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Abstract 

At a previous International Conference on Cognitive 
Modeling (ICCM) a simple model of intuitive decision-
making was presented. The task was to learn and then 
recognize strings that had a hidden structure. The model did 
well a matching of human performance on hits, misses, 
correct rejections, and false alarms. A deeper look reveals not 
just more details about the context and challenge of the 
memory task, but an explanation of the associated heuristic 
and the feeling of recognition. 
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Introduction 
With and without conscious effort we train our 
subconscious mind and we can use that learning to improve 
performance on explicit tasks (Lehrer, 2010). This is the 
fundamental idea behind the bestselling books on the topic 
each describing many examples of the phenomena 
(Gladwell, 2007; Gigerenzer, 2007). Intuitive decision-
making refers to implicit pattern recognition that is not 
thought to involve symbolic rules (Klein, 1998).  

The ACT-R theory (Anderson, 2007; Anderson, et al., 
2004) represents memory tasks by the building activations 
for the discrete, symbolic things we want to remember. The 
theory and architecture compares the activation of items in 
memory against a threshold to determine whether a retrieval 
attempt is successful thus making of remembered item 
consciously available.  

A previous ICCM conference paper (Kennedy & 
Patterson, 2012) described a model of the process on an 
intuitive learning task (Reber, 1967), i.e., below the level of 
individual object recognition. The idea was that instead of 
training increasing the activation for the discrete items to be 
learned, another process was taking place, which noted the 
structure of the objects to be learned. This deeper, 
unconscious, intuitive learning supported the performance at 
the higher, explicit level. The model did very well at 
matching the human subjects’ performance, the hits, misses, 
correct rejections, and false alarms. See Table 1 for updated 
results.  

 
Table 1: Human and Model Performance. 

 
Response type Human (SEM) Model 
Hits 31.5/44(2.7) 34/44 
Misses 12.5/44(2.2) 11/44 
Correct Rejections 35.6/44(2.7) 39/44 
False Alarms   8.4/44(2.2)   5/44 

 

The learning and retrieval process described in the 
previous paper appears to be related to the Recognition 
Heuristic described by Gigerenzer’s group (Gigerenzer, 
Todd, & the ABC Research Group, 1999; Gigerenzer, 
Hertwig, & Pachur, 2011). That Recognition Heuristic relies 
on a discriminatory level of recognition: one of two choices 
being recognized, the other not. The selection criterion is 
useful because it is often correlated with recognition goal. 
The algorithm implemented in the ACT-R model was to 
consider each sequential pair of letters, a bigram, in turn 
through to the end and for each bigram to decide. If the 
bigram is recognized, the next one is considered. If not, the 
string is not recognized. If the process reaches the end and 
each bigram had been recognized, then the string is 
considered recognized and therefore presumed to be valid. 

Here I present a deeper description of the task, the 
training, the testing, and the performance of the human 
subjects and the model providing additional support for the 
capabilities of the ACT-R architecture to represent intuitive 
learning and performance with some effort by the modeler.  

Deeper into the Task 
At one level, the Reber task is a standard memory task with 
training (presentation of the objects to be remembered) 
followed by tests of recall of those and similar objects. 
However, the purpose of the scenario is not the explicit 
memory for the specific objects used in the training, but the 
development and testing of the patterns within the objects. 
The objects, specifically, strings of letters, have the structure 
presented in Figure 1. The subjects are not shown nor 
explicitly trained on the structure itself, but it is implicitly 
presented through the strings presented in training. The 
testing evaluates the learning of the underlying structure 
because the training does not present the full set of the 
strings to be recognized.  

 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 1. Finite state diagram defining a grammar of letter 
strings. (From Reber, 1967.) 
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Deeper into the Training 
The training protocol presents a randomly selected set of 18 
strings of length 8 or fewer. However, what needs to be 
learned is the structure. The ACT-R model made the 
structure explicit by noting the sequencing of the letters in 
the training strings as bigrams. In the model, each training 
string is treated as a series of bigrams to be learned as 
discrete objects (chunks) for which activations were 
developed. 

