In D. Reitter & F. E. Ritter (Eds.), Proceedings of the 14th International Conference on Cognitive Modeling

(ICCM 2016). University Park, PA: Penn State.

ACT-Droid: ACT-R Interacting with Android Applications

Lisa-Madeleine Dorr (lisa-madeleine.m.doerr@campus.tu-berlin.de)
Department of Cognitive Modeling in Dynamic Human-Machine Systems
Technische Universitit Berlin

Nele Russwinkel (nele.russwinkel@tu-berlin.de)
Department of Cognitive Modeling in Dynamic Human-Machine Systems
Technische Universitét Berlin

Sabine Prezenski (sabine.prezenski@tu-berlin.de)
Department of Cognitive Modeling in Dynamic Human-Machine Systems
Technische Universitit Berlin

Keywords: ACT-R; Android; granularity; usability testing;
modeling; mobile context; tool.

Abstract

A tool for directly connecting ACT-R with Android
applications on smartphones or tablets is introduced. The
advantage of this tool is that no prototyping of the
application is needed. This tool is especially useful to
evaluate applications according to usability by using general
modeling approaches.

Motivation

The number of Smartphone applications is growing rapidly.
Likewise the demand for efficient usability testing methods
is increasing. Cognitive models have the potential to meet
this demand. Cognitive models developed for one
application can be reused for testing similar applications
(Prezenski & Russwinkel, in submission). Thus, costs of
intensive user testing can be reduced to a minimum.

Nevertheless, the necessity of connecting the interface to
ACT-R remains a major issue. The interface has to be
translated into a format the ACT-R model can interact with.
A number of tools have been developed to connect ACT-R
to simulations (e.g. ACT-CV: Halbriigge, 2013, Hello Java:
Biittner, 2009; Agimap: Urbas et al., 2009; SIMCog-JS:
Halverson, Reynolds & Blaha, 2015, JNI: Hope, Schoelles
& Gray, 2014 and others).

For tasks involving interactions with an interface one
solution is to develop prototypes as, for example, in
CogTool (John, Prevas, Salvucci, & Koedinger, 2004). The
solution of creating prototypes of apps for the cognitive
model is problematic for three reasons. First, it is a time
consuming process. Second, the granularity of the prototype
can affect the validity of the results. And third, depending
on the specific usability questions new prototypes might be
necessary, e.g. for questions addressing finer granularity.

This paper introduces ACT-Droid, a tool that allows
ACT-R models to directly interact with Android smartphone
applications. Thus, prototyping of applications becomes
obsolete and testing usability with cognitive models a
realistic goal.

225

With ACT-Droid no artificial tools need to be developed,
ACT-Droid is a further development of Hello Java (Biittner,
2009). It directly connects to the Android app, identifies
buttons and other items and can interact with them.

Technical Details

The two main tasks ACT-Droid fulfills are: performing
motor output of ACT-R at the app and updating the visicon
of ACT-R according to the changing app screen. These
functionalities are provided by the model interface and the

app interface, which communicate with each other.

model app

| (ACT-Droid R
(load device)

— ; —
(setf *ip* ...) > model motor app >
(run 20) inter- inter-
: < face [€— T face [€
visua
- J

Figure 1: Architecture of ACT-Droid.

The app installed on a smartphone communicates with
ACT-R over TCP/IP sockets. If the extended app is started,
the app interface establishes a server socket and the model
interface connects ACT-R as a client.

Motor

Currently, ACT-R’s mouse commands are interpreted as
fingertip touches by the Android app. So, each time the
cursor is moved by the model, the model interface sends the
new cursor position to the app interface. The app interface
saves the current position of the cursor. Furthermore, if the
command to click is received, the app interface performs a
click at the saved cursor position.

Visual

The most important functionality of the app interface is to
provide all visible information whenever the visicon of
ACT-R requires updating. All visible information is
recursively searched and descriptions of any visible

checkboxes, buttons and textfields are generated. This
description consists of: kind, value (usually its text), color,
size and position.

For the FiguRapp example (Lindner & Russwinkel, 2015)
included in the figure above, the description contains four
buttons (which in ACT-R is considered of the kind “oval”)
with their respective values “Fuellung”, ‘“Peripherie”,
”Zurueck” and “Menue” and a triangle of the kind
“triangle” with the color “red” and no specified value.

The description provided by the app interface is send to
the model interface. The model interface then reloads the
visicon according to the received information.

What is Possible

With ACT-Droid the ACT-R model interacts with the actual
Android app, the interaction is fully automated.

