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Abstract 
We compare how the same cognitive model completes a task 
within two alternative modifications to a cognitive architecture 
to represent sleep deprivation. One modification (ACT-R/F) 
has a module that uses a biomathematical model of the effects 
of sleep deprivation on performance to drive parameter 
changes in the architecture that impact behavior and 
performance. The second, new, modification (ACT-R/Φ) 
represents the effects of sleep deprivation on physiological 
systems and has these systems modulate cognition. The model 
completes the psychomotor vigilance task (PVT) within both 
ACT-R/Φ and ACT-R/F. We found that the two 
implementations produced similar response times (means) in 
simulated days one and two. However, the distribution of the 
response times across the two days of sleep deprivation varied 
between models. The ACT-R/Φ model shows a wider 
distribution in both days 1 and 2 due to an increased and 
modulating production utility noise that affects its ability to 
select the correct rules consistently. Though they represent 
sleep deprivation in different ways, and on different levels, 
both of these implementations lead us towards a more unified 
understanding of how sleep deprivation affects our bodies, how 
we think and behave over time, and how to represent these 
effects. 

Keywords: ACT-R, sleep deprivation, behavioral moderators, 
HumMod. 

 

Introduction 
Extensive empirical research has demonstrated that 
performance varies in systematic ways over time as a result 
of time awake, time on task, circadian rhythms, and a variety 
of other factors that impact the effectiveness and efficiency 
of cognitive processing (e.g., Gluck & Gunzelmann, 2013). 
Despite the obvious importance of these factors, collectively 
referred to as cognitive moderators (e.g., Ritter et al., 2007; 
Ritter et al., 2003; Silverman et al., 2006), their roles in 
human cognition, are rarely considered in cognitive science 
research. Instead, nearly all computational and mathematical 
models in the literature treat the cognitive system as an 
optimally functioning information processing machine, 
which does not waver in its performance over seconds, 
minutes, hours, or days of performance. As increasingly 
sophisticated models of various cognitive processes are 
developed, it is critical to improve the fidelity of moderating 
functions to capture human performance across the broad 
range of situations being modeled. 

This research focuses on one of these factors—the impact 
of fatigue brought on by extended time awake. Sleep and 
circadian rhythms are features of nearly all life on earth, yet 
their function and impact on cognitive functioning and 
performance remain poorly understood and infrequently 
modeled. We examine two ways to model these features. 

ACT-R/F 
In recent years, some research using computational modeling 
has begun to expose how human information processing is 
impacted by fatigue and related factors (e.g., Gunzelmann et 
al., 2009). This research manipulates parameters in a 
cognitive architecture, ACT-R, to capture performance 
changes associated with time awake and circadian rhythms 
(e.g., Gunzelmann et al., 2012; Gunzelmann et al., 2009), as 
well as time on task (e.g.,Gartenberg et al., 2014; 
Gunzelmann et al., 2010). At a theoretical level, the approach 
integrates a theory of the dynamics of alertness into the ACT-
R architecture, creating the ACT-R/F (ACT-R/Fatigue) 
system. At its core, it demonstrates how fluctuations in 
alertness can influence performance by impacting the 
functioning of information processing mechanisms within the 
cognitive system. 

The primary component of the theory is a mechanism 
associated with fatigue that disrupts ongoing cognitive 
processing. In the model, the disruptions are implemented as 
micro lapses, which are small gaps in the information 
processing in central cognition. These gaps lead to small 
delays in performance (10’s of ms). However, their 
probability increases with fatigue, which can lead to 
substantial impairments in performance. In conjunction with 
this mechanism, there is a compensation mechanism that 
reduces the likelihood of microlapses, but also increases the 
likelihood of executing inappropriate, or less useful, 
cognitive actions. 

The mechanisms are implemented in ACT-R’s central 
cognitive module, a production system that coordinates the 
activity of the other modules to maintain goal-directed 
cognitive activity (Anderson, 2007). This system operates in 
cycles, each lasting about 50 ms each. On each cycle, where 
appropriate actions are identified, one is selected based on a 
utility calculation, and then the action is taken, provided the 
utility surpasses the utility threshold. Microlapses occur 
when the threshold is not reached. In the traditional version 
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of ACT-R, the model run is terminated when actions fail to 
exceed the utility threshold. When this situation occurs in 
ACT-R/F, the cognitive cycle is “skipped,” producing a gap 
of about 50 ms in the goal-directed processing of the model. 
Because there is noise in the utility calculation mechanism, it 
is possible that a production will exceed the utility threshold 
on a subsequent cycle. Compensation is represented in the 
architecture by reducing the utility threshold. Although this 
decreases the likelihood of a microlapse, it also increases the 
probability that actions with a lower utility will be selected 
and executed in the model. 

