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Abstract 

This paper presents a computational model that integrates a 
dynamically structured holographic memory system into the 
ACT-R cognitive architecture to explain how linguistic 
representations are encoded and accessed in memory. We show 
that a holographic memory system provides a cognitively 
plausible and principled explanation for the processing of 
sentences with negative polarity items (NPIs) like ever and any. 
The original ACT-R model fails to capture the full range of 
human reading times and judgments of grammaticality, 
whereas the integrated holographic memory model achieves 
good quantitative fits to human error rates and response 
latencies. These results provide proof-of-concept for the 
unification of two independent computational cognitive 
frameworks. 

Keywords: Language processing; Memory; Holographic 
Reduced Representations; ACT-R 

Introduction 
A hallmark of human cognition is the ability to encode, 
access, and process compositional structures (Anderson, 
1983; Fodor, 2001; Newell, 1990). A parade case involves 
language processing. For instance, understanding a sentence 
in a discourse requires mechanisms for encoding a structured 
representation of the sentence in memory and for accessing 
specific pieces of information in that representation later. 
However, it remains an open question how these mechanisms 
are neuro-computationally instantiated. 

One model that has received much attention is the Lewis 
and Vasishth (2005) (henceforth LV05) model of sentence 
processing, realized in the Adaptive Control of Thought—
Rational (ACT-R) architecture (Anderson, 1990; Anderson et 
al., 2004). In the LV05 model, sentence processing is 
construed as a series of cue-based memory retrievals, subject 
to similarity-based interference. The model is considered the 
most precise expression of the working memory retrievals 
and associated control structures that support language 
processing, and is commonly used to investigate the timing 
and accuracy of memory retrieval in sentence 
comprehension. 

An initial success of the LV05 model was that it captured 
interference effects observed in the processing of linguistic 
dependencies, such as those involving negative polarity items 
(NPIs). NPIs are words like ever or any, which are generally 
acceptable only in sentences that contain a negative-like word 
in a syntactically higher position, e.g., No bills that the 
senators supported will ever become law. Previous work has 
shown that NPI licensing is highly susceptible to interference 

in sentences like The bills that no senators supported will 
ever become law, due to the presence of the negative 
distractor no that is in a syntactically irrelevant position (e.g., 
Drenhaus, Saddy, & Frisch, 2005). Interference manifests as 
decreased accuracy in judgments of grammaticality and 
decreased reading time disruptions at the NPI, relative to 
sentences that lack negation. Vasishth, Brüssow, Lewis, and 
Drenhaus (2008) argued that such effects are a natural 
consequence of the error-prone memory retrieval 
mechanisms embodied in ACT-R. Under this view, 
encountering an NPI triggers a retrieval for a negative 
licensor, but the wrong item can be retrieved if it matches 
some of the retrieval cues.  

The LV05 model is able to capture many empirical effects, 
but there are cases where the model makes the wrong 
predictions. For instance, Parker and Phillips (2014; 
submitted) showed that NPI interference effects can be 
reliably switched on and off, depending on when the memory 
encoding is probed: interference is observed when the 
encoding of the licensing context is probed early in the 
sentence, but the effect disappears when the licensing context 
is probed from a later point in the sentence (see also Parker, 
2014). These findings are unexpected under the ACT-R 
account, which predicts that interference effects should 
generalize across contexts, based on the assumption that there 
is a single set of principles that governs memory access.  

Parker and Phillips suggested that the contrasting profiles 
observed for NPIs reflect untested assumptions about how 
sentences are encoded in memory. ACT-R assumes that the 
encoding remains fixed over time. However, the finding that 
interference can be switched on/off depending on when the 
encoding is probed suggests that the encoding is not fixed, 
but rather changes over time, such that the internal items 
become opaque as candidates for causing interference.  

This paper presents a computational model that integrates 
a holographic memory system (e.g., Plate, 2003) into the 
ACT-R framework to explain the empirically observed 
effects that the LV05 model fails to capture. Holographic 
memory systems assume that the atomic components of a 
compositional structure are periodically bound together in 
memory to create a single, unitized encoding for 
interpretation. A key prediction of our model is that 
interference effects during linguistic dependency formation 
should be selective, depending on when the encoding is 
probed. Modeling results show good quantitative fits to a 
variety of measures, providing proof-of-concept for the 
unification of two computational cognitive frameworks. 
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The research reported in this paper builds on previously 
published literature on holographic memory models and 
integrating holographic models with ACT-R. Rutledge-
Taylor, Kelly, West, and Pyke (2014) and Kelly, Kwok, and 
West (2015) have shown that a holographic declarative 
memory system similar to the one proposed here can be 
integrated into ACT-R to capture decision-making tasks, the 
fan effect, and delayed learning. Our model demonstrates that 
this unified framework can capture more specialized 
cognitive abilities, such as language processing. 

