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Abstract

We utilize a spiking neural network model of working mem-
ory (WM) capable of performing the spatial delayed response
task (DRT) to investigate the functional effects of two drugs
that affect WM: guanfacine (GFC); and phenylephrine (PHE).
In this model, the loss of information over time results from
changes in the spiking neural activity due to recurrent con-
nections. We reproduce the standard forgetting curve, then
show that this curve changes in the presence of GFC and PHE,
whose application is simulated by manipulating various neuron
properties. In particular, applying GFC causes increased firing
in neurons that are sensitive to the information currently be-
ing remembered, while applying PHE leads to decreased firing
in these same neurons. Interestingly, these memory-specific
effects emerge from network-level interactions, because GFC
and PHE affect all neurons equally. We compare our model to
both electrophysiological data from neurons in monkey dorso-
lateral prefrontal cortex and to behavioral evidence from mon-
keys performing the DRT.
Keywords: working memory; delayed response task; guan-
facine; phenylephine; Neural Engineering Framework

Introduction

Working memory (WM) is a central component of cognitive
systems which use it to temporarily store information during
the execution of complex tasks. Models of WM differ greatly
between contemporary cognitive architectures, leading to di-
verse predictions about how information is represented and
altered over time. Because WM is biologically realized in
networks of neurons, one goal for researchers studying WM
is to understand how networks of spiking neurons implement
information storage and retrieval in the brain. In so doing,
such models can be used to characterize deficits of WM asso-
ciated with mental disorders, such as attention deficit hyper-
activity disorder (ADHD) and Tourettes syndrome (Scahill et
al., 2014), and be used to understand the biochemical mech-
anisms behind drugs used to treat such deficits (Avery, Fra-
nowicz, Studholme, van Dyck, & Arnsten, 2000). Due to
the complexity of the interactions involved, few studies have
characterized the relationships between drug chemistry, neu-
robiology, and cognitive abilities, including working mem-
ory.

In this paper we present a spiking neural network model
of WM and action selection applied to a mnemonic cognitive
test, the delayed response task (DRT). Computational models
are well-suited to investigate multilevel interactions, includ-
ing those between drugs that alter the brain’s biochemistry
and the resulting disruptions in cognitive abilities. We con-
struct such a model using the Neural Engineering Framework

(NEF) (Eliasmith & Anderson, 2003), a general method for
building cognitive models from spiking neurons. The NEF
has previously been used to create biologically-constrained
models of list memory (Choo & Eliasmith, 2010) and action
selection (Stewart, Choo, & Eliasmith, 2010) that are con-
sistent with neural and behavioral data. This paper extends
these models by simulating the effects of two drugs, guan-
facine (GFC) and phenylephrine (PHE), which enhance and
inhibit WM respectively.

In the next sections we describe the biological and com-
putational basis of WM in the brain, examine the biophysi-
cal mechanisms of the applied drugs on neural activity, and
advance a hypothesis for the relationship between them. We
then present our model, describing how information is stored,
forgotten, and retrieved in the delayed response task. When
GFC (PHE) is applied to the model, we observe a shifted
firing rate in those neurons whose spatial mnemonic tuning
(preferred space/time direction) is aligned with the cue’s lo-
cation. This in turn affects the value stored in WM, leading to
an increase (decrease) in performance on the DRT. The mag-
nitude and timing of this effect is comparable to empirical
data from monkeys. We conclude by proposing biophysical
and anatomical extensions of the model.

Biological Background

WM is realized in the prefrontal cortex (PFC), a brain region
whose prominent size in highly-evolved primates suggests its
importance in complex cognitive tasks that require a flexi-
ble mental workspace. The PFC represents information that
is temporarily held in mind and used to guide behavior and
decision-making, and is thought to be maintained through re-
current excitatory connections between neurons with similar
tuning properties (Goldman-Rakic, 1995). Computationally,
this recurrence realizes an extended temporal integration that
preserves the represented item without external stimulation
(Singh & Eliasmith, 2006).

