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Abstract 

Error patterns for arithmetic problems are very rich in 
information, but they are hard to investigate systematically 
because of the small number of mistakes made. To be able to 
investigate errors in arithmetic we therefore used an online 
educational application called Math Garden, which teaches 
children arithmetic in the form of several different tasks. 
Because of the large number of users, Math Garden provides 
sufficient data  to investigate errors systematically. Using the 
Math Garden data set, we developed a cognitive model in the 
PRIMs architecture that can give a comprehensible account of 
the errors made in single-digit multiplication problems. The 
model does a relatively good job of explaining errors on easy 
problems, but has difficulties explaining mistakes for harder 
problems. In addition to the current model, we propose some 
approaches to improve the model to explain mistakes in the 
harder problems as well. 
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Introduction 
Arithmetic is one of the core skills taught in primary 
education. Especially single digit multiplication is 
considered to be one of the core abilities in today’s world. 
This kind of basic skill is hard to study in adults, because it 
is so well trained and automatic that hardly any mistakes are 
made. Even children make few errors. This is unfortunate, 
because errors give great insight in the processes and 
especially the strategies underlying these skills.  

In this paper, we will investigate the different kinds of 
errors children make in multiplication by employing a huge 
data set from a web-based practice program, Math Garden 
(e.g. Klinkenberg, Straatemeier, & Van Der Maas, 2011). 
Math Garden is used by thousands of students every day, 
and the data therefore include a significant amount of errors. 
To explain the errors children make, we will develop a 
comprehensible cognitive model of these error data. Our 
goal is to gain insight into the processes and strategies 
underlying single-digit multiplication.  

Existing Models of Multiplication 
Previously, several models have been built to explain 
patterns found in arithmetic data. We can discern three 
categories in this regard: memory strength models, network 
interference models, and computational efficiency models 
(Ashcraft & Guillaume, 2009). Memory strength models 
and network interference models both put the emphasis on 
memory retrievals, while strategy-based models implement 
the use of algorithmic strategies, such as repeated addition – 
e.g. solving 8 + 8 + 8 instead of 3 x 8 – and counting 

in steps of two, three, or more – e.g. 3, 6, 9 to solve 3 
x 3.  Most models combine a strategy-based approach with 
a memory-based approach: retrieval based models often 
include some kind of computational strategy, and strategy 
based models often also include a rehearsal strategy (e.g. 
Lebiere, 1999; Siegler, 1988).  

An example of a combined model is the model by Siegler 
(1988). The main strategy in this model was retrieval, which 
was tried multiple times. Every trial a random number of 
retrievals was attempted to find an answer to the problem.  
In the model’s declarative memory, each exercise was not 
only connected to the correct answer, but also to incorrect 
answers. The more problem-answer connections there are, 
the harder it is to retrieve a correct answer.  

Because of the associations with incorrect answers, 
retrievals could also result in an incorrect answer. 
Therefore, the associative strength of each successful 
retrieval was compared to a confidence criterion that was set 
at random in each trial. If the associative strength of the 
retrieved answer was lower than the confidence criterion, 
the answer was rejected and a new retrieval was started. 
Only when everything else failed, an alternative strategy 
would be applied. This alternative strategy was an 
algorithmic process, such as repeated addition, in which one 
multiplicand is added the number of times of the other 
multiplicand.  

According to Siegler, the strategies that are initially used 
to solve the problem determine which problem-answer 
connections end up in the declarative memory. In turn, the 
problem-answer combinations in memory influence the 
strategies that are used to solve the problem. Thus, the 
errors children make early on in their development of the 

Figure 1. The multiplication task in Math Garden. 
Responses are given using the keypad. On the bottom of the 
screen the current value of the problem is represented with 

coins. 
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multiplication skill are of great importance for the further 
development of the strategies they use. 