The ACT-R model of sentence processing 
ACT-R is a cognitive architecture based on independently 
motivated principles of memory and cognitive skills, and has 
been used to study a wide range of cognitive phenomena 
(Anderson, 1990). The LV05 ACT-R model applies those 
principles to the specialized task of sentence processing.  

In the LV05 ACT-R model, linguistic constituents are 
encoded as ‘chunks’ in content-addressable memory, and the 
syntactic representation of a sentence arises as the 
consequence of pointers that index the hierarchical relations 
between chunks. Chunks are encoded as bundles of feature-
value pairs. Features include lexical content (e.g., morpho-
syntactic and semantic features), syntactic information (e.g., 
category, case), and local hierarchical relations (e.g., sister, 
parent). Values for features include symbols (e.g., ±singular, 
±animate) or pointers to other chunks (e.g., NP1, VP2). 

Linguistic dependencies, such as those between an NPI and 
its licensor, are formed using a general retrieval mechanism 
that probes all task-relevant chunks in parallel for the left part 
of the dependency (the target), using a set of retrieval cues. 
Retrieval cues are derived from the current word, the 
linguistic context, and grammatical knowledge, and 
correspond to a subset of the features of the target (Lewis, 
Vasishth, & Van Dyke). Chunks are differentially activated 
based on their match to the retrieval cues. The probability of 
retrieving a chunk is proportional to the chunk’s overall 
activation at the time of retrieval, modulated by decay and 
interference from other items that match the retrieval cues. 

The activation of a chunk i (Ai) is defined as follows.1 
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The first term of Equation 1 describes the baseline 

activation of chunk i, which is calculated according to 
Equation 2. Equation 2 describes the usage history of chunk 
i as the summation of all n successful retrievals of i, where tj 
is the time since the jth successful retrieval of i to the power 
of the negated decay parameter d. The output is passed 
through a logarithmic transformation to approximate the log 
odds that the chunk will be needed given its usage history. 

                                                             
1 Readers familiar with ACT-R may notice the non-standard 

presentation of Equation 1: the sign on the partial match component 
has been flipped to indicate its penalizing nature. 

After a chunk has been retrieved, the chunk receives an 
activation boost, followed by decay.  
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The second term of Equation 1 reflects the degree of match 

between chunk i and the retrieval cues. W is the weight 
associated with each retrieval cue j, which defaults to the total 
amount of goal activation G available divided by the number 
of cues (i.e., G/j). Weights are assumed to be equal across all 
cues. The degree of match between chunk i and the retrieval 
cues is the sum of the (weighted) associative boost for each 
retrieval cue Sj that matches a feature value of chunk i.  The 
associative boost that a cue contributes to a chunk that it 
matches is reduced as a function of the fan of that cue, i.e., 
the number of chunks in memory that match the cue 
(Anderson, 1974), according to Equation 3. 
 

('" = ( − ln	(fan') (3) 
 

The third term of Equation 1 reflects the penalty for a 
partial match between the cues of the retrieval probe and the 
feature values of chunk i. Partial matching makes it possible 
to retrieve a chunk that matches only some of the cues, 
creating the opportunity for retrieval interference (Anderson 
et al., 2004; Anderson & Matessa, 1997). Partial matching is 
calculated as the matching summation over the k feature 
values of the retrieval cues. P is a match scale, and Mki reflects 
the similarity between the retrieval cue value k and the value 
of the corresponding feature of chunk i, expressed by 
maximum similarity and maximum difference. 

Lastly, random noise is added to the activation level of 
chunk i, generated from a logistic distribution with a mean of 
0, controlled by the noise parameter s, which is related to the 
variance of the distribution, according to Equations 4 and 5. 
 