To control the dynamics associated with fluctuations in 
alertness, a biomathematical model of alertness was 
integrated into ACT-R as a new module. The 
biomathematical model is described in detail in McCauley et 
al. (2013). Generally, the McCauley model accounts for 
changes in overall cognitive functioning stemming from time 
awake and circadian rhythms, incorporating the two-process 
theory of alertness (Achermann & Borbély, 1992).  

The biomathematical model produces a numerical estimate 
of fatigue. The function of the module is to connect the 
numerical output of the biomathematical model to parameters 
in the ACT-R architecture related to the information 
processing mechanisms that are hypothesized to be affected 
by fatigue. For instance, within central cognition 
biomathematical model outputs, F, influence the utilities of 
candidate actions and the utility threshold. This is achieved 
by computing scaling factors, FP and FT, for the utility of 
productions and the threshold as follows: 

 
Eq. 1 𝐹𝑃 = 1 − 𝑎𝐹𝑃𝐹 
Eq. 2 𝐹𝑇 = 1 − 𝑎𝐹𝑇𝐹  

In these equations, 𝑎𝐹𝑃 and 𝑎𝐹𝑇  are parameters that define the 
slope of a linear mapping of fatigue values to the utility and 
threshold scalars, respectively.  FP and FT are constrained to 
be between 0 and 1. The scaling factors, in turn, influence the 
utility values and threshold in ACT-R:  

 
    Eq. 3 𝑈𝑖

′ = 𝑎𝐹𝑃𝐹𝑈𝑖 
    Eq. 4 𝑇𝑖

′ = 𝑎𝐹𝑃𝐹𝑇𝑖  
 
Here, 𝑈𝑖’ is the computed utility value for production (𝑖), and 
𝑇𝑖’ is the utility threshold used to determine if the selected 
production is executed. These mechanisms have been 
demonstrated to capture in detail changes in human 
performance on a sustained attention task with sleep 
deprivation. The model predicts the response time 
distribution of individual participants, at a level of precision 
that is equivalent to the detail provided by a diffusion model 
of the same task (Walsh et al., 2014). 

ACT-R/Φ 
As more models of cognition and information processing 
moderators are developed, it will also be important to find a 
way to tie these separate models together. However, 

understanding the interactions between moderators can be 
difficult as the models are often developed in isolation.  

One way to make the modeling of the interactions between 
moderators and the effects of these interactions on 
information processing more straightforward and tractable is 
to model these effects on the physiological, as well as the 
cognitive, level. Common physiological systems involved in 
changes in cognitive mechanisms can be used as a basis for 
understanding the interactions between moderators.  

The ACT-R/Φ architecture (Dancy et al., In Press) 
combines a cognitive architecture (ACT-R) and an 
integrative computational model of physiology (HumMod; 
Hester et al., 2011) so that the bidirectional connections 
between physiological and cognitive systems can be 
simulated. HumMod is a computational modeling and 
simulation system that provides an integrative computational 
model of human physiology, to simulate the interaction 
between physiological, affective, and cognitive change. The 
ACT-R/Φ architecture has been used to model the dynamic 
effects of physiological change due to a psychological 
stressor (Dancy et al., In Press) and due to affective thirst 
(Dancy & Kaulakis, 2013). These moderators affect some of 
the same basic cognitive mechanisms in the 
architecturesImportantly, because these models have been 
developed within a single unified architecture, their 
interactions can also be modeled. 
    The stress-related pathways between physiological and 
cognitive processes in ACT-R/Φ are also important for 
modeling the effects of sleep loss due to the involvement of 
the Locus Coeruleus (LC) System and Hypothalamic-
Pituitary-Adrenal (HPA) axis, which are important in 
circadian components of sleep (Saper et al., 2005). 
    The ACT-R/Φ architecture uses variables from the 
physiological (using HumMod) and affective systems (using 
theory from affective neuroscience and emotion research) to 
determine a level of memory-based arousal. Arousal is 
determined using cortisol, epinephrine, corticotrophin 
releasing hormone (CRH), and a FEAR value (e.g., Panksepp 
et al., 2011) as shown in equation 5.  
 