The stable representation of items stored in WM is particu-
larly sensitive to the synaptic connections of intra-PFC loops
and the biochemical environment of PFC neurons. Drugs
that are used to treat WM disorders such as ADHD and
Tourette’s Syndrome target these biophysical mechanisms
and have been shown to affect WM in healthy animals (Avery
et al., 2000; Scahill et al., 2014). For example, guanfacine
(GFC), an agonist for the a2A-adrenoreceptor, influences
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WM in PFC neurons expressing Hyperpolarization-activated
Cyclic Nucleotide-gated (HCN) ion channels (Franowicz et
al., 2002). At rest, HCN channels permit the influx of non-
specific cations, but deactivate in response to depolarization.
HCN channels are unevenly distributed along the dendritic
tree, with an almost sevenfold increase in density from the
somatic to distal end of the dendrites. These properties allow
HCN channels to reduce the temporal variability of dendritic
excitatory postsynaptic potentials (EPSPs) that exists due to
spatial distribution along the dendritic tree (Magee, 1999). It
is believed that these channels control the excitability of pyra-
midal neurons in PFC by modulating the temporal dendritic
summation and resting potential (Poolos, Migliore, & John-
ston, 2002).

GFC, acting through a cAMP-mediated intracellular sig-
nalling cascade, closes HCN channels, resulting in less damp-
ing of excitatory dendritic spikes and increasing the overall
excitability of the neuron. A study by Wang et al. (2007)
showed that GFC increased the firing rate of PFC neurons
with weak mnemonic tuning in the direction of spatial cues
on the delayed response task, while having no effect on
cells tuned in the opposite direction. Similarly, the a2A-
adrenoreceptor antagonist PHE opened HCN channels and
decreased firing rates of preferred-direction cells. These re-
sults are consistent with increased (decreased) behavioral per-
formance on the delay-response task (Mao, Arnsten, & Li,
1999; Ramos, Stark, Verduzco, van Dyck, & Arnsten, 2006).
We hypothesize that GFC raises the firing rate of spatially
tuned neurons, causes a slower decay of items stored in PFC
neural integrators, induces lower rates of forgetting, and con-
sequently increases performance on the delay-response task.
We test this hypothesis in a spiking neuron model.

A Spiking Neuron Model of Working Memory

The core requirement in a neural model of WM is a popu-
lation of neurons that can maintain its state over time. That
is, given a brief input, the internal connectivity should cause
the neural activity pattern that results from that input to per-
sist after the input has stopped. This persistence will not be
perfect – over time the neural activity will drift away from its
initial value.

However, this population of neurons cannot maintain any

possible pattern of firing: we expect there to be correlations
in the structure of this neural activity. Indeed, it has become
common to analyze neural activity in WM areas (and else-
where in the brain) by performing dimensionality reduction
through techniques such as jPCA (Shenoy, Sahani, & Church-
land, 2013). These approaches characterize the underlying
patterns of correlation between the spiking neurons, identi-
fying a lower-dimensional subspace that the neural activity
represents. That is, rather than treating each neuron indepen-
dently, we assume there is some vector x that is being repre-
sented by the population of neurons. The dimensionality of
this vector is much smaller than the number of neurons, which
means the information is redundantly encoded across these

neurons. In particular, each neuron i will have some particular
vector e

i

for which that neuron fires most strongly (these are
often known as “preferred direction vectors” or “encoders”
and have been widely used as a useful way of characterizing
cortical activity (e.g. Georgopoulos, Kalaska, Caminiti, and
Massey (1982)). We can consider the total overall current go-
ing into a neuron to be proportional to e

i

·x (the similarity be-
tween x and the preferred vector e

i

). To produce a variety of
tuning curves and firing rates that matches those in PFC, we
randomly chose a gain a

i

and bias current b
i

for each neuron,
resulting in a total input current of a

i

e

i

· x+b
i

. This current
can be fed into any neuron model, but here we simply use the
standard leaky integrate-and-fire (LIF) model.

Given that the neural spiking activity encodes some vector
x, it should be possible to recover that information by ob-
serving the spikes. The simplest method is to “decode” this
spiking information via a weighted sum of the spikes, such
that x̂(t) = Â

i

a

i

(t)d
i

⇤h(t), where a

i

(t) is the spiking activity
of the ith neuron, h(t) is the shape of the post-synaptic cur-
rent1 caused by the spikes, and d

i

is the weighting factor for
each neuron. The decoder (i.e., d

i

) values can be found by
performing a least-squares optimization that minimizes the
difference between x (the original vector) and x̂ (the vector
recovered by observing the spiking activity). This method
of characterizing neural representation is the first principle of
the Neural Engineering Framework (NEF) (Eliasmith & An-
derson, 2003).

Now that we have defined how a population of neurons can
represent a value x, we can construct recurrent connections
within this population such that the neural activity continues
to represent x over time. To realize such a WM, we must find
recurrent connection weights that stabilize dynamical neural
activity, regardless of the value x being represented. Using
the third principle of the NEF, this can be characterized as
another least-squares minimization problem: previous work
has shown that the optimal weights from neuron i to neuron j

are w

i j

=a
j

e

j

N
d

i

(Eliasmith & Anderson, 2003). The result
is a population of spiking neurons that maintains its activity
over time, and has been the basis of multiple WM models
(Singh & Eliasmith, 2006; Choo & Eliasmith, 2010).