-~logistic(0, FG) (4) 
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Activation Ai determines the probability of retrieving a 

chunk, according to Equation 6. The probability of retrieving 
chunk i is a logistic function of its activation with gain 1/s 
and threshold τ. Chunks with higher activation are more 
likely to be retrieved.  
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Activation Ai also determines the retrieval latency Ti of a 
chunk, according to Equation 7. F is a scaling factor that sets 
predictions on an appropriate time scale. Chunks with a 
higher activation value have a faster retrieval latency. 
 

T" = UN"
5OP (7) 

Predictions of the ACT-R model 
The LV05 ACT-R model predicts that retrieval for linguistic 
dependency formation should be subject to interference from 
non-target or syntactically irrelevant items that match some 
of the retrieval cues (partial match interference). This 
prediction is based on the assumptions that retrieval accesses 
all chunks in parallel and that a partial match between the 
retrieval cues and a chunk can result in erroneous retrieval of 
that chunk (see Equation 1). Many studies have shown that 
this prediction is borne out for a range of dependencies, 
including subject-verb agreement (Dillon et al., 2013; 
Wagers et al., 2009; Tanner et al., 2014), anaphora (Parker et 
al., 2015), case licensing (Sloggett, 2013), and ellipsis 
(Martin, 2015). 

For instance, the LV05 model has been used to explain 
interference effects observed in the processing of negative 
polarity items (NPIs). NPIs are words like ever, any, or yet, 
that can be licensed by a negative-like word in a syntactically 
higher position. The NPI ever in (2a) is licensed because it 
appears in the scope of the negative phrase no students. When 
negation is absent, (2b), or is in a syntactically irrelevant 
position, (2c), the NPI is not licensed. 
 
(2) a. No students have ever passed the test. 
 b. The students have ever passed the test. 
 c. The students that no teachers liked ever passed the test.  
 

Previous research has shown that NPI licensing is highly 
susceptible to interference in sentences like (2c), due to the 
presence of the negative distractor, e.g., no teachers, that is 
in a syntactically irrelevant position for the purpose of NPI 
licensing. This effect manifests as decreased accuracy in 
judgment tasks and decreased reading time disruptions when 
processing the unlicensed NPI, relative to sentences that lack 
negation, like (2b).  

Vasishth et al. (2008) argued that such effects are a natural 
consequence of the error-prone retrieval mechanisms 
embodied in ACT-R. Under this account, NPI licensing is 
implemented as an item-to-item dependency by retrieving a 
negative licensor from memory using syntactic and semantic 
cues, e.g., [+scope], [+negative]. In (2a), retrieval finds an 
item that matches both cues. In (2b), retrieval fails to find a 
match to either cue. In (2c), retrieval finds a partially matched 
item, i.e., a semantically appropriate item in a syntactically 
irrelevant position. The activation boost from this partial 
match, combined with stochastic noise, can cause the 
syntactically irrelevant licensor to be retrieved, spuriously 
licensing the NPI. Vasishth et al. showed that Equations 1-6 
achieve good quantitative fits to both human reading times 
and judgements of grammaticality. 

Challenges for the ACT-R model 
The LV05 ACT-R model predicts that interference during 
NPI licensing should generalize across syntactic 
environments, since the effect is attributed to error-prone 
retrieval mechanisms that are engaged whenever an NPI is 
encountered. However, this prediction is not borne out. 
Parker and Phillips (2014; submitted) showed that 
interference effects for NPIs can be reliably switched on/off, 
depending on when the memory encoding of the licensing 
context is probed. They manipulated the position of the NPI 
relative to the potential licensors in sentences like (3), and 
found contrasting profiles: interference was observed when 
the NPI appeared early in the sentence, i.e., in the main clause 
(position 1), replicating previous findings, but not when it 
appeared later in the sentence, i.e., in the embedded clause 
(position 2). These effects were shown using both reading 
time measures and speeded acceptability judgments. 
 
(3) The journalists that no editors recommended (ever1) 

thought that readers would (ever2) understand physics. 
 

These findings suggest that the interference effects 
observed for NPIs cannot simply be due to noisy retrieval 
mechanisms that are engaged whenever an NPI is 
encountered, as assumed in ACT-R. Furthermore, the effects 
cannot reflect decay or faulty encoding of the licensing 
context, since that would predict difficulty in the grammatical 
conditions, contrary to fact.  

