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Abstract 
We report a microgenetic and quantitative analysis of a large 
learning data set. We analyzed performance change by four 
practice trials (once per day) and by the 14 different subtasks 
with more than 500 total keystrokes. Specifically, we 
compared performance change across the subtasks—some 
subtasks are cognitive problem-solving and others are 
perceptual-motor driven tasks. This microgenetic approach 
provides an understanding of how a local performance in a 
task affects the global performance of a whole task. We 
computed the learning curve constants for the different 
subtasks. We found evidence to support the KRK theory of 
learning and retention (Kim & Ritter, 2015). The results 
suggest that learning varies by subtask and by its type.  

Keywords: Microgenetic analysis; Learning; Cognitive 
modeling. 

Introduction 
In general, learning can be described as a speed-up or 
practice effect (Ritter, Baxter, Kim, & Srinivasmurthy, 
2013; Seibel, 1963). To help better understand our learning 
performance, it is necessary to focus on a couple of variable 
factors in tasks and their types. Complex tasks may consist 
of different components of subtask skills. Presumably, 
different subtask skills may be learned and retained in our 
memory. This understanding would affect the perspectives 
of learning, learning environments, instructional systems 
(e.g., contents), and interface design of such systems.  

As one small step contributing to learning research, we 
investigated learning and retention of a complex task 
consisting of the 14 subtasks by comparing two input 
modalities (Kim & Ritter, 2015). This investigation suggests 
that the prevalence of GUI interfaces can be attributed to a 
more relearnable design compared with a keystroke-based 
interface, and suggests more investigation on where learning 
(and forgetting) occur during the course of complex tasks.  

In this paper, we conduct a deeper analysis; a 
microgenetic analysis of learning in an attempt to identify 
how learning is different across the 14 subtasks. We look at 
individual subtask skill components over four practice trials. 
This approach is similar to a microgenetic study examining 
sources of change in cognitive development and learning 
(e.g., Agre & Shrager, 1990; Moon & Fu, 2008; Siegler, 
2006). It is expected that our approach can provide a deeper 
understanding of where learning occurs and how different 
knowledge types are learned.  

Learning as a Whole Task 
A considerable amount of literature suggests a consensus 
understanding of learning; a three-stage process of learning 
provides a theoretic account of performance change 
including (a) acquiring declarative knowledge from 
instruction to perform a task in the first stage, 
(b) consolidating the acquired knowledge into a procedural 
form with practice in the second stage, and (c) tuning the 
knowledge toward overlearning exhibiting the speedup 
effect of the knowledge application mental process 
(Anderson, 1982; Fitts, 1964; Rasmussen, 1986). Based on 
this consensus foundation of learning, a study of forgetting 
expands  how an individual learns and retains knowledge 
and skills theoretically, empirically, and computationally 
(Kim & Ritter, 2015), shown in Figure 1. A widely used 
cognitive architecture, ACT-R, implements the 
computational features of the three-stage process by 
proposing that performance change follows a regularity 
known as the power law of practice—the time to complete a 
task speeds up with practice according to a power function 
(e.g., Anderson, Fincham, & Douglass, 1999; Newell & 
Rosenbloom, 1981; Seibel, 1963). An exponential function 
is also widely accepted to summarize the practice effect 
(e.g., Heathcote, Brown, & Mewhort, 2000).  
 

 
 

Figure 1: The KRK three-stage learning and retention theory 
(Kim & Ritter, 2015). 

 
Recent reports provide a predictive analysis of a 

spreadsheet task, the Dismal spreadsheet task (Kim & 
Ritter, 2015; Paik, Kim, Ritter, & Reitter, 2015), using 
KLM-GOMS (Card, Moran, & Newell, 1983) and ACT-R 
(Anderson, 2007). These analyses examine performance 
change from a novice through an intermediate to an expert 
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performing a complex task. The task includes subtasks, and 
the time to complete the task is predicted by the aggregate 
resources subtasks use (i.e., cognitive, perceptual, and 
perceptual-motor skills). These predictions can be 
meaningfully decomposed to each subtask skill and single 
action, and these can be compared with the data on the same 
level, providing an organization for a microgenetic analysis. 

A Baseline Prediction 
As a baseline prediction, a KLM-GOMS model was used to 
predict error-free expert performance on the Dismal task. 
The task completion times were computed to be compared 
with ACT-R predictions and the human data of the whole 
task of the Dismal spreadsheet task. The model includes 
primitive physical-motor operators (K – keystroke, P –
 pointing, H – homing, and D – drawing), mental operators 
(M), and system response time (R), as shown in 
Equation (1). In the interest of simplicity and because of 
relatively fast response times, we ignored the system 
response time (TR=0).   