To simulate the WM component of the delayed response
task, we let x be two-dimensional, where the first dimension
is the value to be remembered, and the second dimension is
the amount of time it has been remembered for. Empirical
and modeling evidence are consistent with the claim that PFC
neurons explicitly encode the passage of time (Lewis & Mi-
all, 2006; Bekolay, Laubach, & Eliasmith, 2014; Singh &
Eliasmith, 2006). For example, some PFC neurons start fir-
ing only after a given amount of time has passed, while others
gradually decrease their firing rate over time (Romo, Brody,
Hernández, & Lemus, 1999). These “positive monotonic”
and “negative monotonic” neurons can be thought of as neu-
rons that are sensitive to both the value being represented and

1For this model, we use an exponential synapse with a decay
constant of 100 ms consistent with NMDA-type glutamate receptors.
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Figure 1: Recurrent spiking of WM neurons with and with-
out added noise. Top spike rasters show 100 neurons (out of
3000). The represented value is computed from the spiking
activity with x̂ = Â

i

a

i

(t)d
i

⇤h(t). With random injected noise
the memory is more unstable and decays towards zero.

the amount of time the memory has been held; in other words,
these are spatial mnemonic neurons whose e

i

values are large
for both the first and second dimension. Other neurons may
only be sensitive to one or the other dimension (i.e. would
have small e

i

values for one of those two dimensions). This
variability in e

i

matches well to the observed variability in
WM tuning curves (Singh & Eliasmith, 2006).

Variability and Drug Effects

The WM model used here is based on that in Singh and Elia-
smith (2006), with the addition of randomly varying back-
ground current to each neuron, to reflect the stochastic vari-
ability found in the brain. Without this random “noise”, the
information stored in WM is stable for a very long time (min-
utes to hours). However, with a small amount of background
current added, the memory decays over tens of seconds as
shown in Figure 1, consistent with decay rates of human WM
(Choo & Eliasmith, 2010)

We use this model to investigate how WM is affected by
the drugs GFC, which increases the excitability of neurons,
and PHE, which decreases excitability. We simulate their ef-
fects using two alternative methods which simplify the afore-
mentioned biophysics while maintaining the core functional
properties in the NEF. In the first method, we model excitabil-
ity as a global increase (or decrease) in somatic current to all
WM neurons. Importantly, even though Wang et al. (2007)
showed that, in vivo, an increase in firing activity was only
observed for neurons whose preferred direction was aligned
with the stimulus being remembered, we do not apply this
extra current only to those neurons. This is because there is
no direct mechanism by which GFC or PHE could affect only
those neurons that are actively encoding information. Rather,
we apply the simulated drug effect to all the neurons in the
WM model. While this seems counter-intuitive, we show be-
low that when we simulate this system, the network effects of
the recurrent connections are sufficient to cause the observed
differential response (Mao et al., 1999).

Figure 2: Subtheshold resting membrane potential as a func-
tion of applied current for normal (left) and HCN-knockout
mice (right). Closing HCN channels lowers the neuron’s rest-
ing potential (lower value of E

m

at I = 0) while increasing the
neuron’s response to subsequent input (higher slope of E

m

vs.
I). Image reproduced from Nolan et al. (2004).

In the second method, we attempt to more faithfully re-
produce the biophysical effects of HCN channel closure by
manipulating the neurons’ internal properties. HCN chan-
nels allow positive ions to flow into the cell, so closing HCN
effectively induces a negative current, lowering the resting
membrane potential. We model this effect by lowering the
bias current b

i

of each neuron in the WM. Additionally,
closing HCN channels modulates neurons’ dendritic summa-
tion, such that small, desynchronized dendritic spikes more
strongly influence the somatic membrane potential. This ef-
fectively increases neurons’ response to a given synaptic in-
put, which we model by increasing the gain a

i

of each neuron.
We calibrate the competing effects of these manipulations us-
ing data from Nolan et al. (2004), which compares the sub-
threshold voltages of HCN-knockout mice and normal mice
as a function of input current, Figure 2.