In 1999, Lebiere implemented a combined memory and 
computational strategy model within the constraints of the 
cognitive architecture ACT-R. This model, similar to 
Siegler (1988), tries to retrieve the answer to an arithmetic 
problem, and, if that fails, uses repeated addition to 
calculate the answer. In the model by Lebiere, three sources 
of errors can be discerned. The first source of error stems 
from the use of repeated addition. For example, when 
solving the problem 3 x 8, a student can accidentally do 
one additional step, resulting in 32, or one step too few, 
resulting in 16. Alternatively, an addition mistake in one of 
the steps can result in an answer such as 16 + 8 = 25. 

 When retrieval becomes the main strategy to solve these 
problems, the errors made in repeated addition will still 
have an influence in the form of incorrectly stored 
combinations of a problem and its response. These lingering 
associations are the second source of error. The third source 
of error in the model is that of a partial match between 
stored information and to be retrieved information. For 
example, when the problem 3 x 5 needs to be retrieved, a 
mistake can be made by retrieving a similar problem, such 
as 3 x 4 = 12, and giving the answer to that problem 
instead. 

Current Study 
Both Siegler and Lebiere did analyze the errors in their data. 
However, because of the relatively small datasets they used 
to fit their models, it was hard to examine the error patterns 
in a more systematical way: 
 

“The patterns of errors for multiplication are 
quite rich, but harder to examine systematically 
because they take place over a wider range of 
values and display some characteristics (table 
errors, close misses, etc.), which are difficult to 
average over and plot together. For those 
reasons, let us concentrate on the pattern of 
errors for a single problem” (Lebiere, 1999) 

 
We will continue the work of Lebiere by looking in more 

detail at the errors in a large dataset that gathers the data of 
thousands of primary school students in all age categories. 
Although the proportion of errors is still low, the sheer 
amount of data makes the systematical analysis of these 
errors possible. Using these data, we can make finer grained 
assumptions about the strategies underlying these mistakes. 

In this paper, we will start this endeavor by looking at 
three specific problems. First we will discuss the data and 
the different mistakes we find in the data, then we will 
propose strategies that can have led to these errors. We will 
implement these strategies in the cognitive architecture 
PRIMs (Taatgen, 2013) and discuss the similarities and 
differences between the results of the model and the data. 

Task & Data 
The data were gathered from “Math Garden” (see also: van 
der Ven, Straatemeier, Jansen, Klinkenberg, & van der 
Maas, 2015), an online computer application that is used by 
school children in the Netherlands to practice math and 
arithmetic. It offers problems that are adapted to the 
capabilities of the user, so that each problem has a 
reasonable chance of being solved (the default probability of 
correctly solving a problem is .75, this can be adjusted by 
the user). While the program contains a wide variety of 
different tasks, we will focus here on a standard 
multiplication task (see Figure 1).  

Participants 
Because we only have access to aggregated data from Math 
Garden, the specific distribution of participants is unknown.  
The users of Math Garden are Dutch primary school 
children with ages roughly between 5 and 13 years.  

The Multiplication Task 
The task we focus on in this paper is the multiplication task. 
In this task, a multiplication problem is presented on the 
screen (Figure 1). The student has to solve this problem 
within 20s. The answer is given by clicking on an on-screen 
keypad. Time is represented as a row of coins and every 
second a coin disappears from the screen. The coins that are 
left on the screen when the student has entered the answer 
are the score that is received, in the case of a correct answer, 
or lost, in the case of an incorrect answer. No points are 
awarded or lost when no answer is provided. This way of 
scoring is known as the ‘High Speed High Stakes’ principle 
(Maris & van der Maas, 2012). Students can decide for 
themselves how many trials they want to play and when 
they want to play. 

Data 
The data set we used was obtained on 25 May 2015 and 
contains the data of 8,489,703 attempts of 81 different 
problems (1 x 1 – 9 x 9). The overall percentage of 
errors in the full dataset was 10.42%. This is lower than the 
expected error percentage of 25% because late answers and 
answers in which the student asked for a hint were not taken 
into account. We will give a qualitative overview of the 
types of errors children make. 