Parker and Phillips argued that the contrasting profiles 
observed for NPIs reflect untested assumptions about how 
sentence representations are encoded in memory. ACT-R 
assumes that the encoding of the sentence remains fixed over 
time. However, the finding that interference effects can be 
switched on/off depending on when the encoding is probed 
suggests that the encoding is not fixed, but rather changes 
over time: at one moment, irrelevant items are transparently 
accessible via partial matching; but then at a later point in 
time, those same irrelevant items become opaque as 
candidates for causing interference.  

In the next section, we discuss how such effects are 
predicted in an alternative, dynamically structured 
holographic memory system. 

Multiple-stage encoding schemes 
The LV05 ACT-R model assumes that the encoding of a 
sentence remains fixed over time. However, this is not a 
widespread assumption. Many cognitive models, including 
the entire class of Vector Symbolic Architectures (VSAs), 
e.g., Tensor Product Models (Smolensky, 1990), 
Holographic Memory (Plate, 2003), Binary Spatter Codes 
(Kanerva, 1994), assume that there is a qualitative shift over 
time in the format of an encoding in memory.  

In VSAs, compositional structures are encoded in two 
stages. When a representation is first encoded, it is equivalent 
to its subparts, such that the individual features of the 
representation can be evaluated independently from their 
position in a structured representation, creating the 
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opportunity for partial match interference at retrieval. Then, 
at a later point, those same features may be bound together, 
creating a single, unitized encoding that is dissimilar to its 
sub-parts to conserve memory resources. In this state, 
individual features are no longer independently evaluable, 
and the representation must exhibit an all-or-none match to 
the cues of the retrieval probe in order to be recovered, 
preventing the possibility of partial match interference. This 
idea of “recoding” is based on Miller’s (1956) principle of 
chunking, which provides a central explanation for how 
human memory works. 

Proposal 
An implicit assumption of VSAs is that compositional 
structures are encoded in multiple stages. VSAs make a 
distinction between “atomic” representations that are 
typically randomly generated versus “complex” 
compositional representations that are constructed from 
atomic representations. We propose that these two 
representational stages may be mapped to distinct cognitive 
processing stages as a principled explanation of the 
contrasting profiles observed for NPI licensing. Previously, 
VSA-based cognitive models have not assumed that 
particular cognitive processing stages are associated with the 
two representational schemes. However, if the format of the 
encoding changes over time, as implicitly assumed in VSAs, 
then we should expect different behaviors at different points 
in time, depending on when the encoding is probed, as 
suggested for NPI licensing.  

Encoding linguistic structure in multiple stages 
In VSAs, the feature-values of a linguistic representation may 
be encoded as high-dimensional vectors that are recursively 
bound together by compressing their outer product into a 
single vector. For instance, in a tensor-product scheme (e.g., 
Smolensky, 1990), features are bound together in memory by 
taking the outer product of the vector representations of the 
features, as shown in (4). 

 
(4) a. Feature vectors 
  [+scope]	=	[123];	[+negation]	=	[abc]	
 
 b.  Tensor-product feature binding 

  
1
2
3

⨂
]
^
_

=
1] 1^ 1_
2] 2^ 2_
3] 3^ 3_

 

 
However, as the structure grows, the size of the code grows 

exponentially, which is undesirable given the stringent limits 
on the amount of information that can concurrently occupy 
working memory (Cowan, 2001). Plate (2003) proposed a 
solution using Holographic Reduced Representations 
(HRRs), which rely on circular convolution to bind features 
together, according to Equation 8.2 Importantly, the size of 

                                                             
2 Convolution is the core mathematical operation behind 

holography, hence the term “holographic”.  

the code does not grow as more features are added, since the 
circular convolution of two n-dimensional vectors using 
modulo subscripts produces a vector with dimensionality n. 
 

4' = _, '̀5,	

7/0

,/a

 
(8) 

for b = 0 to c − 1  
(subscripts are modulo-n) 

 
defgefhi = [+jklmn]o ⊛ [+fnhqrelf]s 

 
4a = 	 _a`a + _G`0 + 	_0`G 
40 = 	 _0`a + _a`0 + 	_G`G 
4G = 	 _G`a + _0`0 + 	_a`G 

 

 

 
 

Figure 1. Circular convolution represented as the 
compressed outer product t of the feature vectors c and x. 

 
Figure 1 shows circular convolution as the (‘reduced’) 

outer product t of the feature vectors c and x, corresponding 
to the linguistic features [+scope] and [+negation] for n=3. 
Convolution is calculated as the summation of the outer 
product values along the paths of the lines.  