Eq.  5  𝐴𝑟𝑜𝑢𝑠𝑎𝑙 = 𝑓(𝑐𝑜𝑟𝑡) ∗ [𝛼 ∗ 𝑔(𝑐𝑟ℎ) +  𝛽 ∗ ℎ(𝑒𝑝𝑖)] 
 
    The equation reflects evidence that cortisol seems to serve 
more of a multiplicative than additive role in memory-based 
arousal due to the LC system (e.g., Roozendaal & McGaugh, 
2011; Roozendaal et al., 2006). In Equation 5, α and β are 
parameters that determine the slope of the linear relation 
between deviation from the normal physiological state; 
𝑓(𝑐𝑜𝑟𝑡), 𝑔(𝑐𝑟ℎ), and ℎ(𝑒𝑝𝑖) is a function of the change in 
cortisol, CRH, and epinephrine (respectively) from the 
baseline state.     
    The systems involved in stress and arousal (e.g., the LC 
system and the HPA axis) have also been shown to modulate 
both declarative and procedural memory (e.g., see  Sara & 
Bouret, 2012; Schwabe & Wolf, 2013). Thus, this arousal 
factor affects both declarative and procedural memory in the 
ACT-R/Φ architecture by affecting related noise parameters, 
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that is, : 𝑎𝑛𝑠 (declarative memory noise) and : 𝑒𝑔𝑠 
(procedural memory utility noise) are both modulated using 
Equation 6 (𝐴 stands for Arousal). 
 

Eq. 6  𝑛𝑜𝑖𝑠𝑒 = {
1−𝐴 
0.5

− 1 ∀ 𝐴 ≤ 0.5
𝐴

0.5
− 1 ∀ 𝐴 > 0.5

 

 
Both low arousal (below a nominal value) and high arousal 
cause an increase in noise, making it more difficult to retrieve 
chunks (declarative memory) and to select the correct 
productions (procedural memory). In addition to its effects on 
procedural memory noise, arousal also modulates utility 
threshold of matched rules when it goes below the nominal 
arousal value. We chose to alter both noise and threshold in 
this case because of existing evidence that as neural arousal 
decreases below basal values (as measured by activity in the 
LC-system), distractibility tends to increase (e.g., Aston-
Jones & Cohen, 2005). One way to interpret this result is that 
decision utilities are more affected by a noise as neural 
arousal lowers. 

Implementing Biomathematical Models of 
Fatigue in HumMod 

 
    We implemented a mathematical model of the HPA-axis 
in HumMod to simulate circadian and sleep homeostatic 
changes in adrenocorticotropic hormone (ACTH) and 
cortisol. We modified the effect of CRH on ACTH so that 
ACTH levels show circadian fluctuations; this causes related 
circadian fluctuations in cortisol levels. A sleep homeostatic 
variable was also added that directly affects cortisol. This 
variable represents the direct modulatory effects the SCN can 
have on cortisol outside of the HPA-axis (e.g., see Saper et 
al., 2005).  
    The arousal representation was modified (Equation 7a) to 
include a neural sleep homeostatic variable that decreases 
(and has an accelerating decline) as time awake increases.  
𝐻𝑆_𝑁 is a neural sleep homeostatic variable that causes arousal 
to decrease as the time awake increases. As with equation 5, 
the parameters α and β are parameters that determine the 
slope of the linear relation between deviation from the normal 
physiological state. 

 
Eq. 7 
A  𝐴𝑟𝑜𝑢𝑠𝑎𝑙 =  𝐻𝑆_𝑁 ∗  𝑓(𝑐𝑜𝑟𝑡) ∗ [𝛼 ∗ 𝑔(𝑐𝑟ℎ) +  𝛽 ∗ ℎ(𝑒𝑝𝑖)] 
B  𝑐𝑜𝑟𝑡 =  𝐻𝑆_𝐶 + 𝑆𝑒𝑐𝑟𝑒𝑡𝑖𝑜𝑛𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ∗ 𝐴𝐶𝑇𝐻𝐸𝑓𝑓𝑒𝑐𝑡 + 𝐷𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 