The most common errors often fit in one of the following 
categories:  

1. The student has added the numbers instead of 
multiplying them. For example, 3 x 2 = 5. 

2. Operand related mistakes: the answer is consistent 
with the answer to a very similar problem. For 
example, 3 x 4 = 15, which is the answer to the 
problem 3 x 5, or 6 x 7 = 35, which is the 
answer to the problem 5 x 7.  

3. Miss 1 errors: the answer is very close to the correct 
answer. For example, 3 x 5 = 14, which is the 
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correct answer minus one, or 6 x 7 = 43, which 
is the correct answer plus one. 

Most of these mistakes can be explained by a mistake in 
the calculation or retrieval procedure. Interestingly, there are 
also mistakes that cannot easily be explained in the same 
manner. While previous models focused mainly on the first 
types of error, the goal of our model is to also explain some 
of the other mistakes. For ease of exposition we will focus 
on the errors in three different problems: 1 x 2, 3 x 4, 
and 9 x 6. These problems are chosen because they fall in 
the first, second, and third tertile of the data, based on the 
Math Garden estimate of the average level of the students 
who have solved the problem correctly. 

Explaining Multiplication Mistakes 
We will discuss the five most commonly made mistakes for 
the abovementioned problems and how they are 
implemented in the model. Reading errors and input errors 
are outside the scope of the current model. We will start out 
by discussing the mistakes (see Figures 2A-4A) and 
hypotheses for the origin of these mistakes. Afterwards we 
will explain the setup of the model, and what the model can 
or cannot explain. 
1 x 2 

The problem 1 x 2 is an easy problem and was recorded 
60,821 times in our dataset. In 91% of the cases the problem 
was solved, in the other 9% errors were made. The most 
common mistakes for the problem 1 x 2 are shown in 
Figure 2A.  

The most common mistake is to give the answer 1, which 
is a pattern of behavior seen in all problems where one of 
the multiplicands is a 1. There are several possible 
explanations for this mistake: (1) It could be caused by 
partial matching, instead of retrieving the required result for 
1 x 2, the result for 1 x 1 is retrieved. However, given 
that we also observe this pattern for 1 x 9, this is unlikely. 
(2) The rule for multiplication by 0 can be overgeneralized. 
When a number is multiplied by 0, the answer is also 0. 
Since the tables for 0 and 1 or often the first multiplication 
tables a student encounters, they might use the rule they 
have learned and used successfully for the table of 0 in the 

table of 1. (3) Finally, this mistake could be due to an 
incorrect application of the 1-rule. For all problems of the 
form 1 x N it holds that the answer is N. If this rule is 
remembered or applied incorrectly, the result may be that 
the other multiplicand, the 1, is considered to be the correct 
response. 

The second, third, and fourth mistakes are 3, 4, and 20. 
All of these answers fall into one of the categories 
mentioned earlier. 3 corresponds to either the addition of 
both multiplicands, an answer that corresponds to a similar 
problem, or miss 1 error. 4 corresponds to an operand 
related mistake, namely 2 x 2 = 4. The most likely 
explanation for 20 is that the 1 is mistaken for a 10. This 
confusion is the third most made mistake in the table of 1, 
but it does not happen in any of the other tables. A likely 
explanation for the confusion is that the multiplication table 
for 10 is taught as one of the first multiplication tables and 
is therefore well known. The 1 is then easily confused with 
the 10. 
3 x 4 
The problem 3 x 4 is a medium level problem; it was 
recorded 148,279 times in our dataset. 90% of the problems 
where solved correctly. In 10% of the cases an error was 
made. A specification of the errors can be found in Figure 
3A. 

The main mistake found in the data is 16. 16 is the 
answer to 4 x 4, an operand related error. It fits with the 
most common error categories we described before. It can 
either be caused by a retrieval that has gone wrong, either 
due to a previous mistake or due to a partial matching error. 
The other possibility is that the mistake is made because of a 
mistake in repeated addition; the student took one step too 
many in the calculation of the answer. 

