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Abstract 

We present a system to comprehend natural language that 
combines cognitive linguistics with known properties of 
human language processing. It is built on Embodied 
Construction Grammar (ECG) and the Soar cognitive 
architecture. Its core is a novel grounded semantic parser. 
Experiments show the system produces actionable meanings 
and fulfills ten cognitive criteria we set out. 

Keywords: language comprehension; construction grammar; 
Soar; grounded semantics; language in robots; cognitive 
linguistics; cognitive architecture. 

Introduction 

This work attempts to combine two separate threads of 
research. One is cognitive linguistics, where formalisms 
have been developed for syntactic and semantic knowledge, 
such as Embodied Construction Grammar (ECG; Bergen & 
Chang, 2013). The second is from research on the cognitive 
modeling of language processing, where the emphasis is on 
modeling how humans process language, independent of 
specific linguistic formalisms for representing syntactic and 
semantic knowledge. In this paper, we develop a system 
called LUCIA that attempts to tie these two threads 
together, developing a novel comprehension system whose 
knowledge of language is specified in the ECG 
formalism (Bryant, 2008) and then translated into 
production rules. Those rules are used in a language 
comprehension process which is designed to fit many of the 
characteristics of human language processing. 

Cognitive Linguistics 

Cognitive linguistics is based on the idea that language is an 
integral part of cognition. Language is closely related to 
perception (Miller & Johnson-Laird, 1976) and action 
(Coello & Bartolo, 2013). To explain language we must 
study categories (Lakoff, 1987), image schemas (Johnson, 
1987; Mandler & Pagán Cánovas, 2014), and metaphor 
(Lakoff & Johnson, 1980). Meaning is seen as being 
represented by frames (Fillmore, 1976, 2013; Fillmore & 
Baker, 2009) or scripts (Schank, 1972). Psychological 
theories attempt to explain comprehension at the discourse 
(Kintsch, 1998) and sentence level (Ferstl, 1994). Looking 
at language usage leads to theories of construction grammar 
(Goldberg, 1995 & 2006; Hoffmann & Trousdale, 2013) 
that integrate semantics and syntax. 

Construction grammars provide a theory for representing 
syntax and semantics (Goldberg, 2013). ECG (Dodge, 2010; 
Feldman, 2006) is a specific formalism in this field based on 
much of the cognitive linguistic research mentioned above. 
Such a representation is necessary to language 
understanding, independent of how the processing is done, 
in order to insure that the language understanding system is 
capable of addressing the scope of human language. Parsers 
have been built for ECG (Bryant, 2008), as well as for a 
related formalism called Fluid Construction Grammar 
(FCG), which has been used for communication with robots 
(Steels & Hild 2012; Steels, 2013). Lindes (2014) used 
ideas from ECG for information extraction. However, none 
of these approaches attempts to model the characteristics of 
human sentence processing.  

Consider the ECG example in Figure 1. On the left we see 
a syntactic construction for a TransitiveCommand, and on 

the right we see a meaning schema called ActOnIt, along 
with its generalization Action. 
 

 
 

Figure 1: ECG example 
 

This example shows several characteristics of ECG. A 
composite construction lists its constituents, in this case 
named verb and object. Each constituent slot is labeled 
with the type of construction that can fill that slot. A 
construction can specify the name of a meaning schema to 
be evoked when it is instantiated, in this case ActOnIt. 
Schemas have roles to be filled. Both constructions and 
schemas can be generalized through the subcase of 
clause, and schemas can inherit roles from their parents. A 
construction can specify constraints that supply values to 
these roles through unification. In the example the 
constraints unify the meanings of the constituents with the 
roles in this construction’s meaning schema. 

This formalism is an abstraction that can describe many 
linguistic structures; however, one unanswered question is: 
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is this type of representation sufficient for representing the 
knowledge needed for modeling human sentence 
processing? 

Cognitive Language Processing 

Cognitive language processing research (Newell, 1990; 
Lewis, 1993; Lewis & Vasishth, 2005) looks at building 
computer models that comprehend language using methods 
that approximate properties of human language processing.  
We have chosen to focus on the following characteristics of 
human-like processing: 
1. Incremental – Processing extracts as much syntactic 

and semantic information as it can from each word, one 
at a time (Lewis, 1993). 