 
Texecute = TK + TP + TH + TD + TM + TR      (1) 
 
We used three physical-motor operators (K, P, and H) and 

the mental operator (M) for time predictions of the Dismal 
spreadsheet task. The default time was used for homing and 
mental operators. During the mental operator time (TM), 
participants mentally prepare what to press and retrieve 
items from memory including the next step. We followed 
the existing heuristic rules for determining the use of mental 
preparation (Card, Moran, & Newell, 1983, p. 265) and used 
the default time, 1.35 s. We placed a mental operator in 
front of all pointing activities (pointing to a menu item) and 
all key-press activities (pressing a keystroke command). To 
complete the first subtask (Open File), theoretically, 
participants in the keyboard group needed 3 mental 
operators (refer to Table 2). The homing time (TH) for hand 
movements between different physical devices was 0.4 s.   

To calculate the keystroke time (TK), we know that it 
varies across individuals. We, therefore, computed the time 
from the first keystroke to the last in the first subtask for 
both modalities. The average keystroke time ranged from 
0.95 s/keystroke on the first day of learning to 
0.47 s/keystroke on the last day of learning. If we refer to 
the keystroke time in Card et al. (1983, p. 264), our data 
indicate the participants’ keystroke speed resided between 
the worst typist, 1.20 s and the speed of average non-
secretary typist, 0.28 s. We used 0.47 s for the TK parameter 
as an expert performance. Shift and control keys were 
counted as a separate keystroke. The predicted task 
completion time for users in the keyboard group was 
666.67 s as seen in Table 2. We present the details of the 
KLM-GOMS analysis of each subtask in the Microgenetic 
Analysis of Learning section.   

ACT-R Prediction 
Several cognitive architectures predict learning, which is 
beyond the capability of KLM. Particularly, the ACT-R 
architecture provides predictions of performance changes 
due to learning. Furthermore, the ACT-R model can predict 
learning on this task from a novice to an expert, as shown in 
Figure 2. The model consists of production rules and 
declarative memory elements to represent practice effects, 
which can be compared with human learning data (Paik et 
al., 2015).  
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Figure 2: ACT-R models of the Dismal task (dashed lines, 

from fully novice to previously practiced expert), along with 
human aggregate data (X’s and SEM error bars), and the 

KLM prediction (solid line) (taken from Paik et al., 2015). 

The Task and Data 
The task that we apply a microgenetic approach to is a large 
complex office-related task, the Dismal spreadsheet task 
(Kim & Ritter, 2015). Dismal is a spreadsheet that runs 
within Emacs and was initially developed to analyze 
behavioral process models and data (Ritter & Larkin, 1994; 
Ritter & Wood, 2005).  

The Task 
The subtasks include: opening a spreadsheet file, saving the 
file as another name, and completing a complex spreadsheet 
manipulation by calculating and filling in several blank 
cells, including five data normalization calculations, five 
data frequency calculations, ten calculations of length, ten 
calculations of total typed characters, four summations of 
each column, and an insertion of two rows to type in the 
current date and name using Dismal keystroke commands. 
Together, they can be grouped into the 14 subtasks, as 
shown in Table 1. More information about the task (e.g., the 
task environment and the procedure) is available (Kim & 
Ritter, 2015).  
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Table 1: The subtasks in the Dismal spreadsheet task. 
 

Subtasks Keystrokes 
(1) Open File Press C-x C-f 

Type <normalization.dis> ↵ 
(2) Save As Press C-x C-w 

Type JWK.dis ↵ 
(3) Calculate Frequency 
     (B6 to B10) 

Move the point to B6 by using C-p, C-n, C-
f, or C-b 
Press e 
Type "(/ (* c6 b12) 100.0)" ↵ 
Repeat for B7 to B10 

(4) Calculate Total 
Frequency 

  (B13) 

Move to the point to B13 
Press e 
Type "(dis-sum b1:b10)" ↵ 

(5) Calculate    
    Normalization  

     (C1 to C5) 

Move the point to C1 
Press e 
Type "(/ (* 100.0 b1) b12)" ↵ 
Repeat for C2 to C5 

(6) Calculate Total  
   Normalization  (C13) 

Move the point to B13 
Press e 
Type "(dis-sum c1:c10)" ↵ 

(7) Calculate Length  
     (D1 to D10) 

Move to the point D1 
Press e 
Type "(length a1)" ↵  
Repeat for D2 to D10 

(8) Calculate Total  
   Length (D13) 

Move the point to D13 
Press e 
Type "(dis-sum d1:d10)" ↵ 

(9) Calculate Typed  
    Characters  

     (E1 to E10) 