The next most common mistake is 9. 9 is the answer to 3 
x 3, also an operand related error. Therefore, a similar 
explanation to the previous mistake applies.  

 
The final three mistakes we will discuss here – 8, 7, and 

15 – are made less often, but can be explained in a similar 
way. 8 is the answer to 2 x 4, 7 is the answer to 3 + 4, 
and 15 is the answer to 3 x 5. In all these cases, this is 

Figure 2. Responses given in the data (A) and by the model (B) after a simulation of 25 times 400 trials of the problem  
1 x 2. 

 

133



either a mistake in the retrieval, a mistake in the repeated 
addition procedure, or a wrongly applied procedure (in the 
case of 3 + 4 = 7). 
6 x 9 
6 x 9 is one of the more difficult multiplication problems. 
It was recorded 90,145 times. 88% of the problems were 
solved correctly. The most common mistakes for 6 x 9, as 
shown in Figure 4A, are 45, 56, 63, 36, and 53. Of these 
responses, 45 and 63 are one step earlier and one step later 
in the table of 9. In contrast, earlier and later steps in the 
table of 6 do not show up in the most common answers. 
This could indicate that students learn the commutative 
property relatively early, and apply repeated addition to the 
largest multiplicand. This takes fewer steps and therefore 
there is less opportunity for errors. Other evidence in the 
early learning of the commutative property comes from the 
mistakes made for problems and there exact opposite, such 
as 6 x 9 and 9 x 6. In nearly all cases, the mistakes 
made for these two forms of a problem are exactly the same, 
and made with approximately the same frequency. Since the 
commutative property also holds for addition problems, it 
might be that the concept is learned early on for addition 
problems and transferred to multiplication problems. 
56 is the second most common mistake. This is most 

likely a mistake that is made because of errors in repeated 
addition or because the numbers 54 and 56 are very 
similar. 56 is also the correct answer to another difficult 
problem, 7 x 8. 

The fourth most common mistake, 36, is either an input 
error for the response 63, or the answer to 6 x 6. Finally, 
53 is probably an addition mistake. Independent of where in 
the sequence the mistake is made, it is very easy to arrive at 
a number close to 54. 

Overall, the mistakes made on the problem 6 x 9 seem 
to be less related to retrieval, and more representative of an 
algorithmic strategy, such as repeated addition. 

A PRIMs Model of Single-Digit Multiplication 
Our PRIMs model for multiplication was inspired by 
Lebiere (1999). The model has rules to retrieve the answer 
but also to compute the answer using repeated addition. The 

current model does not give an exhaustive fit of the data, but 
attempts to explain the most common cognitive mistakes. 
Errors in reading or input are outside of the scope of this 
paper. Model results are shown in Figure 2-4B. 

PRIMS 
PRIMs (Taatgen, 2013) is short for PRimitive Information 
processing eleMents. It is based on the ACT-R cognitive 
architecture (Anderson, 2007), but expands it by considering 
knowledge of tasks in a broader context. For our purposes 
this means that if PRIMs lacks task-specific knowledge, for 
example when it does not know a multiplication fact, it may 
try to determine the answer based on other skills it has, 
possibly, or even likely, producing an error. 

PRIMs uses operators instead of production rules. The 
main difference is that PRIMs can use its operators for other 
tasks. This can be beneficial if other operators fill a 
knowledge gap, but it can also result in an error. Because of 
this, a model build in the PRIMs architecture does not only 
resemble someone who is already a perfect problem solver, 
but it can also account for the initial learning process. 

Since PRIMs is based on the ACT-R cognitive 
architecture, it incorporates many of the mechanisms from 
this architecture. The declarative memory in PRIMs is based 
on the declarative memory in ACT-R: it contains chunks 
with related information. When a retrieval request is send to 
the declarative memory, the activation of each chunk is 
determined by the number of previous encounters with that 
chunk, and the time since those encounters.  