In the uncompressed form (encoding stage 1), individual 
features c and x are independently evaluable, making the 
representation susceptible to partial matching. In the 
‘reduced’ form (encoding stage 2), the individual features c 
and x are no longer independently evaluable, preventing the 
possibility of partial matching. In this state, the representation 
must be recovered holistically with an all-or-none match to 
the cues of the retrieval probe.  

Similarity between the retrieval probe p and a memory m 
measured by their normalized dot product, i.e., cosine 
similarity, according to Equation 9. 
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One concern is that encoding n-dimensional bindings using 

circular convolution can be slow, since convolution 
calculates the sum of products (convolution with modulo 
subscripts takes O(n2) time). Processing can be sped up by 
performing convolution in the frequency domain with the 
Fast Fourier Transform, which involves element-wise 
multiplication, as shown in Equation 10. This process 
implements circular convolution in O(n log n) time. 
 
[+scope]y ⊛ +negation s = z′(z _ ⊙ z ` ) (10) 

 
The most important property of HRRs, for present 

purposes, is that the encoding changes such that the internal 
items become opaque for partial matching with the passage 
of time. This property could provide a principled explanation 
for the contrasting profiles observed for NPIs. If the format 
of the encoding changes over time, as assumed in a 
holographic memory system, then we should see different 
behaviors at different points in time, depending on when the 
encoding is probed. 

In the next section, we show how a holographic memory 
system can be integrated into the LV05 ACT-R model to 
simulate human reading times and judgments of 
grammaticality. 

Integrating HRRs into ACT-R 
A new memory module for the LV05 ACT-R model was 
developed using HRRs replacing traditional ACT-R chunks 
with holographic vectors. Holographic vectors retain the 
same expressive power of the chunks used in the LV05 
model, but allow for dynamic changes in the format of the 
encoding.  

To implement HRRs in the ACT-R system, we made the 
following changes to the original LV05 ACT-R model. First, 
linguistic feature-value specifications and retrieval cues were 
encoded as vectors (one dimensional arrays) of n numbers, 
randomly sampled from a normal distribution. For our 
simulations, n = 10,000. In this format, different feature-
value specifications and the corresponding retrieval cues are 
represented by different patterns in a continuous, high-
dimensional space.  

In encoding stage 1 (expanded representation), feature-
value pairs are superimposed by adding the vectors together 
to create linguistic chunks (bundles of feature-value pairs, as 
defined in the original LV05 ACT-R model). Retrieval probe 
vectors are constructed in the same manner. In this state, the 
individual features of a chunk are independently evaluable at 
retrieval and hence susceptible to partial matching, as 
assumed in the original LV05 model. 

In encoding stage 2 (reduced representation), convolution 
as computed according to Equation 10 is used to bind the 
vectors representing the feature-value pairs within a chunk. 
To enable successful retrieval of a chunk, the cues of the 

retrieval probe must be combined in the same way. In this 
state, a chunk represents a single, unitized encoding that must 
exhibit an all-or-none match to the retrieval probe to be 
recovered, i.e., partial matching is not possible. For present 
purposes, we assumed that feature binding was triggered 
upon encountering the main clause verb of a sentence during 
comprehension. According to Parker and Phillips 
(submitted), encountering a main clause verb may force the 
parser to ‘wrap-up’ and consolidate the encoding of the 
previous context to conserve memory resources. 

Second, we modified the standard ACT-R equation for 
activation values (Equation 1) to accommodate HRR vectors.  
Specifically, we substituted cosine similarity, as computed 
according to Equation 9, for the third term of the standard 
ACT-R equation for activation value, i.e., the term that 
computes the penalty for a partial match between the cues of 
the retrieval probe and the feature values of chunk i. 

Simulations 
We investigated whether the contrasting profiles observed for 
NPIs would be best captured by the original LV05 ACT-R 
model or the integrated HRR/ACT-R model. To achieve this, 
we conducted a side-by-side comparison of the LV05 model 
with the integrated model, without adjusting key model 
parameters. 

Procedure 
Previous implementations of the ACT-R model of sentence 
processing have included a wide range of modules, including 
modules for visual information processing, lexical access, 
memory retrieval, and syntactic parsing (e.g., Lewis & 
Vasishth, 2005; Vasishth et al., 2008). However, the 
simulations reported here focus solely on the module for 
retrieval, and abstract away from the contribution of the 
peripheral modules by stipulating the chunks in memory and 
retrievals required to parse a sentence. There are additional 
processes associated with sentence comprehension that 
contribute to behavioral measures, but for current purposes, 
we adopt the standard assumption that the dynamics and 
output of memory retrieval map monotonically to the 
behavioral measures of interest (Anderson & Milson, 1989).  