2. Integrated – Syntactic and semantic information are 
extracted jointly during comprehension (Lewis, 1993). 

3. Eclectic – Semantic, pragmatic, and world knowledge 
are used to resolve ambiguities. 

4. Real time – Comprehension proceeds in real time 
(Lewis, 1993). 

5. Useful – The meanings extracted are “actionable 
intelligence” that the agent can use for its purposes. 

6. Repair-based processing – The system greedily builds 
structures that may need to be repaired as more 
information becomes available (Lewis, 1993). 

7. Context-dependent meaning – Words can have multiple 
meanings; the meaning in a particular sentence is 
selected according to the context.  

8. Compositional – Elements with known meanings are 
combined to comprehend novel sentences. 

9. Hierarchical – Both lexical items and higher-level 
constructions contribute elements of meaning 
(Goldberg, 1995, 2006). 

10. Grounded – The meanings derived from a sentence are 
grounded in the agent’s perception, action capabilities, 
and world knowledge. 

Lewis (1993) describes a parser that is incremental (Item 1), 
does local repairs (Item 6), and shows correspondence to 
human processing in terms of its real-time performance 
(Item 4) and the kinds of structures that it has difficulty 
processing. Lewis and Vasishth (2005) extend this work to 
explore more detailed mechanisms of memory retrieval. 
That work, however, does not build full, grounded semantic 
structures that would be useful to an embodied agent. 

Ball et al. (2010), as part of the Synthetic Teammate 
Project, have a model of human language processing 
implemented in ACT-R that attempts “adherence to well-
established cognitive constraints.” This model takes 
advantage of ACT-R’s subsymbolic capabilities to resolve 
some kinds of ambiguities, and it does incremental, 
integrated, and grounded sentence understanding (Items 1, 
2, and 10).  However, the “Double R” theory of grammar it 
uses does not have the same capabilities of ECG (Feldman 
et al., 2009) to recognize many alternative expressions and 
to represent complex semantic structure. 

Cantrell et al. (2010) have a system for natural language 
understanding for robots that is designed to build semantics 

in an incremental and integrated way (Items 1 and 2), and 
ground the language in the robot’s perception (Item 10).  
This system, however, does not take advantage of cognitive 
linguistics or prior work on cognitive language processing. 

Bringing these two research threads together has some 
advantages. Cognitive linguistic theory, and ECG in 
particular, provide a formal way of describing meaning 
representations that is grounded in research on human 
knowledge representation. The formalism also describes 
syntax and the relationships by which form evokes meaning. 
Cognitive language processing attempts to ground this 
theory in actual processing that reflects known 
characteristics of human processing, thus making a theory 
that can be tested in the real world. 

This brings us to our main research question: is it possible 
to implement a comprehension system that uses the ECG 
formalism, that is consistent with human language 
processing, and that produces results that are useful to an 
embodied autonomous agent? Here we take some initial 
steps to answer this question by developing a system based 
on ECG that has many of the characteristic of human 
sentence processing.  

An Integrated Solution 

In this paper we describe LUCIA, which works as part of an 
embodied Soar agent called Rosie (Mohan et al., 2013). We 
show that it produces useful results for directing and 
instructing this robot, and that the method meets the above 
cognitive characteristics. It does not address the immense 
scope of natural language, discourse level understanding, 
the ability to learn new lexical, syntactic, and semantic 
structure, or how the brain implements comprehension. Nor 
have we explored the limits of understandable syntactic 
structures that Lewis (1993) emphasizes. 

We have developed a translator that converts ECG into 
Soar production rules, and we have written by hand a 
collection of rules that provide the infrastructure for 
language comprehension. The ECG grammar for our 
experiments is adequate to comprehend a set of sentences 
that provide directions to a robot, and the results are 
evaluated against a gold standard of meaning structures 
known to be useful to the robot. The outputs from LUCIA 
produce the correct actions with the Rosie simulator. 

In the rest of this paper we explain how LUCIA works, 
show experimental results of its performance, and discuss 
how it satisfies the ten properties of human language 
processing. Then we draw conclusions and propose future 
work. 