Modeling the Delayed Response Task

In the spatial delayed-response task (DRT), monkeys are pre-
sented with a brief (1s) visual cue positioned relative to their
fixed gaze. The cue is removed. During the delay period
(2, 4, 6, or 8s), the monkey stores the cue location in WM,
then recalls that location in the response period by pressing
the corresponding button or making a saccade. In terms of
our model, the cue is considered to be a numerical value be-
tween -1 and 1 (the first dimension of the vector x). This
value is fed into the model by directly injecting current into
the WM neurons, causing them to spike with frequency de-
termined by the similarity between their preferred vector e

i

and the represented value x, computed as e

i

· x. This exter-
nal current is injected for the duration of the cue period (1s)
then removed; after this, the memory must be maintained by
activity fed back through the WM recurrent connections.

To produce a response, the model must access that stored
value and produce one of two outputs (-1 or +1). While a
mechanism to perform this is straightforward to design with
the NEF (Sharma, Kromer, Stewart, & Eliasmith, 2016), this
part of the model does not alter the drug effects, so for sim-
plicity we do not consider it here. Instead, we take the neural
activity of the WM neurons and compute their weighted sum,
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giving an estimate of the original value (x̂(t) = Â
i

a

i

(t)d
i

⇤
h(t)). Since a neural mechanism to convert this value into a
decision will include some degree of variability, we approxi-
mate this by adding normally distributed noise to this value.
If the result is above zero we interpret this as the model giv-
ing the first response, and if it is below zero we interpret it as
giving the second response.

Results

To simulate the cellular effects of GFC and PHE, we tested
two methods for perturbing the neurons, as described above.
In the first, we injected a noisy signal2 into neurons in the
WM population, essentially using additive bias to increase
(decrease) neural excitability. In the second, we manipulated
the gains and biases of the LIF neurons used in the simu-
lation, effectively decreasing each neuron’s resting potential
while increasing its gain to synaptic inputs3. Both perturba-
tions produced the desired effects; we hereafter report results
from the first method.

We began by comparing delay-related neural firing rates
in the WM population4 with activity from neurons in mon-
key dorsolateral PFC (Wang et al., 2007). We selected model
neurons that were tuned to the preferred direction during con-
trol conditions, as per their hypothesized importance in rep-
resenting the cue’s location during the delay period. Wang
et al failed to provide a precise definition of “weak spatial
mnemonic tuning” or their procedure for choosing such neu-
rons, so we selected model neurons based on the magnitude
of their encoders (e), the change in their firing rate when pre-
sented with preferred-direction stimuli (da/dt), and their dif-
ferential response to drug application (Da). Figures 3 and 4
show the normalized firing rate of neurons before and after
the simulated application of GFC and PHE. Both empirically
and in simulation, GFC increased the firing rate of preferred-
direction neurons while having little effect on neurons in the
nonpreferred direction. Similarly, PHE decreased the firing
rate of preferred, but not nonpreferred, neurons.

Next, we investigated whether the firing rate of preferred-
direction neurons encoded the location of the cue stored in
WM. Using the NEF, we decoded, from the neural activities,
the value stored in the WM during the delay period. As the
model forgot the original stimulus, this value decayed expo-
nentially. In response to GFC (PHE), and concurrent with
the increased (decreased) firing rate of preferred neurons, the
WM value decayed less (more) rapidly, Figure 5.

Lastly, we tested whether the value stored in the WM co-
incided with the accuracy of the model on the DRT. Figure 6
shows the likelihood of correct response as a function of de-
lay period length for a one-dimensional DRT (left-right cues).
Both for monkeys (solid line) and the model (dashed line),

2Normally distributed and proportional to the maximum firing
rate, N(0.002,0.09) for GFC, N(�0.002,0.09) for PHE

3GFC: b
i,pre

= 0, b
i,post

=�0.04, a
i,pre

= 1.00, a
i,post

= 1.036;
PHE: b

i,pre

= 0, b
i,post

= 0.046, a
i,pre

= 1.00, a
i,post

= 0.960
4
N = 3000 neurons, neuron noise s = 0.009, synaptic time con-

stant t=0.1, dimension D = 2 (stimulus, time).

Figure 3: Normalized firing rate of neurons with spatial
mnemonic tuning in response to Guanfacine. Top: data
from monkey dlPFC while performing the DRT (Wang et al.,
2007). Bottom: spikes from model neurons in the integrator
population smoothed using Gaussian convolution (s = 0.04
every t = 0.2s). GFC only increases the response of neurons
that encode mnemonic information in the preferred direction.
Preferred direction neurons: 0.3 < e < 0.7, 0 < da/dt < 0.5,
7 < Da < 50, N = 25. Nonpreferred direction neurons:
�0.7 < e <�0.3, �0.5 < da/dt < 0.5 �1 < Da < 1, N = 5.