 

C  𝐻𝑆_𝐶 =  {
𝑆𝐴𝑀𝑎𝑔 ∗ (1 − 𝑆𝐴𝑅𝑎𝑡𝑒

𝑇𝑠)  [𝑤ℎ𝑖𝑙𝑒 𝑎𝑠𝑙𝑒𝑒𝑝]
𝑊𝐴𝑀𝑎𝑔 ∗ (1 − 𝑊𝐴𝑅𝑎𝑡𝑒

𝑇𝑤) [𝑤ℎ𝑖𝑙𝑒 𝑎𝑤𝑎𝑘𝑒]
 

D  𝐴𝐶𝑇𝐻 = 𝑆𝑒𝑐𝑟𝑒𝑡𝑖𝑜𝑛𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ∗ 𝐶𝑅𝐻𝐸𝑓𝑓𝑒𝑐𝑡 ∗   ∑ [𝜌𝑖 ∗ ( 𝑆𝑖𝑛 [𝑖∗𝜋∗𝑡
720

−  𝜃])] + 14
𝑖=1  

 

                                                           
1 Equations 7-C & -D are modified from Thorsley et al. (2012) 

Cortisol (Equation 7-B) fluctuates over the course of the 
day due to circadian rhythms and a sleep homeostatic 
parameter (Equation 7-C). ACTH (Equation 7-D) has 
circadian fluctuations, and this variable directly modulates 
cortisol secretion via the ACTHEffect variable, though the 
proportion of cortisol secretion that is caused due to ACTH 
varies by time of day and sleep-wake transition time1. In this 
equation, 𝑡 (for current time of the day) is represented at 
minutes. 

These equations in the HumMod physiological model 
create a fluctuating HPA-axis, governed by time of day 
(assuming a stable entrained normal sleep and wake time) and 
homeostatic pressure created by time spent asleep or awake. 
Figure 1 shows changing cortisol levels over the course of 
two days in the updated model. The model displays a peak in 
cortisol levels at the point of waking (6am in this case) and a 
trough at 12am. 

 
Figure 1. Cortisol levels over the course of two days 

([uG/dL]/minutes). 

If we cause the model to go two days without sleeping, 
cortisol in HumMod shows a different, but still circadian, 
rhythm (Figure 2). The peaks and troughs are roughly at the 
same positions, but Figure 1 shows a higher minimum and 
maximum that occur near sleep-wake transitions. The cortisol 
profile of the sleep deprived model shows a steady increase 
in peak and trough across days as sleep deprivation time 
increases. 

 
Figure 2. Cortisol levels over the course of two days with the 
model sleep deprived ([uG/dL]/minutes). 

ACT-R/F, ACT-R/Φ, and the PVT 
To get a further understanding of how model behavior may 
change when using these alternative implementations, we 
implemented a model of the psychomotor vigilance task 
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(PVT) within both ACT-R/F and ACT-R/Φ. In the task, a 
millisecond counter is presented at the center of a monitor at 
a random delay of 2-10 seconds from the previous response. 
The task is to respond to the appearance of the counter by 
pressing a response button. 

The pervasive use of this task in sleep research makes it an 
important task for theories of fatigue to address. In addition, 
the subtle changes to response time distributions of fatigued 
individuals in the task imposes a critical test of the capacity 
of a computational theory to make detailed, quantitative 
predictions about human performance. 
 The model includes three rules—one each for waiting, 
attending to a stimulus, and responding to the stimulus. 
Partial-matching is enabled in the model to allow rules that 
match some, but not necessarily all, of the rule conditions. 
Thus, when the rules are affected more by noise, whether by 
increasing the actual noise (ACT-R/Φ) or lowering the utility 
values of all of the rules (ACT-R/F), false starts (responding 
before a stimulus is presented) can occur.  
    Overall means (and std. dev.) of response times were 
similar between models for both days 1 and 2: 237.4 (14.84) 
and 235.1 (15.26) for the ACT-R/ Φ model, and 238.3 (12.85) 
and 238.4 (11.48) for the ACT-R/F model. Despite the 
overall similarity, the distributions of means for days 1 and 2 
differed between models (Figure 3 and 4). 
    Figure 4 shows slightly different mean response time 
distribution between days 1 and 2 with day 1 showing a more 
uniform density distribution. The increased noise due to 
physiological change in the ACT-R/Φ implementation 
caused a wider distribution of response times as compared to 
the ACT-R/F implementation.  