Language Processing in LUCIA 

Here we describe the basic principles that LUCIA is built 
on, show some examples, and relate these to our ten items. 

Basic Operation 

The LUCIA comprehension subsystem replaces the 
language comprehension part of Rosie and sends messages 
to the task performance subsystem, which acts on them, as 
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shown in Figure 2. The comprehension subsystem consists 
of rules in Soar’s procedural memory, some generated from 
a grammar and some hand-coded. The hand-coded rules 
encode functionality that is independent of specific language 
structures. 

 

 
 

Figure 2: LUCIA in context 
 

Words of a sentence come into the comprehender, which 
processes them one at a time to create a semantic 
interpretation of the complete sentence. In doing this, 
LUCIA draws on a world model that is assembled from the 
agent’s visual perception and an ontology that defines 
objects, properties, actions, etc.  In Soar the rules are held in 
production memory, the world model in working memory, 
and the ontology in semantic memory. 

When a complete interpretation of a sentence has been 
built, a message is passed to the task performance 
subsystem, labeled “Rosie Operations” in Figure 2, which 
performs the indicated action. This may involve moving the 
robot, manipulating physical objects, or providing natural 
language responses to the human user. As the robot acts, it 
updates its world model, which is always available to the 
language comprehender. 

Linguistic Knowledge 

As shown in Figure 1, an ECG grammar consists of 
“schemas” defining semantic structures and “constructions” 
which relate an input form to a meaning expressed in those 
schemas. Our translator is built based on Bryant’s (2008) 
formal definition of the ECG language. Each construction or 
schema produces one or more Soar rules. In order to have a 
system that could later be extended to learn more grammar 
incrementally, each construction or schema is translated 
independently, without using global knowledge of the 
grammar or interaction with other items. 

The linguistic knowledge that the comprehender depends 
on is represented in Soar production rules: those generated 
by the ECG translator, as well as a smaller set of hand-
coded rules that provide functions that are common over the 
whole grammar. These functions include retrieving 
properties or actions from semantic memory and resolving 
referential expressions to references to particular objects in 
the model of the perceived world in working memory. Still 
others handle bookkeeping tasks. 

Dynamic Processing 

The core of the system is the comprehend-word operator, 
which is applied once for each input word to implement 
incremental processing (Item 1). As part of comprehend-

word, a lexical-access operator is selected for each 
word, and rules generated from ECG apply to create a 
lexical construction along with any evoked semantic 
structures. A match-construction operator is selected 
each time one or more constituents can be composed into a 
larger construction. These operators are applied by other 
ECG-generated rules which fire, sometimes several in 
parallel, to evoke, build, and populate semantic schemas. 
Together, all these rules implement integrated syntactic and 
semantic comprehension (Item 2). Both lexical and 
composite constructions contribute meaning (Item 9). 

At appropriate points, various hand-coded operators are 
selected to ground referring expressions to the current 
perceived world model and the ontology in semantic 
memory (Item 10). Finally, results for this word are returned 
to the higher-level state. Once a complete sentence has been 
comprehended, infrastructure rules interpret it to form a 
message for the task performance subsystem. These results 
are compared to the gold standard developed for the robot, 
so we can verify that they are correct and useful (Item 5). 

These operators and rules do not fire in a fixed sequence, 
but in a dynamic one determined by the word being 
comprehended, the syntactic and semantic context, and the 
knowledge contained in the world model and ontology. 
These dynamics arise from the principle of doing as much 
analysis as possible while processing each word in order, 
without any look-ahead to future words (Item 1). This 
approach can produce good performance, but it often makes 
mistakes. These are corrected by a local repair mechanism 
(Item 6) modeled after the one Lewis (1993) used to 
simulate human sentence processing with Soar. 

We call the complete process Informed Dynamic Analysis 
(IDA) since the syntactic and semantic analyses evolve 
dynamically together by applying whatever linguistic and 
world knowledge is relevant at each moment (Item 3). 

Examples 

Below are examples that illustrate this dynamic process. 
 
Example 1: A Simple Sentence  
A simple example is Pick up the green sphere. Figure 3 
shows the results of the analysis, part of which constitutes 
an instantiation of the ECG items in Figure 1. 