The declarative memory of the current model also makes 
use of a mechanism called partial matching. In partial 
matching, chunks that do not completely match a retrieval 
query can also be retrieved. The activation of these chunks 
gets a mismatch penalty that is conversely proportional with 
the similarity to the requested chunk. 

 
 
In PRIMs, the mismatch between numbers is calculated 

by taking the ratio of the smaller number to the larger 
number, minus one (based on Lebiere, 1999, p.48). 

Figure 3. Responses given in the data (A) and by the model (B) after a simulation of 25 times 400 trials of the problem  
3 x 4. 
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The Model 
For the current model, we have chosen to model the 
problems 1 x 2, 3 x 4, and 6 x 9. For each problem, 
we assume that the model does not know the current 
problem at the start of the simulation, but it does know all 
addition facts and multiplication facts up to the current 
problem plus one. So for the problem 3 x 4, all 
multiplication facts up till 4 x 5 are present in memory. 
This setup was chosen to simulate a large group of students 
that each know different problems. 

The model in its current form uses standard parameter 
settings for ACT-R and PRIMs, to achieve these results, no 
parameter fitting was necessary. 

The model first tries to retrieve the answer to the problem 
from memory; if retrieval fails the answer is calculated 
using repeated addition. However, a model that is purely 
based on retrieval and repeated addition cannot explain all 
the error patterns in the data. For example, the answer 1 is 
the predominant mistake made in the table of 1, but cannot 
be explained by a combination of retrieval and repeated 
addition.  

 
1 x 2 
The responses to the problem 1 x 2 are largely explained 
by the partial matching mechanism. The most common 
mistake however, 1, is a mistake in the multiplication table 
1, and it is likely that this mistake represents a wrongly 
applied strategy for solving problems of the form 1 x N or 
N x 1 – as explained above. 

To explain this mistake, our model contains a specific 
strategy that can account for this mistake. This strategy 
represents the incorrect application of the rule for problems 
with the multiplicand 1. When a problem has the 
multiplicand 1, the other multiplicand is the answer to the 
problem. However, when this rule is incorrectly applied, it 
can easily result in the answer 1 being given, as we have 
seen in the data. This strategy is implemented in our model 
by a competition between production rules. When a problem 
in the form of 1 x N is encountered, one of two rules can 
fire. Either the correct rule, which gives the correct response 

N, or the wrong rule which gives the incorrect response 1. 
Over time the model will learn the correct rule through 
utility learning.  

The results for the model on the 1 x 2 problem can be 
seen in Figure 2B. While this model captures the mistakes 
for the problem 1 x 2 relatively well, it still has some 
problems in fitting the error data for the larger problems, 3 
x 4 and 6 x 9. 
3 x 4 
The most common mistakes to the problem 3 x 4 can for 
the most part be explained by the partial matching 
mechanism. However, there is one error that stands out: 15. 
We will explain the model’s bias for this answer below. 

Because the current model has only been applied to 
instance of specific problems, it does not take into account 
the frequency of exposure to previous problems. While it is 
known that problems with smaller multiplicands are 
practiced more often, this is not represented in our model. In 
other words, the current model does not incorporate the 
problem-size effect (e.g. Domahs, Delazer, & Nuerk, 2006). 

Another effect that we do not reproduce is the tie effect. 
The tie effect is the relative ease of problems of the form N 
x N, such as 3 x 3, which can explain the preference for 
the answers 16 (4 x 4), and 9 (3 x 3) over 15 (3 x 
5), which is the main discrepancy between the model and 
the data. Lebiere (1999) did match this effect, by using 
spreading activation in the model. The information on the 
screen and the information in working memory spread 
activation to the chunks in declarative memory. In the case 
of a tie-problem, twice as much activation is spread to each 
slot in declarative memory, making it easier to retrieve these 
facts. The current model does not include spreading 
activation, and therefore does not account for the tie-effect.  

