

Discussion
We conducted a usability study to examine the effects of
device-orientation and task necessity on procedural errors.

4The dissimilarities are computed by ACT-R based on the num-
ber of mismatching information units, here trial and current subgoal.
No user-specified similarity function is used by this model.

Unsurprisingly, mandatory tasks were less likely to be omit-
ted. They showed slightly higher intrusion rates than their
non-obligatory counterparts, though. Screen elements that
were both device-oriented and non-obligatory showed by far
the highest error, i.e., omission rates.

These results are valuable in themselves for several rea-
sons. First, they show that human error can be studied well
without adding secondary tasks or interrupting the subjects
during their tasks. Secondly, the concept of device- vs. task-
orientation has proven beneficial in principle. And finally, our
results highlight how little we can predict when we base our
predictions on nothing but theoretical concepts (here device-
orientation). Only when we take the application’s interac-
tion logic into account (here focused on obligatory vs. non-
obligatory task steps) we get significant differences that are
worth further analysis.

At first thought, this might lead into a problem: The appli-
cation logic is specific to a single application most of the time.
If we base our analysis on it, we are in danger of limiting the
scope of our research to nothing but that single application.
The choice of cognitive modeling as a methodology helps
resolving this issue. Cognitive models can integrate other
knowledge as long as it is machine readable. In our case,
the meta-information encoded within the MBUID user inter-
face models provides the possibility to model the activation
gains of task-oriented subgoals in a generalizable way. And
even more important, the influencing factor of task necessity
is only implicitly represented within the application. The in-
teraction effect of device-orientation and task necessity is an
emergent phenomenon that is only elicited during the execu-
tion of the cognitive model, i.e., by performing tasks using
the actual application.

We created a cognitive model based on the memory for
goals theory, integrated the MBUID information, and added a
knowledge-in-the-world strategy that the model applies after
facing memory retrieval failure. While the overall goodness-
of-fit of the model is good and especially the case of non-
obligatory device-oriented tasks showing the highest error
rate is reproduced well (see Figure 4), there are several limi-
tations. The sheer number of mechanisms used (decay, prim-
ing, etc.) leads to a complex cognitive model that is rather
sensitive to changes of the respective ACT-R parameters. Fu-
ture research will show whether this affects the generalizabil-
ity of the model. The same holds for the empirical basis of
the model and the representativity of the tasks used during the
experiment.

The model nevertheless provides several improvements
when compared to existing MFG models of procedural error.
Most important, while Altmann and Trafton (2002) discuss
how the environment can provide cues that prime pending
goals, our model is the first one that actively uses this strat-
egy. As a by-product, this leads to the prediction of intru-
sions, an important error class that is often not well captured
(e.g., Trafton et al., 2011; Li et al., 2008).
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Concluding Remarks
As of today, the body of theory and empirical research on
human error is growing, but validated methods for predict-
ing user errors exist only for restricted areas (e.g., Ratwani
& Trafton, 2011). We present a computational user model
grounded in cognitive science research that aims at more gen-
eral error predictions. Taking advantage of UI meta informa-
tion collected during model-based development of different
user interfaces, our cognitive user model can well reproduce
the findings from a usability study conducted before.

In the future, we plan to apply the model to new and differ-
ent interfaces and develop the connection to MBUID towards
higher automation. This way, interface designers could re-
ceive error predictions at early stages of the development cy-
cle, making error prevention much easier.
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