The figure summarizes the operation of the many 
operators needed to comprehend this sentence. Numbers 
indicate when structures were built by the corresponding 
application of comprehend-word. Constructions are shown 
as blue rectangles, their meaning schemas as green ovals, 
the identifiers of structures in semantic memory in red, and 
structures in the world model in orange. The identifiers in 
green and orange are used to make associations between the 
comprehension process and items in the shared memories. 
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Command
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PICK UP THE GREEN SPHERE

Pick up the green sphere.

Action
Descriptor

pick-up1 @A1001

Reference
Descriptor

Property
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5

5

5

@P1004

 
 

Figure 3: Comprehension of a simple sentence 
 

The semantic parse shown here is built up incrementally 
as each word is processed in stages 1 to 5 (Items 1 and 2). 
Each word leads to the retrieval of a lexical construction, 
those with names in capitals. Larger constructions are 
composed whenever possible (Items 8 and 9). As soon as 
the verb is identified in stage 1, its grounded meaning with 
id @A1001 is retrieved from semantic memory (Item 10). 
The PickUp construction in stage 2 attaches to the meaning 
already built for its constituent PICK. (The green arrow 
from PICK to its meaning has been omitted to avoid clutter.) 
In stage 4, a lookup to semantic memory (Item 10) finds the 
id @P1004 to ground the property green. When the 
referential expression is complete in stage 5, it is resolved to 
an object in the world model (Item 10). In stage 5, the 
complete TransitiveCommand construction, a composite 
of the structures for Pick up and the green sphere, is also 
built as soon as its constituents are present. Note that several 
levels of processing are done for one word (Item 1). No 
repairs are needed in this example. 
 
Example 2: Phrase Attachment and Repair  
Figure 4 shows the abbreviated results for Pick up the green 
sphere on the stove. This example illustrates the integration 
of Lewis’s repair mechanisms with the semantics available 
from ECG. 
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Reference
Descriptor

large-
green-

sphere1
RefExpr

THE STOVE

the stove.

ON

on

PrepPhrase

Reference
Descriptor

stove
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Prep 
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!
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Command

ActOnIt Reference
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large-
green-
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RefExprPrepPhrase

1 2 3 4 5

1

2

6 7

5

5 5

5

5

8

8 8

8

8

8

8

8 8 8

8

 
 

Figure 4: Phrase attachment and repair 
 

In this case, the words up through sphere form a valid 
sentence, so the first 5 stages run exactly as before. But the 
end has not yet been reached, as on the stove remains to be 
processed. Stages 6 and 7 are very simple, but a lot happens 
at stage 8. First the process recognizes and resolves the 
stove. Next on is added to form a prepositional phrase. Now 

there is the classic problem of prepositional phrase 
attachment: should the phrase be attached to the command 
that is the current upper-most construction, or to modify the 
green sphere? 

The simplest way to attach this phrase would be as a 
target location for the command, and that is what would 
happen if the sentence were Put the green sphere on the 
stove. But the system can use semantic knowledge to know 
that put needs a target location and pick up does not (Item 
3). A “repair” is done by “snipping” (Lewis, 1993) the items 
shown with dotted lines and attaching on the stove to the 
green sphere (Item 6). Now the reference for the green 
sphere must be resolved again with the new information, but 
in this case the same answer results because in the current 
perceptual model this sphere is in fact on the stove. Finally, 
the semantic structure for the command is rebuilt with the 
revised referential expression. 

Attaching a relative clause, as in Pick up the green block 
that is on the stove., works in a very similar way, except that 
the word that is lexically ambiguous. In this sentence, it is a 
relative pronoun introducing the relative clause. In Put that 
in the pantry. it is a deictic pronoun referring to something 
salient in the context. The grammar has both meanings and 
they both are created during lexical-access. Later 
infrastructure rules select which one to use, and the other is 
discarded. This illustrates Item 7. 

Informed Dynamic Analysis 

The whole process just described is similar to the analysis in 
any semantic parsing system in that it takes a sentence of 
text and produces a semantic representation. However, it 
uses a dynamic process where at every step semantic and 
world knowledge can be applied. Thus, instead of 
generating many parses and ranking their likelihood, it uses 
non-syntactic knowledge to resolve ambiguities and repair 
mistakes dynamically as the analysis proceeds. This 
approach implements Items 1, 2, 3, and 10. 

