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Abstract

We describe the Eye Movement Minimal Model-Modified
(EM4), a lightweight minimally-sufficient model of eye move-
ments that accounts for visual search times in several distinct
paradigms. The model allows visual search to be guided by
probe-item similarity in different foveal zones, which enables
the model to be used as a front-end for various models of vi-
sual saliency. We apply the model to four distinct paradigms
to demonstrate its flexibility and utility.
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Background

In recent years, detailed models of visual processing that rep-
resent or are inspired by the human visual system have prolif-
erated, providing many alternate computational approaches
to investigating properties of visual attention, saliency, im-
age analysis, and the like (Bruce & Tsotsos, 2009; Itti, Koch,
& Niebur, 1998; Wolfe, Cave, & Franzel, 1989). Currently,
more than 60 distinct methods of evaluating visual saliency
have been compared using on popular benchmark (Bylinskii
et al.,, 2016). In contrast, relatively less attention has been
paid to modeling the mechanisms and strategies involved in
directing visual attention via eye movements to perform vi-
sual search. Although some models of visual saliency have
included foveated eye movements (e.g. Itti et al., 1998), mod-
els of visual saliency that ignore foveation and eye move-
ment may make either unnecessary or unrealistic assump-
tions. Hornoff & Halverson (2003; 2004a, 2004b, 2007,
2011), developed and enhanced models of visual search via
foveated eye movements using the EPIC computational archi-
tecture (Kieras & Meyer, 1997). As part of this effort, they
described a “Minimal Model” involving the assumptions they
felt most necessary and sufficient for modeling visual search
in applied settings. Subsequently, more advances have been
made to these models, both at the architectural and strategic
level (Kieras, 2011; Kieras, Hornof, & Zhang, 2015), and
these developments have been mirrored by a series of models
using the ACT-R architecture (e.g. Salvucci, 2001; Nyam-
suren & Taatgen, 2013; Choi, Han, Oh, & Myung, 2015). Yet
the minimal model is an attractive target for practical simula-
tion modeling outside the context of a cognitive architecture.
Its notions have been adopted by several applied models of
visual attention (e.g. Teo & John, 2008), but the model was
not designed to handle visual search based on saliency and
similarity cues, and so its lessons have not been widely as
adopted in the broader field of computational vision that has
otherwise led to dozens of visual and image-processing mod-
els that identify saliency.
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In this paper, we describe the Eye Movement Mini-
mal Model-Modified (EM4), which takes the Halverson &
Hornoff model as a starting point, implements it as a stand-
alone simulation model. To handle search in more general
situations, the model incorporates search based on probe-item
similarity, a quantity akin to what many visual saliency mod-
els produce naturally as an output, either via an activation or
posterior probability distribution. After describing the model,
we will show its ability to capture data in several related vi-
sual search and flicker change detection paradigms, illustrat-
ing its flexibility and utility.

The Eye Movement Minimal Model-Modified

The EM4 is intended as a simple implementation and exten-
sion of the core assumptions of the “Minimal Model” pro-
posed by (Halverson & Hornof, 2007), with the goal of ac-
counting for major phenomena in visual search paradigms.
The EM4 is implemented as a standalone software routine
in the statistical computing language R, so that it can be re-
purposed and adapted to work with other models of visual
processing or human performance, and serve as a lightweight
modeling and teaching tool. The source code for the model is
available via https://github.com/stmueller/em4. The basic
stages of the model are shown in Figure . The model operates
by simulating the timing of a series of eye movements and
other decisions that produce a response in the task.