Furthermore, in the case of uncommon GUI elements,
ACT-Droid enables the modeler to define how these
elements should appear in the visicon. In the FiguRapp, for
example, the image of a red triangle is defined to be of the
kind “triangle” and of the color “red”. But alternatively, it
could also be of the kind “figure”, of the color “red” and
have the value “3” (for the nodes). Thus, the content of the
screen can be described as detailed as necessary. The
granularity is only limited by the structure of the visicon.

Due to different encodings, problems often occur with
German umlauts. ACT-Droid replaces these by their
respective two “normal” letters. This approach can easily be
applied to other characters.

How to

The prerequisites for using ACT-Droid are the following: a
computer with Lisp environment (e.g. Lispworks), ACT-R
source files (the standalone does not work) and Android
Studio with the source files of the app. Furthermore, an
Android smartphone to run the extended app on is needed,
because the emulator will not work.

ACT-Droid can be downloaded from
http://dx.doi.org/10.14279/depositonce-5181. Detailed
instructions in “Readme.txt” and the FiguRapp example are
also included. A very basic ACT-R model that will also run
on the FiguRapp is provided. This simple model will
randomly explore and click on everything. To use other
ACT-R models with ACT-Droid, model-interface.lisp has to
be loaded and parameters have to be defined at the
beginning of the model, e.g. the IP address of the
smartphone.

Furthermore, a few modifications of the apps source code
are necessary, i.e. adding the lispcom package and three
lines of code to the apps main activity. All this is described
in the material. Once the description in ACT-R's visicon is
satisfying, there is no need for editing the app any further.

After everything is set up, the app on the smartphone has
to be started first and then the ACT-R model can be run
using the command do-experiment. The model will directly
interact with the app.

226

Outlook

Until now, implementing scrolling with ACT-Droid has not
been considered and a thorough test with different apps is
pending. Another objective is the further simplification of
the set-up and usage, e.g. when having more than one
Android activity (common).

Currently, we are working on replacing mouse commands
with the touch commands of ACT-Touch (Greene,
Tamborello, & Micheals, 2013). This is the next step
towards an adequate tool for efficient usability testing of

apps.

References

Biittner, P. (2010). "Hello Java": Linking ACT-R 6 with a
Java Simulation. In D. D. Salvucci & G. Gunzelmann
(Eds.), Proceedings of the 10th International Conference
on Cognitive Modeling (pp. 289-290). Philadelphia, PA:
Drexel University.

Greene, K. K., Tamborello, F. P., & Micheals, R. J. (2013).
LNCS 8007 - Computational cognitive modeling of touch
and gesture on mobile multitouch devices: applications
and challenges for existing theory. Proceedings of the
15th international conference on Human-Computer
Interaction (pp. 449-455). Las Vegas, USA: ACM.

Halbriigge, M. (2013). ACT-CV: Bridging the Gap between
Cognitive Models and the Outer World. In Brandenburg,
E., Doria, L., Gross, A., Guntzler, T., and Smieszek, H.,
eds., Proceedings of the 10th Berlin Workshop Human-
Machine Systems (pp. 205-210). Berlin,
Universitétsverlag der TU Berlin.

Halverson, T. B. Reynolds, B. and Blaha., L. M. (2015)
SIMCog-JS: Simplified interfacing for modeling
cognition - javascript. Proceedings of the 13th
International Conference on Cognitive Modeling (pp. 39-
44). Groningen, The Netherlands.

Hope, R. M., Schoelles, M. J., & Gray, W. D. (2014).
Simplifying the interaction between cognitive models and
task environments with the JSON Network Interface.
Behavior research methods, 46(4), 1007-1012.

John, B. E., Prevas, K., Salvucci, D. D., & Koedinger, K.
(2004). Predictive Human Performance Modeling Made
Easy. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (pp. 455-462).
New York, NY, USA: ACM.

Lindner, S., & Russwinkel, N. (2015). The Effect of Design
Decisions on User Expectations - A modelling approach.
In C. Wienrich, T. O. Zander, & K. Gramann (Eds.),
Proceedings of the 11th Berlin Workshop Human-
Machine Systems (pp. 98—102). Berlin: Universitédtsverlag
der TU Berlin.

Prezenski, S., & Russwinkel, N. (in submission). Towards a
general model of repeated app usage. In D. Reitter & F. E.
Ritter (Eds.), Proceedings of the 14th International
Conference on Cognitive Modeling. Pennsylvania.

Urbas, L., Heinath, M., Troesterer, S., Pape, N., Dzaack, J.,
Kiefer, J., & Leuchter, S. (2006). Agimap: A tool chain to
support the modelling of the interaction level of dynamic

systems. Tutorial at Trieste: Proceedings of the Seventh
International Conference on Cognitive Modeling (pp.
409). Trieste, Italy.

227