Move the point to E1 
Press e 
Type "(* b1 d1)" ↵  
Repeat for E2 to E10 

(10) Calculate Total  
     Typed Characters  

       (E13) 

Move the point to E13 
Press e 
Type (dis-sum e1:e10) ↵ 

(11) Insert Two Rows 
 

Move the point to A0 
Press C-u  
type 2 i r  
↵ 

(12) Type in Name 
        (A0) 

Press e 
Type in Name ↵ 

(13) Insert Current Date  
      (A1) 

Move the point to A1 
Press e 
Type "(dis-current-date)" ↵ 

(14) Save As Printable  
      Format 

Press C-x C-w 
Type <normalization-initials.dp >↵ 

 

The Data 
The data used in this paper is 30 participants' learning 
performance. A learning session consists of a study session 
and a test trial. A study session is when a participant used 
the study booklet to learn. Each study session is limited to 
30 minutes of study. A test trial in the learning session is 
when participants perform the given tasks without the study 
booklet.   

In the first week, participants performed four consecutive 
learning sessions. On Day 1, participants had a maximum of 
30 minutes to study the spreadsheet tasks and then 
performed the tasks. On Days 2 to 4, participants were 
allowed to refresh their acquired knowledge from Day 1, 
using the study booklet, and then performed the tasks. 

The task completion time and every keystroke movement 
were measured by the Recording User Input (RUI) system 
(Kukreja, Stevenson, & Ritter, 2006). The target 
participants in this report used a keystroke-based interface 
to complete the task. The raw data included every keystroke 
and its time (in ms). This allows us to investigate 
performance change on a more microgenetic level by 
examining the time to perform each subtask and unit task 
during the practice trials.  

Microgenetic Analysis of Learning 
We next describe the subtasks and then how learning 
happens by subtask.  

Preliminary Analysis of the Subtasks 
Table 2 shows the KLM actions in the task based on the 
instructions. We initially analyzed the recorded performance 
under the KLM framework as seen in Table 2.  

Each subtask has different mental and keystroke 
operators. The KLM analysis is based on the number of 
each operator in each subtask according to Eq. 1. It provides 
us with a basic quantitative baseline prediction of user 
performance, not performance change. Three practice trials 
is enough to get to the KLM times. With even more practice 
performance is faster than the KLM predictions (Card, 
Moran, & Newell, 1983, p. 285). Approximately half of the 
tasks are as fast as the KLM on trial 3, and all but one are on 
trial 4. 

 
Table 2: KLM-GOMS Prediction of Subtasks (in seconds) 
 

Subtasks Operators  
M H P K Time 

Sub1 3 1 0 33 19.96 
Sub2 3 0 0 26 16.27 
Sub3 20 0 0 158 101.26 
Sub4 4 0 0 27 18.09 
Sub5 20 0 0 169 106.43 
Sub6 4 0 0 37 22.79 
Sub7 39 0 0 194 143.83 
Sub8 4 0 0 27 18.09 
Sub9 40 0 0 186 141.42 

Sub10 4 0 0 27 18.09 
Sub11 2 0 0 39 21.03 
Sub12 2 0 0 9 6.93 
Sub13 4 0 0 24 16.68 
Sub14 3 0 0 25 15.80 

Operators 152 1 0 981  
Time 205.20 0.40 0.00 461.07 666.67 

Statistical Modeling of Performance Change 
The data set used in this paper is longitudinal with repeated 
measurements for each participant and for each subtask over 
time. To deal with non-independency in measurements, we 
choose to use a linear mixed effects model. The response 
variable in the data set is the task completion time.  
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In our linear mixed effects model, the fixed effect is the 
practice trials that is represented as days. As random effects, 
we had intercepts for participants and subtasks, as well as 
by-participants and by-subtasks random slopes for the effect 
of learning trials over time. This statistical model is 
adequate for the question of interest in this paper, 
investigating whether different subtasks have differential 
learning rates by participants over practice trials. Subtasks 
and participants are completely crossed, and the task time 
was repeatedly measured from each participant.  

Results 
Figure 3 shows a preliminary plot of the 14 subtasks. It 
shows different patterns of performance change across four 
days of practice trials. The red dashed horizontal lines are 
the KLM predictions. Figure 3 suggests the practice trials 
for four consecutive days allow participants to 
approximately reach an KLM expert performance except for 
subtasks 7 and 9.  Where the KLM predictions seem to be 

higher than true experts will be, these subtasks have the 
largest number of mental and keystroke operators (refer to 
Table 2). This result casts a question as to whether the 
number of mental operators are over predicted.  