Experiments 

The Rosie team has built up a corpus of several hundred 
sentences used to instruct the Rosie agent in various tasks. 
A parser has been custom-built that allows the agent to 
understand this corpus. The LUCIA system attempts to 
duplicate the processing of that parser while being more 
general and scalable to a wider variety of linguistic forms 
and problem domains. To evaluate the capability, generality, 
and scalability of LUCIA, we have devised the following 
experiments. 

Experiment 1 

First, we took the entire Rosie sentence corpus and reduced 
it by removing sentences for its game-playing domain, 
which is beyond the scope of this project, and eliminating 
duplicate sentences. Then we selected 50 of the remaining 
209 sentences. Each of the 50 shows a slightly unique 
linguistic pattern and they collectively cover much of the 
linguistic space of all 209 sentences. These 50 sentences fall 
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into several categories which are listed below, with some of 
the language forms covered and an example sentence or two 
for each category: 
 
Declarative statements (8): noun phrases, adjectives, 
properties, states, prepositional phrases 

The red triangle is on the stove. 
 

Manipulation commands (19): manipulation verbs, 
transitive commands, commands with a location target, 
prepositional phrase attachment issues, multi-word 
prepositions 

Put the green sphere in front of the pantry. 
Store the large green sphere on the red triangle. 

 

Relative clauses, etc. (5): relative clauses with properties, 
relative clauses with prepositional phrases, multiple 
prepositional phrases 

Pick [up] a green block that is larger than the green box. 
Move the green rectangle to the left of the large green 
rectangle to the pantry. 
These two examples show a relative clause, a larger than 

relation that is computed during resolution, a to the left of 
relation which is found stored in the world model and picks 
out the correct green rectangle, and the proper attachment 
of the two prepositional phrases with to. 
 

Navigation commands (10): navigation verbs, spatial 
references, absolute and relative directions, abbreviated 
commands, goal phrases 

Follow the right wall. 
Go until there is a doorway. 

 

Yes/no answers (1): Yes. 
 

Definitions of words (2): 
Octagon is a shape. 

 

Conditional commands (1): 
If the green box is large then go forward. 

 

Questions (4): 
What is inside the pantry? 
Is the small orange triangle behind the green sphere? 
 

Together, this set of 50 sentences partially addresses the 
ten distinguishing properties of human sentence processing 
listed earlier. To cover this set, it was necessary to build the 
ECG constructions and schemas they use, both for the 
lexical items and the composite constructions. Then these 
sentences served as the test suite to fully develop the infra-
structure rules that complete the LUCIA comprehender. 

We also built an evaluator that takes the output of LUCIA 
for each sentence and compares it with the gold standard 
semantics provided by the Rosie team. When differences 
were found, the grammar and hand-coded rules were 
corrected as needed to get the desired result. Finally, all 50 
sentences were comprehended correctly. 

Table 1 shows the number of Soar rules that were 
generated automatically and by hand. The ECG column 
counts constructions and schemas, and the Rules column 
counts Soar production rules. Over 60% of the code was 
generated automatically from the grammar, showing that the 
ECG representation is capable of representing the majority 
of the knowledge that is needed.  

 
Table 1: Experiment 1 statistics 

 
Category ECG Rules Proportion 

Grammar 226 487 62.5% 
Hand-coded 0 292 37.5% 

Total 226 779  
 
Another key measure of performance relates to real time, 

our Item 4. The Soar theory (Newell, 1990) maps execution 
time to real time by assuming each decision cycle takes 50 
msec. Lewis (1993, p. 13) points out that humans 
comprehend speech “as quickly as we hear it” and read even 
faster at “~240 words per minute.” Thus an incremental 
comprehender has about 4 to 5 decision cycles, on average, 
to comprehend each word. 

Our run of all 50 sentences processed 284 words in 2,582 
decision cycles, or 9.09 cycles/word and 132 words/minute. 
This is too slow by about a factor of two. However, an 
analysis shows that within a sentence there are 4 decision 
cycles of overhead within each comprehend-word cycle, 
and this overhead could be reduced considerably. 