Primary assumptions

We assume that visual search involves a repeated set of stages
in which a target object is selected based on its similarity
to the probe and its potential for information gain, follow-
ing which objects are eliminated or selected based on their
similarity to the probe. This repeats (fixation target is se-
lected and foveated, items are eliminated or selected based on
similarity) until either the probe object is found or a decision
is made to stop search. These probe-item similarity values
are inputs to the model and we treat them as free parameters.
This is a departure from the original description of the mini-
mal model, which used identity-match, and subsequent EPIC
visual search models, which have also used feature-level de-
scriptions to represent how different types of information are
available at difference eccentricities. Use of similarity pro-
vides a useful mid-level representation, such that low-level
feature-based visual processing models could produce simi-
larity as an output, perhaps without even requiring those mod-
els to be directly embedded within the simulation. The basic



Figure 1: Schematic stages of model. Once fixated (0), target locations are eliminated and selected (1) based on similarity-to-
probe. Here, color mismatches may be quickly eliminated in the periphery. Next, (2) targets in the fovea and parafovea are
examined, and neighboring targets not eliminated are examined. Once no more targets appear in the parafovea, a new location
is selected based on available similarity-to-probe and information gain. The process is repeated until search is complete.
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assumptions of the model include:

Information is represented as probe-to-item similarity.
The main paradigms investigated by Halverson & Hornoff
involved locating a text-based menu item that was always
present. Yet even Latin characters have a well-described sim-
ilarity space (Mueller & Weidemann, 2012), such that simi-
lar characters are confusable and take longer to discriminate.
In more traditional visual search tasks, targets that are distin-
guished by a single feature can produce visual ‘pop-out’, such
that the number of distractors does not impact search time.
Furthermore, some items in the periphery might be selected
or ignored based on similarity to the probe—if the search tar-
getis an “O”, any “X” in the periphery might be ignored, but
a “U” might require more investigation. Consequently, the
EM4 represents this information as a similarity score, whose
values may differ foveally, parafoveally, and peripherally.

Zones of detection. In reality, the availability of color,
shape, size, and location of objects degrade differentially and
smoothly as an object’s eccentricity increases, with serious
degradation starting to occur 30°—45°from the fovea (Boff &
Lincoln, 1988). Many recent models have used an eccen-
tricity function (Kieras, 2010; Nyamsuren & Taatgen, 2013),
which parametrically defines the availability of different fea-
tures at different eccentricities, but the EM4 retains just three
visual zones: the fovea with radius 1°; the parafovea with typ-
ical radius 3.5°; and the periphery which involves the remain-
ing visual field. We assume that the location of visual ob-
jects is available everywhere, insofar as any object can be se-
lected as an eye movement destination. Foveated targets can
be identified explicitly (with some chance of error), whereas
parafoveal targets with high probe-item similarity are more
likely than those with low similarity to be selected for sub-
sequent eye movements. In practice, because relevant ob-
jects can be detected or rejected parafoveally, the size of the
parafovea maps roughly onto the useful field of view (UFOV;
Edwards et al., 20006), and the size may depend on properties
of the task. In addition, just as peripheral objects that are high
in probe-item similarity might direct subsequent eye move-
ments to that location, those high in probe-item dissimilarity
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can be used to eliminate targets from consideration and thus
make fast rejection responses (see Chun & Wolfe, 1996). In
the fovea, the similarity represents the probability that a par-
ticular object is identified as the target. For true targets, this
maps onto the probability of misdetection used by Halverson
& Hornoff, but also permits false alarms if the value is non-
zero for foils.

Movement and decision times. We assume that after each
fixation, a decision is made about whether the searched-for
target has been identified, following which a choice is made
about the next eye movement destination. The timing of this
decision-action cycle constitutes one of the main free parame-
ters of the model, which we assume is impacted by the nature
of the stimuli, as well as dynamic aspects of the environment.
Although the original EPIC models attempted to use fixed ar-
chitectural parameters to determine this timing, different data
sets require using some very different decision timing. In ad-
dition, this time incorporates all time that is constant with
each foveation. A saccadic eye movement is assumed to take
place at 4 ms/degree of visual angle.