 

 

Discussion and Conclusions 
 
Both of the implementations discussed provide a novel way 
of modeling and simulating the effects of sleep deprivation 
on cognition, albeit in different ways and on different levels 
of representation. The ACT-R/F implementation takes a 
tested biomathematical performance model and applies it to 
procedural memory in the ACT-R architecture (see also 
Gunzelmann et al., 2012). Implementing sleep deprivation in 
ACT-R/Φ required adding circadian rhythms and sleep 
homeostatic modulation to physiological variables and 
having these variables modulate cognitive systems.  

Comparison of the two architectures 
We found that there are similarities and differences between 
the two approaches. Both approaches include aspects of sleep 
behavior, and the resulting predictions are similar in how they 
predict that there are increases and decreases in performance 
across a day.  

They are different in the initial quality of their predictions 
and their extendibility.  ACT-R/F is more accurate in its 
predictions.  ACT-R/Φ is more extendable, in that it would 
be very feasible to represent in a plausible way how other 
factors will interact with sleep, such as caffeine.   

 Including HumMod in ACT-R/Φ raises the question of 
usability, however.  HumMod, while a useful system, is 
another large system that has to be run and understood. It 
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Figure 3. Mean response times of the PVT model used in the ACT-R/F extension. Distribution density shape of show a 
different pattern between day 1 and 2 than the model using ACT-R/Φ extensions (Figure 4). 
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takes ACT-R/Φ longer to run, and it takes a little more 
interpretation.  Future work will need to explore potential 
software optimization methods and implementations that can 
be used with high performance computing (e.g., Harris et al., 
2009). It will also be useful to explore possible combinations 
of the approaches as some mathematical variables in the 
performance model used in ACT-R/F have been connected to 
neural representations (McCauley et al., 2013). At this point, 
we are not able to make recommendations about which is 
better, but the two approaches are at least different.  

This work will also raise new problems about 
understanding architectures.  The combined architecture, that 
is, ACT-R/Φ, will have further variables and will require 
further validation, crossing between cognitive psychology 
and physiology.  This will raise new challenges.  

Future Work 
We will expand upon the new ACT-R/Φ implementation by 
performing parameter sweeps so that the most realistic model 
predictions can be found. The performance costs inherent in 
running the HumMod and expanded ACT-R systems in 
tandem means that using existing work and theory related to 
the parameters/variables for performance optimization will 
be especially important. In addition to continuing to solidify 
and validate components of these implementations, there are 
two particular research directions in which this work can 
expanded: the effects of caffeine on cognition and 
interactions between sleep deprivation and stress.  

As caffeine continues to play a significant role in modern 
society, it will be important to have a quantifiable 
understanding of its modulation of cognitive performance 
over time and to have the same understanding of the ways 
time of day may interact with this modulation. More recent 
work in modeling the effects of caffeine on vigilance 

(Ramakrishnan et al., 2014) and on declarative memory (e.g., 
Ritter et al., 2009) provide a useful roadmap for continued 
expansion of the work presented here. Working within 
HumMod to represent the effects of caffeine on physiology 
and then and thus on cognition provides a principled way to 
combine the effects of moderators.   

There also exist several parallels between work on sleep 
deprivation and work on stress systems. It has even been 
suggested that sleep deprivation can be seen as a form of 
stress, causing allostatic physiological and behavioral change 
(McEwen, 2006). Many of the neural systems implicated in 
the behavioral change due to sleep deprivation and stress 
systems overlap and are influenced by one another (e.g., the 
LC system, basal ganglia, and hippocampus). Thus, the 
generalization of these implementations to the study of stress 
would be a fairly natural evolution of the work. 

Summary 
As we continue to study the ways behavioral moderators 
affect the way we think, feel, and perform during daily 
activities, it will be vital to keep in mind the effects of these 
moderators across time, and during different parts of the day. 
In addition, it will be important that the models and 
architectures we develop to describe and predict these 
behavior are generalizable and can be understood in the 
context of separate, but related cognitive, affective, and 
physiological behavior. Both of these implementations lead 
us towards a more unified understanding of how sleep 
deprivation affects our bodies, as well as the way we think 
and behave over time. 
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