 Analysis of the grammar determined that the full set of 
40 valid strings is made up of only 14 bigrams. As an 
example, the strings “TPPTS”, “TPPPTS”, “TPPPPTS”, and 
“TPPPPPTS” are made up of only 4 bigrams: “TP”, “PP”, 
“PT”, and “TS”. Analysis of the number of repetitions of the 
14 bigrams in 1,000 training sets of 18 strings found that all 
the bigrams are likely to be presented to each participant 
(although some with high variance) even though less than 
half (41%) of the full strings are included in the training. 

Deeper into the Testing 
The testing protocol used 22 randomly selected valid strings 
and 22 randomly generated invalid strings using the same 
letters. Each member of the test set is presented twice 
resulting in 44 possible hits/misses and 44 possible correct 
rejections/false alarms. Analysis of 1,000 sets of 22 valid 
strings revealed that all of the bigrams were used, but again 
the more rare ones having high variance. 

Deeper into the Performance 
The performance of the human subjects and the model can 
be discussed below the string level as well. The data 
available on the human subjects includes the specific 
training sets and testing sets, with performance on the test 
set at the individual string level. The analysis of the human 
and model’s performance at the string and bigram levels 
shows the strings for each type of response (hits, misses, 
correct rejections, and false alarms) are very similar. 

Discussion 
The similarity of the performance on this task at the deeper 
level is further evidence that the model and the human 
subjects are using the same process (heuristic) to intuitively 
learn and decide the questions in this task. This is 
considered relying on intuitive or “gut” feelings because the 
only thing used in the ACT-R memory retrieval process is 
only the status of whether the retrieval was successful or 
not. This is a new, beyond rational representation of 
cognition already supported within the ACT-R theory and 
architecture, although the topic is not new (Lebiere & 
Wallach 2001). It also supports the concept of the transfer of 
basic cognitive skills below the symbolic level of ACT-R 
(Taatgen, 2013). As such, it has the potential to represent 
many of the variety of intuitive decisions we make every 
day.   

Acknowledgments 
This work was originally funded in part by AFOSR/AFRL 
grant FA9550-10-1-0385 and the George Mason University 
Center of Excellence in Neuroergonomics, Technology, and 
Cognition (CENTEC). The deeper investigation was 
partially funded by the Center for Social Complexity within 
the Krasnow Institute for Advanced Study at George Mason 
University. 

References 
Anderson, J. R. (2007). How Can the Human Mind Occur in 

the Physical Universe? Oxford: Oxford University Press. 
Anderson, J. R., Bothell, D., Byrne, M.D., Douglas, S., 

Lebiere, C., & Qin, Y. (2004). An integrated theory of 
mind. Psychological Review, 111, 1036-1060. 

Gigerenzer, G. (2007). Gut feelings: The intelligence of the 
unconscious. Penguin. 

Gigerenzer, G., Hertwig, R., & Pachur, T. (2011). 
Heuristics: The foundations of adaptive behavior. Oxford 
University Press, Inc. 

Gigerenzer, G., Todd, P. M., & the ABC Research Group 
(1999). Simple heuristics that make us smart. Oxford 
University Press, USA. 

Gladwell, M. (2007). Blink: The power of thinking without 
thinking. Back Bay Books. 

Kennedy, W. G., & Patterson, R. E. (2012). Modeling 
intuitive decision making in ACT-R. Proceedings of the 
11th International Conference on Cognitive Modeling 
(pp. 1-6). Berlin, Germany. 

Klein, G. (1998). Sources of power: How people make 
decisions. Cambridge, MA: MIT Press. 

Lebiere, C. & Wallach, D. (2001). Sequence Learning in the 
ACT-R Cognitive Architecture: Empirical Analysis of a 
Hybrid Model. In R. Sun & C. L. Gilles (Eds.). Sequence 
Learning: Paradigms, Algorithms, and Applications (pp. 
188-212). Berlin: Springer Lecture Notes in Computer 
Science.  

Lehrer, J. (2010). How we decide. Houghton Mifflin 
Harcourt. 

Reber, A. S. (1967). Implicit learning of artificial grammars. 
Journal of Verbal Learning and Verbal Behavior, 6, 855-
863. 

Taatgen, N. A. (2013). The nature and transfer of cognitive 
skills. Psychological Review, 120(3), 439. 

Wallach, D. & Lebiere, C. (2003). Implicit and explicit 
learning in a unified architecture of cognition. In L. 
Jimenez (Ed.) Advances in Consciousness Research, 215-
250. Amsterdam: John Benjamins Publishing Company. 

255


