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Introduction 
In this research we examine a specific type of human-

machine teaming, decision support systems (DSS; Power, 
2008), to facilitate decision-making in an uncertain 
environment (Eom, Lee, Kim, and Somarajan, 1998). We 
extended a previously reported instance-based learning 
cognitive model (Myers, Gluck, Harris, Veksler, Mielke, 
and Boyd, 2015) to receive decision support from a machine 
learning algorithm. To date, no models have integrated 
instance-based learning and decision support, though both 
are well represented individually in the literature (e.g., 
Power, 2008; Thomson, Lebiere, Anderson, and Staszewski, 
2015). We are interested in examining the strengths and 
deficits of integrating these as a predictive model of human-
machine teaming in the context of a multi-cue diagnosis 
decision task. 

Multi-cue Diagnosis Task 
The multi-cue diagnosis task is a two-alternative forced 
choice task where a response is made based on available 
cues. In the current task, individuals diagnose “patients” for 
heart attacks according to three binary cues available each 
trial. Each cue is associated with a different “symptom”–the 
presence of which is probabilistic–and this information may 
help determine whether the patient should go to the 
Coronary Care Unit or standard Nurse’s Bed (Green and 
Mehr, 1997; Marewski and Gigerenzer, 2012; Myers, et al., 
2015). Feedback is provided based on the final decision. 
The next trial begins after delivery of feedback. 

The learning difficulty within a particular multi-cue 
diagnosis environment is governed by the environment’s 
rule consistency and the symptom base rates. Rule 
consistency is the probability that using the underlying rule 
results in a correct diagnosis. The rule for the current 
experiment was: if and only if cue2 is true and cue3 is true, 
then it is a heart attack and the correct response is Coronary 
Care Unit. Given the current rule consistency, choosing 
Coronary Care Unit in the presence of these symptoms 
would result in a correct response 80% of the time. The 
presence of a positive “symptom” associated with each cue 
was: cue1=0.25, cue2=0.40, and cue3=0.75. 

Instance-Based Learning Theory and Model 
Gonzalez, Lerch, and Lebiere (2003) proposed Instance-
based Learning Theory (IBLT) as a process account of 
human learning during repeated decision-making. IBLT 
posits how humans identify, store, and retrieve information 
for the explicit purpose of making decisions within a 

dynamic, uncertain environment when performance 
feedback is provided (Gonzalez, et al., 2003).  

IBLT has successfully accounted for human behavior in 
two-alternative forced-choice tasks (e.g., Gonzalez, and 
Dutt, 2011), classification tasks (Gagliardi, 2011), and 
dynamic tasks (Gluck, Stanley, Moore, Reitter, and 
Halbrugge, 2010; Reitter, 2010). We developed an IBLT 
model in ACT-R (Anderson, 2007; Thomson, et al., 2015) 
to make a decision based on a particular context (i.e., the 
presence of symptoms) and prior experience.  

The model does not generate a response according to 
explicitly defined rules indicating the number and order of 
cues to check. Rather, the model generates its decision by 
using ACT-R’s blending mechanism to blend over chunks 
and to determine cue encoding order and a stopping rule 
according a particular context. In the current paper, the 
IBLT model encoded decision support instruction similarly; 
rather than providing an explicit rule, decision support was 
represented as a collection of high feedback chunks that 
suggested a response given a particular context. Previous 
research has shown that the IBLT model is capable of 
predicting human behavior on a multi-cue diagnosis task 
(Myers, et al., 2015). 

Model Evaluation 
To simulate human-machine teaming, the IBLT model 
received decision support from a machine learner using a 
constrained version of the A* algorithm that constructed a 
decision rule with maximum expected reward. Three 
decision support types were tested across a single rule 
consistency: correct DSS (optimal rule), incorrect DSS 
(non-optimal rule), and no DSS. Each decision support 
condition completed 20 runs of 267 trials. Decision support 
was delivered at trial 60 to allow the machine learner to 
settle on an environmentally consistent optimal rule and to 
ensure the IBLT model had not reached asymptotic response 
accuracy performance. 