Together, the absence of spreading activation and not 
taking into account the frequency of exposure can explain 
the strange peak we find in the model data for the problem 3 
x 4. While the first four mistakes are relatively well 
matched, the answer 15 is overrepresented in the model 
data. This is a side effect from the way the similarity 
between numbers has been implemented. A number is more 
similar to the number that follows it than to the number that 

Figure 4. Responses given in the data (A) and by the model (B) after a simulation of 25 times 400 trials of the problem  
6 x 9. 
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precedes it. For example, the similarity of the numbers 3 
and 4 is -.25 (3/4 – 1 = -.25), while the similarity 
between the numbers 4 and 5 is -.2 (4/5 – 1 = -.2). 
This would be canceled out by the higher activation of 
chunks that are more practiced (smaller problems) and that 
are easier to retrieve (tie-problems). Both problems will be 
resolved in a future version of the model. 
6 x 9 
The pattern of errors for the problem 6 x 9 deviates 
significantly from the data. One reason for this is that the 
current model relies quite heavily on the retrieval strategy, 
while children probably also use an algorithmic strategy 
(van der Ven et al., 2015). The errors the model makes are 
therefore retrieval related errors, while the errors in the data 
seem to be caused by mistakes in repeated addition. 

One possible explanation for this phenomenon is the 
number of times a student is exposed to a problem. As 
mentioned above, smaller problems, such as 1 x 2 and 3 x 4, 
are more prevalent in schoolbooks, but also outside of 
school. While the current model assumes the same 
frequency of exposure and a similar learning curve for both 
easy and hard problems, this may not necessarily be the 
case. 

Discussion 
In this paper we have presented a basic model for single 
digit multiplication. We have implemented and extended the 
model by Lebiere (1999) in the PRIMs cognitive 
architecture. Our goal is to explain the error patterns found 
in the Math Garden data. With our model we have shown 
that we can fit some of the most common errors found in the 
data. Furthermore, the model also seems to capture the 
learning process from making mistakes to achieving the 
correct responses, since it starts out giving incorrect 
answers, but gradually gives more correct responses. 
However, the current model has difficulties explaining the 
data of the harder problems, which seem to be solved using 
different strategies than easier problems. 

Because the amount of data from Math Garden, we 
assume that the errors are not specific to this dataset. When 
we compare the data from Math Garden to, for example, the 
data from Siegler (1988), there seem to be discrepancies in 
the kinds of errors that are made and in the relative 
frequency of the errors. However, because the data in the 
study by Siegler only comprises a small subset of students 
of a small age group, we believe that the math garden 
dataset is better suited to use as a basis for modeling errors. 

While the model is not yet complete in the sense that it 
captures all of the effects found in the literature, it can 
capture the error patterns that children make while doing 
easy single digit multiplication problems and is therefore a 
first step in the understanding of the strategies and 
misconceptions that lead to mistakes. Our goal is to build a 
model that can fully explain our current data with regard to 
errors and correct responses, and which is able to predict the 
outcomes on new problems accordingly. 

The model we present here is still work in progress. 
Future endeavors will focus on incorporating the effects 
found in the data, such as the problem size effect and the tie 
effect. As suggested above, the model will benefit from the 
implementation of spreading activation. Furthermore, 
instead of a model of specific problems, the goal is to build 
a model that is exposed to the full range of multiplication 
problems will give a better indication of the relative 
importance of specific multiplication facts in memory.  

Another goal is to show the relationship between the 
multiplication skill and other skills that are taught at school, 
such as arithmetic skills. The choice of the cognitive 
architecture is therefore not a coincidence: the PRIMs 
architecture is specifically developed to be able to 
systematically investigate interactions and relationships 
between different tasks. By investigating the relationship 
between different tasks, we hope to elucidate the existence 
of different strategies that are used to solve relatively simple 
tasks. 
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