We simulated the hypothesized retrievals involved in the 
key manipulations reported in Parker and Phillips 
(submitted). Three conditions were simulated, manipulating 
the presence and location of an NPI licensor (appropriate 
licensor, irrelevant licensor, no licensor) and the position of 
the NPI (main clause, embedded clause), based on the 
sentence structures in (3). For each condition, a schedule of 
constituent creation times and retrievals was estimated from 
the reading times reported in Parker and Phillips (submitted). 
Differences between conditions were modeled only as 
differences in NPI position and the feature composition of the 
licensors (±scope, ±negation).  

To ensure that the modeling results for the LV05 and 
integrated HRR/ACT-R model would be directly 
comparable, all models used the same default parameter 
settings, following Lewis and Vasishth (2005) and Vasishth 
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et al. (2008). The only exception was the scaling parameter 
F, which was optimized to fit the behavioral time scale (in all 
models, F = 0.6). 5,000 Monte Carlo simulations were run for 
each condition. 

We report two measures of interest: (i) Retrieval error rate 
reflects the percentage of runs for which the distractor, rather 
than the target was retrieved. This measure maps 
monotonically to speeded acceptability judgments, with 
higher retrieval error rates corresponding to increased rates 
of judgment errors. (ii) Retrieval latencies reflect the average 
amount of time it took to retrieve the most probable item, and 
map monotonically to reading times, with higher latencies 
corresponding to longer reading times. These measures were 
used to calculate the predicted interference effect as the 
difference in predicted error rates and retrieval latencies 
between the ungrammatical conditions with and without a 
negative distractor (NPI interference is observed only in 
ungrammatical conditions). Thus, for predicted error rates, a 
larger positive value corresponds to a higher rate of 
interference, reflecting increased rates of acceptance for 
sentences with a distractor relative to sentences with no 
distractor. For predicted retrieval latencies, a smaller 
negative value corresponds to a higher rate of interference, 
reflecting facilitated processing for sentences with a 
distractor relative to sentences with no distractor.  

We compared the observed interference effects with those 
predicted by the LV05 model and the HRR/ACT-R model for 
the reading time measures (Figure 1) and judgment data 
(Figure 2) reported in Parker and Phillips (2014; submitted).  

Simulation results 
Across both behavioral measures, the integrated 

HRR/ACT-R model provided a better fit to the observed data, 
without adjusting the key model parameters (fit with the 
HRR/ACT-R model was adjusted R2 = 0.79; fit with the 
LV05 model was adjusted R2 = 0.28). The LV05 model failed 
to capture the observed on/off behavior, predicting similar 
rates of interference across NPI positions. The integrated 
model, on the other hand, captured the basic contrast between 

NPI positions, with significantly less interference for 
embedded clause NPIs (ever2).  

Although the values predicted by the integrated 
HRR/ACT-R model did not match the observed data 
perfectly, the predicted profiles were qualitatively similar to 
the observed data. We could explore different parameter 
values to achieve an even better fit with the observed data, 
but this was not our goal. Rather, our goal was to determine 
whether the ACT-R model enhanced with a holographic 
declarative memory system would predict the basic contrasts 
without adjusting previously fixed parameter values.  

The contrasting profiles predicted by the HRR/ACT-R 
model are consistent with the hypothesis that the contrasting 
profiles observed for NPIs reflect changes over time in the 
encoding of compositional representations in memory. After 
the features of the representation are bound together, the 
representation must exhibit an all-or-none match to the cues 
of the retrieval probe, preventing partial match interference.  

Conclusion 
We presented a computational model that integrates a 
holographic memory system into the ACT-R model of 
sentence processing to explain how compositional linguistic 
structures are encoded and accessed in memory. Modeling 
results showed that the integrated system is better suited to 
capture contrasting profiles of interference effects in sentence 
comprehension, relative to existing models, yeilding a good 
quantitative fit to data from a variety of behavioral tasks. 
These results provide proof-of-concept for the unification of 
two independently developed computational cognitive 
frameworks, and offer new insights into how humans encode 
and access compositional representations in memory.  
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