The IBLT model goes through three different stages 
across the experiment: exploration, instruction, and 
exploitation.  The focus in the current paper was on the 
exploration and exploitation phase, each with unique 
questions concerning model performance. During the 
exploration stage, we were interested in model behavior 
according to rule acquisition, rule adherence, and accuracy. 
Specifically, because the model generates a rule based on 
learning and experience, does the model find the underlying 
rule or does it generate an alternative rule? We examined 
optimal rule-adherence with respect to accuracy for insights 
into these questions.  
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After the machine learner delivers decision support 
instruction, it would be unsurprising that rule adherence and 
accuracy change. However, of interest is how the model 
behaves during the exploitation stage when the decision 
support rule is encoded in declarative memory. Two primary 
questions need to be addressed during this stage. First, to 
what extent does the model appropriately use the provided 
rule? Second, does the decision support coerce or force the 
model into a pattern of inflexible responding by suppressing 
exploratory behavior? In other words, if the environment 
transitioned to a new rule, would the model continue 
responding according to the provided decision support rule, 
or would the model still be able to detect environmental 
changes and subsequently adjust its strategy?  

Model Predictions 
Trial data from each run was binned to 9 blocks for ease of 
interpretation. Decision support instruction occurred at the 
beginning of block 3 (trial 60; indicated in Figure 1 as a 
dashed vertical line). Data from model accuracy and reward 
across blocks were identical and therefore we used model 
accuracy to examine model performance. 

During the exploratory stage of blocks 1 and 2, the IBLT 
model began to learn and respond according to a self-
generated rule that, according to the model, appeared to best 
explain the environment. Given accuracy and rule 
adherence, the rule generated by the model during these 
blocks was sub-optimal and as a result accuracy was unable 
to match the probability associated with the environment 
rule consistency.  

After receiving decision support from the machine learner 
at block 3, the model was responsive in incorporating the 
provided instruction into its rule strategy (Figure 1). Correct 
DSS instruction resulted in increased model accuracy and 
rule adherence by following the underlying environmental 
rule. Thus, not only was the model making appropriate 
responses, but these were a result of adherence to the 
decision support rather than a decision strategy or rule self-
generated by the model. Incorrect DSS and no DSS also 
responded expectedly according to the type of rule  (or lack 
thereof) provided. 

During the exploitation phase, after delivery of decision 
support, model behavior remains–to a degree–flexible and 
exploratory. For example, in the correct DSS condition, rule 
adherence of the model increases to nearly 100% then 
begins to drift lower in subsequent blocks. The reason for 
this behavioral variability is a result of the model forgetting 
the rule over time. Rule forgetting across blocks is gradual; 
rule adherence and accuracy both remain higher relative to 
the same metrics during the exploratory stage. However, 
some degree of forgetting behavior can be advantageous. It 
allows the model to continue responding dynamically 
according to the environment, and should an environmental 
change occur (i.e., rule change or change in probabilities), 
the model can detect these changes and adjust the response 
strategy accordingly.  

Response time predictions corroborated documented 
deficits of the IBLT model (Myers, et al., 2015). 

Infrequently used chunks in declarative memory increased 
response time due to lower probability of recall. Response 
time decreased at block 7 because the chunks used thereafter 
included only frequently or recently used chunks. Based on 
the current results and previous findings (Myers et al., 
2015), the IBLT model may not be capable of accurately 
accounting for human response times in a two-alternative 
forced choice task. 

IBLT Model Performance 

Figure 1. Performance data for the three models (+/- 1 
SEM). The dashed line represents decision support. 

Conclusions 
The integration of the IBLT model with a machine learning 
decision support system demonstrated several strengths and 
weaknesses. The IBLT model is capable of taking 
instruction and incorporating it within its rule discovery 
strategy, as evidenced by accuracy and rule adherence 
changes between the exploratory and exploitation stages. 
The incorporation of the rule strategy does not suppress 
future learning. In fact, the model resumes some amount of 
exploratory behavior after instruction, thereby allowing the 
model to remain flexible and adaptive to possible 
environmental changes. These core strengths demonstrate a 
model with explanatory potential when validated against 
human behavior. The main weakness of the model relates to 
the IBLT model’s inability to model response times, such as 
those demonstrated by humans engaged in a similar task 
(Myers, et al., 2005). Future research will tackle issues such 
as direct human to model comparisons according to 
instruction-taking, and determining the timing and 
frequency of instruction delivery. 
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