Accepting and rejecting matches. In general, the exis-
tence of visual pop-out is taken as evidence that some deci-
sions can be made based on information in the visual periph-
ery. In the tasks described here, detection of high-similarity
targets outside of the fovea lead to a subsequent eye move-
ment to the target to confirm and localize the target (partly
because most of the tasks we examine require a selection of
the target via mouse movement). However, just as a target
can be identified in the periphery or parafovea, we also as-
sume that targets can be rejected from consideration based on
information in the periphery or parafovea. In the parafovea
and periphery, the similarity score represents an activation
level, such that values above 0.5 represent greater similar-
ity to a probe, indicating a possible match; values below 0.5
indicate dissimilarity to a probe great enough eliminate from
search. Targets with periphery similarity greater than 0.5 each
need to be examined and either eliminated or responded to
if found to be identical to the target. If all peripheral targets
with similarity above 0.5 are examined and eliminated, a neg-



ative response can be made. However,for peripheral targets,
we assume that target-probe values below 0.5 permit elimi-
nating the target without eye movement (i.e., preattentively),
allowing for fast responses. This accounts for findings such
as the ability to make a probe-absent decision without exam-
ining each target, or (when a probe should produce pop-out)
to make a target-absent decision quickly even when nothing
is detected (Chun & Wolfe, 1996). Importantly, only probe-
item similarity is used directly, and the model is not impacted
by target-distractor similarity, which may provide additional
gestalt cues for helping to identify and classify oddball search
targets or possibly make search less efficient.

Selecting subsequent locations for search. Deciding
where to search next (including in cognitive search of mem-
ory, physical search of environments, and other domains) in-
volves cost-benefit analysis (Perelman & Mueller, 2015), be-
cause the costs of moving must be weighed against the po-
tential gain in information (Drury, 1975; Bruce & Tsotsos,
2009). For search constrained by eye movements, the time
needed to move the eye to a new destination is relatively in-
sensitive to the distance moved (only 4 ms/degree), in contrast
to the fixed cost of 100 ms or more required to program and
execute the movement, and the time required to classify an
item once it is foveated. However, deliberate short eye move-
ments help avoid repeated search of a location by making the
task of keeping track simpler; this may improve time-to-find,
even if a more distant location could offer maximum gain in
information, so that a new location with more potential tar-
gets may be better than a closer location with only one target.

The present model balances these by first looking for high-
similarity unidentified targets in the parafovea; if this fails, it
computes a neighborhood activation score for each unvisited
target (the sum of the exponentially-discounted similarity of
all unvisited nearby targets), and deciding the next eye move-
ment based on a mixture of the normalized inverse neighbor-
hood similarity scores and noisy distance-to-target, so that the
next target may (at one extreme) be the next-most-similar, or
(at the other extreme), be based purely on the distance selec-
tion scheme proposed by Hornoff & Halverson. When target
decisions are made based on discounted neighborhood activa-
tion, this favors movements to targets in dense regions where
a single fixation is able to eliminate several objects.

In summary, the model implements a stand-alone version
of the minimal model that operates by repeatedly selecting
objects, fixating on them, and eliminating them from con-
tention, until the selected target is found or all targets are
eliminated. Next, we will examine how the model fits sev-
eral related visual search paradigms.

Model Fits to Data

In this section, we will describe the model’s fit to several
empirical data sets. These include a menu search task, a vi-
sual search task, and two flicker-based change detection tasks.
The parameter values and goodness-of-fit values (both R and
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Figure 2: Tasks modeled in this paper. A. Menu selection
task; B. feature search; C. Dot-flicker change detection; D.
Sparse change detection.
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Figure 3: Model and data from menu search task. Left panel
shows search time (in ms); center panel shows mean number
of fixations; right panel shows mean distance of saccades.
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percent deviation, where appropriate) are shown in Table 1.
We will examine a menu search task, a feature-search task;
and two flicker-change blindness tasks whose performance
profiles differ substantially.

Menu Search Task

The primary task used by Halverson & Hornoff to inform rec-
ommendations for a minimal model involved menu search, in
which blocks of contiguous text-labeled targets needed to be
searched to find a specific target (see Figure 1a). In this task,
aside from target location, no information in the parafovea or
periphery is useful for localizing the target menu, as the la-
bels were 3-letter strings that could not be easily identified
without foveating on or near the menu.