Figure 4: Normalized firing rate of neurons with spatial
mnemonic tuning in response to a2A-adrenoreceptor antago-
nists yohimbine (top) (Wang et al., 2007) and phenylephrine
(bottom). These drugs decrease the response of neurons with
encoders in the preferred direction. Preferred direction neu-
rons: �0.7 < e <�0.3, 0 < da/dt < 0.5, �50 < Da <�10,
N = 17. Nonpreferred direction neurons: 0.3 < e < 0.7,
�1 < da/dt < 1 �2 < Da < 2, N = 2.
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Figure 5: Value stored in WM during the delay period. Ap-
plying GFC (PHE) results in higher (lower) neural firing rates
that shifts the curve up (down), altering the model’s ability
to distinguish the represented value from zero following the
delay period. Reported values are averaged over N = 50 real-
izations with confidence intervals plotted in gray.

accuracy decreased steadily from 2-6s then dropped sharply
at 8s5. Our model shows increased (decreased) performance
on the DRT following application of these drugs that fits the
baseline empirical data with root mean-squared error between
0.0001�0.005. The accuracy dropoff occurs when the value
stored in the WM become indistinguishable from zero to the
model’s noisy decision procedure following the delay period.

Discussion

In this paper, we presented a minimal model of WM applied
to the DRT that reproduces neural spiking and behavioral re-
sults under various drug manipulations with surprising accu-
racy. The model extends classical works on WM dynamics
and the effects of neuromodulation (Brunel & Wang, 2001)
by (a) incorporating the NEF, an approach that allows for the
principled decoding of information represented in large-scale
spiking neural networks, and (b) demonstrating that neuro-
modulation of WM (and its behavioral effects) can be studied
through simple manipulation of neuron properties, bypassing
the need to build complex circuits using Hodgkin-Huxley-
type neurons.

Future work will address several simplifying assumptions
made in the study. First, a detailed sensitivity analysis would
reveal the robustness of the model to parameter variation. Ex-
ploratory experiments showed the decision noise and synap-
tic time constant altered the shape of the recall curves and
increased the RMSE, but a more systematic investigation is
needed to discover interactions between the remaining free
parameters.

Second, the use of LIF point neurons to represent delay-
related activity in WM necessitated an approximation of HCN
opening and closing. Surprisingly, we found that both sim-
ple manipulations (biasing neurons or increasing their gain)
produced changes in firing rate and behavioral response that

5To capture the inaccuracy of monkeys after a 2s delay, we intro-
duced a 7% chance of misperceiving/ignoring the stimulus.

Figure 6: Accuracy on the DRT as a function of delay pe-
riod length. Consistent with empirical results from monkeys
performing the DRT, GFC increases accuracy while PHE de-
creases it. The outlier datapoint, experimental GFC at t = 4,
probably arises from the small samplesize of the dataset: a
single (unique) monkey was used for each experimental con-
dition. RMSE: root mean square error between the empirical
and model data. Reported values are averaged over N = 50
realizations with confidence intervals plotted in gray. Deci-
sion noise was fixed at s

decide

= 0.19 for all simulations.

match the empirical data. This suggests that biophysical sim-
ulations of drug-neuron interactions may be unnecessary, so
long as the qualitative effect of the drugs on firing rate can
be discerned from electrophysiological data. That said, re-
placing LIF neurons with more detailed neurons that include
explicit HCN channels (which can be closed or opened by
GFC or PHE) would expand the range of biochemical pro-
cesses we could simulate. To progress in this direction, we
have integrated the NEURON simulation package with the
NEF-style modeling performed here.

Finally, while our model focused on the representational
aspects of WM, the processes by which information is placed
in, and retrieved from, WM are equally important for its im-
plementation in unified cognitive systems. Adding input and
output neural subsystems to the model, such as a visual hi-
erarchy and a basal ganglia, would greatly expand the range
of cognitive tasks that our model could potentially perform,
avoid the use of arbitrary parameters such as the “misper-
ception probability” and “decision noise”, and present new
targets for drugs that affect different aspects of cognition.6
Many of these systems have already been built using the NEF
(Eliasmith et al., 2012). In future work, we plan to implement
both these extensions in pursuit of a deeper understanding of
the neural basis, psychological dysfunction, and pharmaceu-
tical modulation of working memory.

6For example, dopamine (D1) receptors are present both in PFC
and hippocampus, and abnormal neurotransmitter/receptor levels
have been implicated in WM deficits related to Parkinson’s and
schizophrenia (including performance on the spatial DRT).
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