We used the lme4 package (Bates, Mächler, Bolker, & 
Walker, 2014) in R to conduct a linear mixed effects 
analysis of the relationship between the response variable 
and the covariate predictors including fixed and random 
effects.  

We checked the normality assumption of the data. The Q-
Q plot of residuals shows that the residuals are not normally 
distributed. To address this issue, we performed log-
transformation of the data. Our linear mixed effects model 
then meets the assumption of normality of residuals.   

To assess the significance of practice trials (day) as a 
predictor, we looked at the t-value of the fixed effects. The 
t-value of the slope estimate is large enough. Thus, we can 
estimate that the predictor is significant since our dataset is 
fairly large with 1680 observations. 
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Figure 3: Average subtask completion times (N=30) in seconds with mean (solid black) and SEM (as error bars) for each 
subtask. The red dashed lines are the KLM predictions for each subtask.
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We plotted the data to depict all the task completion times 
over practice trials by the 14 subtasks (N=30), and a linear 
regression line for each subtask in a log-log coordinates, as 
shown in Figure 4. There were 48 missing values from 1680 
data points (2.9%), but it can be considered that those 
missing values are acceptable for our model due to the total 
number of data points.  

Besides the fixed effect of practice trials over days, it is of 
interest to determine how the subtasks differ. We compared 
two models: one model is a random intercept model both for 
participants and for subtasks, and the other model is also a 
random intercept model that has only different intercepts of 
participants (i.e., without random intercepts of subtasks). 
The random deviations (residuals, SD=0.17) from the 
predicted values that are not caused by both subtasks and 

participants increased in the case of the random deviations 
(SD = 0.40) only due to participants. This indicates that the 
subtasks have an effect on the performance change. By 
performing ANOVA to compare those two models, we can 
conclude that there is a statistical significance of the subtask 
effect, χ 2 (1) = 2681.4, p < 0.001 .   

As seen in Figure 4, there exist varying slopes by 
subtasks, indicating different learning rates by each subtask. 
With regard to the varying slopes of the subtask effect, we 
compared the model with random intercepts to an 
alternative model with random slopes for the subtask. We 
found there are significant differences in learning rates by 
the random effect of the 14 subtasks, 
χ 2 (2) =115.59, p < 0.001 .  
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Figure 4.  Regression lines with scatter plots for each subtask in a log-log scale.  

 
Discussion and Conclusions 

Figure 5 shows differences and similarities in the slope for 
the predicted time by each subtask. Similar slopes are 
observed in the subtasks 1, 2, 7, 9, 14, subtasks 3, 5, 6, and 
subtasks 11, 12. As noted in Table 1, the participants 

retrieve each keystroke command for the corresponding 
subtask, such as the unique key commands, C-x C-f, for 
"Open File", and C-x C-w, for "Save As". In this manner, 
the operators required for subtask 3 and 5, which are 
normalization and frequency calculations, are nearly 
identical. The slopes for the task time predictions are similar 
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as well.  However, it is apparent that the slope of subtask 3 
is steeper than the slope of subtask 1. It is interesting that 
the number of operators of either type in a subtask, 
particularly when there are fewer than 50, is not correlated 
with learning slopes.  

With regard to the subtasks 3, 5 (normalization and 
frequency calculations), and subtasks 7, 9 (calculating 
length and typed characters), those subtasks require a large 
number of keystroke operators in the spreadsheet subtask. 
However, the number of keystroke operators might not be 
what influenced learning because there are other subtasks 
with steeper slopes and fewer keystroke operators.  On the 
other hand, the keystroke skills are learned for four 
consecutive days of practice. All these subtasks required 
participants to repeat 10 calculations per practice trial. This 
can be considered as motor skill practice with a massed 
training regimen.  
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Figure 5: Scatterplot of the varying slopes against operators 

(Keystroke and Mental). (Lower is greater learning.) 

Figure 5 suggests that as mental operators go up, the 
learning rate goes down, but this seems curious. Regarding 
mental operators, some subtasks require participants to 
retrieve a unique keystroke command, and this can lead to 
higher learning rates. Perhaps these have different effects on 
learning. For example, to insert two rows, a participant 
needs to retrieve a declarative memory element, C-u 2 i r 
(the subtask 11). We can consider that the subtasks 11, 12, 
and 4 would lead to higher learning rates due to a weak 
activation of the corresponding element. This notion 
emphasizes the importance of moving the declarative 
memory elements to the procedural stage (Fig 1). 

This analysis shows that the subtasks vary in learning. We 
are now analyzing why learning varies so much across 
subtasks and will be investigating using our existing ACT-R 
models.  
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