Method This task involved search conditions involving 1,
2, 4, or 6 blocks of menu items, where each block consisted
of five items spaced vertically at .66°, arranged in up to three
columns, two blocks per column, with a vertical separation of
1.33°and horizontal separation of 7.5°between blocks. Each
target had a unique 3-letter label, and on each trial, a par-
ticipant searched for a specific labeled target. Three critical
dependent measures were examined: mean time to find, mean
number of fixations, and mean saccade distance. Full param-
eters are shown in Table 1. Model fits are shown in Figure 3.



Discussion This simulation produced good fits, using pa-
rameters and assumptions similar to Halverson and Hornof
(2007), the one major exception is the noise parameter used
to select subsequent target locations, which was much larger
for the present model, primarily because in the present model,
eye movements are first made to nearby locations in the
parafovea, rather than solely on a noisy-distance scheme.
This gives the model a natural preference for nearby objects,
and so to counteract this, a larger default noise parameter was
required. This illustrates that the EM4 captures the major
phonemonon or which the original minimal model was de-
signed to account for.

Visual search of simple targets with pop-out

Although the previous task is a useful starting point, it differs
from the most commonly-used visual search paradigms typi-
cally used within vision science and psychology. Such search
tasks typically differ in three ways from this menu search: (1)
they involve haphazard stimulus arrangement, making sys-
tematic search more difficult; (2) they often involve search for
a specific target character amongst a field of distractors that
may be either similar or dissimilar to the target (i.e., search-
ing for a T in a field of Ls or Os); and (3) they are often used
to demonstrate visual pop-out or feature search, the finding
that the presence or absence of some features can be detected
peripherally. Thus, the next step in developing the model was
to examine how it can account for a more traditional visual
search task.

Method This study involves an implementation of a vi-
sual search task with several search targets producing visual
popout (Mueller & Piper, 2014, see Figure 1b), in a cross-
national study (Tan, 2016) that involved 136 participants. In
this task, participants searched for a specified target on each
trial (a white or green O or X) in a field of either 10, 20, or
30 round white characters (C, D, G, Q, and U) on a black
background that was approximately 15°x 10°of visual angle.
On different trials, O, 1, or five targets were present. These
conditions parametrically varied the efficiency of search, the
number of distractors, and the number of targets, and pro-
vided a systematic data set for modeling search times. On
each trial, the field of elements was presented until the partic-
ipant clicked the mouse button; after which the elements were
each replaced by a circle, and the participant was instructed to
either indicate the location of an object matching the probe,
or a label marked “none” if no objects matched the probe.

Results Accuracy for the task was high (98.5%) and so we
will consider only search times, which are shown in Figure 4.
The human results (left column) show that response time for
rejecting pop-out targets tended to become longer with larger
search sets, with a clear ordering from most difficult to least
of white O, white X, green O, and green X. The same ordering
occurred regardless of whether a target was present or absent,
but the times were faster (and the slope with respect to num-
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Figure 4: Model fits to the visual search task.
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ber of distractors was smaller) when a target was present, and
this diminished further when multiple targets were present.

The fits to data were good (see Table 1), with several dif-
ferences in parameter values from the first model being (1)
smaller detection/rejection time parameters were used, and
(2) eye movements locations were selected based on probe-
item similarity, rather than by distance alone; and (3) failure-
to-detect was reduced to 0.0. The smaller detection times are
reasonable because the current task required detecting a sin-
gle letter instead of a 3-letter sequence. The use of probe-
item similarity (or a similar concept) is necessary to fit these
data, and this required making assumptions about probe-item
similarity for each target class (green and white Xs, Os, and
D/G/U/Q/C) in each zone. The slope of the response time
to each target class (with respect to number of distractors) is
primarily controlled by the peripheral probe-item similarity.
These similarity values were assigned with a uniform distri-
bution having a range of 0.3 units, with the minimum values
of .45 (when color and shape match), .3 (when either color
or shape match) and .25 (when color and shape mismatch).
Thus, the small but positive slope for target-absent responses
arises because as the number of distractors increase, the num-
ber of distractors with a probe-target similarity above 0.5 in-
creases, requiring additional eye movements to eliminate. To-
gether, these assumptions accounts for search times with a
mean proportional absolute deviation of 0.16 and a correla-
tion of .94.