As we developed the system to comprehend more and 
more of the 50 sentences, new declarative knowledge in the 
form of ECG items and new procedural knowledge in the 
form of the hand-coded rules were added to the system in 
many small steps. Although LUCIA has no built-in learning 
mechanism, this increase of knowledge can be thought of as 
a model of what a true learning system would have to learn. 
Figure 5 shows how this knowledge grows with the number 
of sentences comprehended.  

 

 
 

Figure 5: Code growth with knowledge 
 

The number of rules generated from the grammar is much 
larger than the number of hand-coded ones, and this 
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proportion grows as the grammar grows. However on the 
last step, where four questions were added, only 13 ECG 
items and 29 rules were added to the grammar, while 58 
new hand-coded rules were needed. The grammar changes 
were simple additions, but new ways of attachment, 
grounding, and formatting were also required. An important 
issue is whether the number of hand-coded rules plateaus as 
we extend LUCIA to new constructions. 

Experiment 2 

To test the generality of the system, we applied LUCIA to a 
Spanish translation of the same sentences used for 
Experiment 1, comparing the results to the same gold 
standard semantic structures used for Experiment 1. The 
translation was done by the first author, a fluent Spanish 
speaker, with consultation with a native Spanish speaker. 
Both have extensive English-Spanish translation experience. 

Several linguistic differences needed to be dealt with, in 
addition to the obvious one of a different vocabulary:  
adjectives can come either before or after a noun as in la 
esfera verde (the green sphere); the morphology of 
pronouns attached to the end of verbs as in Levántalo (Pick 
it up) and Oriéntate (Orient [yourself]); no equivalent of 
then in If ... then ..., although entonces could be used with 
some loss of fluency; word order may be different as in all 
the example questions; and the meanings of many words, 
especially prepositions, don’t correspond across languages. 
For example, on may be translated as either en or sobre and 
to be can correspond to either ser or estar. Spanish also has 
morphological variation in verb conjugations that English 
does not have, but that doesn’t affect this corpus since 
everything is in the present tense, all command verbs are in 
the second person familiar imperative form, and all to be 
verbs are in the third person. 

Some new constructions had to be added to handle some 
of the differences from English. Following these extensions, 
all 50 sentences were processed correctly. Table 2 shows the 
relevant code statistics. 
 

Table 2: Experiment 2 statistics 
 

Category ECG Rules Proportion 
Common 140 319 36.3% 
Spanish-specific 114 263 30.0% 
Hand coded 0 296 33.7% 

Total 254 878  
 

Experiment 3 

To evaluate the scalability of the system, we took the exact 
code used for Experiment 1 and ran it on the full original list 
of 209 sentences. With no additional vocabulary, 110 
sentences could not be understood due to 88 unknown 
words. Of the remaining 99 sentences, the system 
understood 82. This shows that the system can often process 
novel sentences that use known words (Item 8). 

We then added lexical items for those 88 words, which 
required adding 113 ECG items that generate 178 Soar 
rules. With these additions, 92 sentences were understood. 
This shows that the system can process even more 
sentences, but also that new constructions must be added to 
understand many new sentences. It doesn’t understand more 
sentences because the original 209 sentences were chosen to 
demonstrate a variety of syntactic constructions, which 
require additional grammatical and semantic knowledge. 

Conclusions and Future Work 

We set out to evaluate whether LUCIA could provide 
language comprehension to Rosie in a way that is both 
useful and cognitively plausible. The above experiments 
show that it is useful, and that it satisfies, at least partially, 
the ten cognitive criteria. It does incremental processing that 
integrates syntax, semantics, and grounding in the perceived 
world. Its grammar is both hierarchical and compositional. 
It can eclectically apply all available knowledge at any stage 
of processing. It has a working repair mechanism and a 
method for handling lexical ambiguity, although so far these 
only cover a limited number of cases. Based on Soar 
assumptions, it comes within a factor of two of real-time 
processing, and it seems clear how to improve that. 

Future work could begin with improving the real-time 
course of comprehension, adding more robust mechanisms 
for repair and handling lexical ambiguity, and exploring the 
correspondence to human limitations that Lewis’s (1993) 
system demonstrates. We can continue on to the much 
larger challenges of learning grammar and concepts, and 
using that learning to expand the scope of understandable 
domains. 
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