Discussion The visual search data shows that the EM4 can
provide a credible account of a more traditional search task,
including pop-out effects, target-absent effects, and effects of
the number of distractors. Thus, the model is capable of pre-
dictions in two major visual search paradigms, including one
in which involves parallel feature-based selection and elim-
ination of targets. The model predicts timing of the search
task well, but without recording eye movements, there is of-
ten a potential for trading off zone size (fovea and parafovea)
with dwell time. For example, if the parafovea were twice as
large but the dwell time was doubled, a similar fit might be
obtained. Along with measuring eye movements directly, an-
other way to constrain the model is with a flicker-based search
task, a commonly-used search paradigm that yokes eye move-
ment times to a fixed frequency of presentation. We will next
examine two flicker tasks to demonstrate the model’s flexibil-
ity and help constrain its assumptions about timing of move-
ment. On their surface, the two tasks appear very similar, but
produce performance profiles that differ substantially. Thus,
it will be important to examine the aspects of the model that
change in order to account for these across-task differences.

Flicker-paradigm change detectione

A commonly used paradigm involving visual search is the
flicker change detection task (see Rensink, O’Regan, &
Clark, 1997), in which two visual stimuli (either artificial or
natural) that differ in some small way are shown repeatedly
in succession, with a brief empty ‘flash’ between them (e.g.,
50 ms) that prevents low-level visual change detection and
requires deliberate search among the targets to find the dif-
ference. Here, even if detection can be done quickly, partici-
pants often cannot benefit from more than one eye movement
per flash, which constrains the rate of information search. In
this experiment, we examined a relatively difficult version of
the task that incorporated four different types of change while
varying the number of distractors.

Methods. The present data was collected on the same
groups of participants as the visual search task. This task
used a modified version of the PEBL dot-flicker change blind-
ness task (changeblindness), and involved three stimulus con-
ditions with 5, 10, or 50 distractors. Each trial involved one
of four change types: a color change, a size change, a position
change, or a target disappearance. The entire stimulus visual
field was approximately 20°x 15°. Each display frame ap-
peared for approximately 450 ms, followed by a 50 ms blank
flash, which was sufficient to disrupt low-level visual cues of
change. Participants were permitted a maximum of 30s to
find the change, which they then indicated by clicking with
the mouse at the location of change.

Modeling the task differs from the previous models in that
there is no known a priori probe, so the notion probe-item
similarity is not applicable. Consequently, for the model, we
interpret the zone similarity values to indicate the available
evidence for a change across the flicker mask. The model
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assumes that no real information is available in the periph-
ery, but evidence for a flicker-change will often be detectable
in the parafovea (targets have similarity around .8 whereas
non-targets have similarity around .6), which can then direct
a foveation to confirm and localize the change. Because the
rate of search is constrained, the main dependent timing mea-
sures are constrained by the effective size of the parafovea,
which we adjusted to improve fit to data.

Results. Although small differences were observed in time
and accuracy between 5 and 10-target displays, participants
were considerably less accurate and slower on the 50-target
display. As shown in Figure 5, the flash condition was slower
and less accurate than the move condition (a move is essen-
tially a double-flash), and size-change tended to be about as
difficult as the flash condition. Color change was by far the
most difficult condition. The model produced reasonable fits
to the data, although it overpredicted the time needed to find
the target on the smaller displays. The model assumes that the
difficulty of different conditions arises because of a failure to
detect changes of different types once a potential change is
foveated, as shown in Table 1. In addition, the parafovea
zone had a radius of 5.5°. This indicates that such changes
may be available quite far from the fovea, but may often go
undetected, which would require frequent revisits to previous
locations.

Before discussing the results of the change detection task,
we will examine a second study using an alternate version
of the task that employs top-down cueing, and thus permits
probe-item similarity to play a role in the search task.

Figure 5: Model fits to dot-flicker task.
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Top-down control in flicker-based change detection

Methods The final data set also used the flicker paradigm,
but differed from the previous task in several ways. First,
the field of view was larger (28°x 28°), and only one type of
change occurred (a single target appeared and disappeared).
On each trial 40 symbols appeared, drawn randomly from
a set of four colored symbols (red, green, blue, and yellow
squares). The larger field of view and more uniform targets
made the task substantially easier, perhaps because of crowd-
ing and spacing effects (see Pelli, 2008). On half the trials, a
color cue was given indicating the color of the change.



Figure 6: Model fits accounting for top-down control in
change detection task
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Results The single change type, coupled with the more dis-

persed display, produced a much easier task than the previous
one: mean time to find in the 40-target task was under 4 s,
comparable to the 10-target condition in the previous experi-
ment. Furthermore, accuracy was close to 100%; in contrast
to the 50-80% accuracy produced in the 50-target condition
of the previous study. In addition, when cued, the time was
reduced further, although the advantage for different colors
differed, depending on the color.

To model these data, we assumed that different colors pro-
duce a different probability of detecting a change in the fovea,
similar to the previous model. However, on cued trials, probe-
item similarity is used to eliminate potential targets and con-
strain search. The best case scenario reduces target locations
to around 10, but because of random sampling and layout of
points, this does not reduce the time-to-find to 1/4 of the orig-
inal. The model accurately predicts the that scale of this re-
duction is about 1/3. Differences in the color cue conditions
were modeled by adjusting the peripheral similarity of dif-
ferent colors to the cue, so that in the case of red, typically
10/40 targets needed to be searched, but in the case of yellow
and green, closer to 20/40 targets needed to be searched (be-
cause of their similarity). In these models, yellow and green
often cannot be distinguished rapidly in the periphery, and
so more of these targets were foveated to eliminate the foils.
Overall, although some of the detection parameters were sub-
stantially different from the previous experiment, the model
produces reasonable fits for both with interpretable changes
in parameters (see Table 1). As in the previous change blind-
ness model, parafovea size was slightly larger than the search
task—in this case 4.0°. This is a consequence of the fact that
search times on the order of 3-4 s necessarily involve at most
6 to 8 foveations, and the only way to reliably cover the visual
field is if each foveation obtains information from this area.
Thus, both change detection models suggest that change can
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be detected at 4 or more degrees from fixation, and that color-
changes can be especially easy to miss (with failure rates af
around 40% when fixated).

Parameters of models

Table 1 summarizes the main parameters used across tasks.
Results are mainly impacted by assumptions about how long
each detection/decision phase take, and the probability of de-
tecting information in different visual zones-especially prob-
ability of detection failure in the fovea.

Discussion

The EM4 adopts and adapts the minimal model assumptions
proposed by Halverson & Hornoff (2002), and extends the
model to capture primary effects of several visual search
paradigms. We have demonstrated the effectiveness of the
model against four data sets, and the parameter settings for
these models provide insight into the timing, accuracy, and
availability of information. We will conclude by identifying
some of the main lessons we have learned from these models.

Lessons of the models

Fovea zones. Accurate prediction of times and accuracies
in search tasks require accounting for the information avail-
able in different foveal zones, and decisions about both pres-
ence and absence of this information.

Peripheral information. Substantial information about
both presence and absence of information is available in the
visual periphery (i.e., for pop-out tasks) and parafovea (for all
tasks), and search is often guided by presence and absence of
this information in all three zones.

Target rejection. Rejection of targets frequently occurs
without foveation; identification of targets often is coupled
with foveation.

Parafoveal preference. Search times can typically be ade-
quately accounted for by a model that attempts to first confirm
any high-likelihood targets parafoveally, and then maximize
information gained in each subsequent movement.

Probe-item similarity. Probe-item similarity is useful in
predicting a number of effects of visual search, sot that mod-
els of visual salience may benefit from incorporating probe
information.

Conclusions. The EM4 intends to be a simple minimalistic
model of foveated eye movement search. It is a standalone
model, and so it may be useful for lightweight practical eval-
uation in human factors domains, as a simulation model edu-
cation contexts, and as a lightweight front end for visual pro-
cessing models that produce activation or posterior probabil-
ity scores that can be interpreted as a probe-item similarity.
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