
Two methods for search and optimising cognitive model parameters
David Peebles (d.peebles@hud.ac.uk)

Department of Behavioural and Social Sciences, University of Huddersfield
Queensgate, Huddersfield, HD1 3DH, UK

Keywords: Parameter optimisation, differential evolution,
high throughput computing, HTCondor, ACT-R.

Introduction
Searching for the best set of parameter values is a key com-
ponent of cognitive modelling and one in which a great deal
of uncertainty lies. Parameter search can be a slow, labori-
ous process when done by hand, particularly when a model
has several interacting parameters, and can be challenging
when models are non-differentiable, non-continuous, non-
linear, stochastic, or have many local optima.

There a several methods for searching parameter spaces for
such models. Here I present two: differential evolution (DE)
and using a High Throughput Computing (HTC) environment
managed by HTCondor. The two methods are similar in that
they both explore parameter spaces by generating populations
of models, but there the similarity ends. Below I describe
both, explain the circumstances where choosing one may be
preferable over the other, and provide an example of each
using a simple ACT-R model for the reader to investigate.

Differential evolution
Differential evolution is an evolutionary strategy for real
numbers that has been used and refined extensively for mul-
tidimensional numerical optimisation since it was devised in
the mid 1990s (Storn & Price, 1995, 1997). The main attrac-
tions of DE are its simplicity, wide applicability, relatively
few control parameters (three: NP, the population size, F , a
scale factor applied to the mutation process, and Cr, a con-
stant that regulates the crossover process), and the accuracy,
convergence rate and robustness of its performance. To use
DE for optimising cognitive model parameters, the model is
conceptualised as an objective function of the parameters be-
ing optimised that produces a single fitness value (e.g., R2) to
be maximised.

The DE algorithm
In common with many evolutionary algorithms, DE applies
repeated cycles of mutation, recombination, and selection on
an initial, randomly generated population of vectors to create
a single vector that produces the best solution to a problem.
The DE process is started by creating an NP sized population
of real-valued vectors of D dimensions, one dimension for
each of the model parameters to be optimised. The vectors are
initialised with uniformly distributed random numbers within
maximum and minimum bounds set for each dimension.

To create the next population of vectors, each vector i in
the current population is selected in sequence, designated as
the target vector, and subjected to a competitive process. The

competition involves the three mutation, recombination, and
selection steps described below.
Mutation Mutation randomises the search process, but un-
like many other evolutionary strategies that mutate vectors
by adding Gaussian noise, DE does so by computing the
weighted difference between two vectors in the current popu-
lation. This ensures that differences in the scale and sensitiv-
ity of different vector parameters are taken into account and
that the search space is explored equally on all dimensions.

A mutated donor vector is created by randomly selecting
three unique vectors, j, k and l, which are not equal to i,
from the population and adding the difference between j and
k (scaled by the F parameter) to l.
Recombination Once the donor vector has been created it
is crossed with the target vector to create the trial vector. This
recombination allows successful solutions from the previous
generation to be incorporated into the trial vector.

Crossover is achieved by a series of Bernoulli trials which
determine for each of D � 1 dimensions which parent will
donate its value. The process is moderated by the crossover
rate parameter Cr (where 0 Cr  1.). For each dimension,
a uniformly distributed random number, x between 0 and 1
is generated and compared to Cr. If x  Cr, the donor vec-
tor’s parameter is passed on to the trial vector, otherwise the
parameter comes from the target vector. To ensure that the
trial vector does not emerge identical to the target vector, one
dimension is selected at random to inherit its value from the
donor vector.
Selection The model is then run with the parameter values
from the trial vector and if the resulting fitness value is bet-
ter than or equal to that of the target vector, the trial vector
replaces it in the next generation, or else the target vector is
retained in the next generation. This process of mutation, re-
combination, and selection is carried out for each vector in
the current population until the next population is created and
the evolutionary process continues for a user-defined number
of cycles. The vector with the highest fitness is recorded for
each population and the winning vector in the final population
is considered the best solution to the problem.

Setting DE parameters

The performance of the DE algorithm is quite sensitive to its
three control parameters and numerous attempts have been
made to determine the optimal values for various problems
(e.g., Pedersen, 2010; Neri & Tirronen, 2010; Gämperle,
Müller, & Koumoutsakos, 2002). For example in the muta-
tion process the F constant scales all of the vector parameters

In D. Reitter & F. E. Ritter (Eds.), Proceedings of the 14th International Conference on Cognitive Modeling
(ICCM 2016). University Park, PA: Penn State.

234

http://peebles.sdfeu.org

equally and determines the size of the distance between the
target and trial vectors. Effective values for F are generally
regarded to fall between 0.4 and 1.0 with a good initial value
being 0.5 (Das & Suganthan, 2011; Storn & Price, 1995).

The crossover rate parameter Cr affects the search process
by regulating the probability that noisy random values enter
the trial vector (raising Cr increases the likelihood that di-
mension values will come from the donor vector). Although
views differ, Cr values between 0.3 and 0.9 are generally con-
sidered reasonable for the majority of functions.

Recommendations for the optimum population size, NP
are generally specified as a function of the number of vector
parameters, D, and also vary but typically range between 3D
and 10D (e.g., Storn & Price, 1995; Gämperle et al., 2002).

Research into DE is very active and a number of vari-
ants and adaptations have been developed (Neri & Tirronen,
2010). The standard version described here is still widely
used and performs well on many problems.

High throughput computing and HTCondor
While DE is useful for optimising models with relatively
few parameters or short run times on a single computer,
if models are large, complex, or are simulating the be-
haviour of many participants, then the computational re-
quirements may be such that this option becomes impracti-
cal. In these circumstances, an alternative is to search the
parameter space by running a population of models over
a computer network and one relatively accessible and in-
creasingly popular way to do this is by using HTCondor
(https://research.cs.wisc.edu/htcondor).

HTCondor is an open source, cross-platform software sys-
tem for managing and scheduling computationally intensive
tasks across computer networks developed over many years
at the University of Wisconsin-Madison (Litzkow, Livny, &
Mutka, 1988). It can be employed on dedicated server clus-
ters or to schedule tasks over idle desktop computers on a
network and it is widely used in universities and research in-
stitutions worldwide, including CERN, Fermilab, and NASA.

Using HTCondor for exploring parameter spaces for cogni-
tive models can be achieved by submitting multiple versions
of the model, each with a different set of randomly generated
parameter values, analysing the returned outputs, and then it-
erating. The process for doing so is relatively straightforward.
All that is required is the creation of a submit description file
which specifies details about the job such as the executable to
be run and upon which platform, the model files to be loaded
by the executable, the command to start the program running,
and the number of times to run the program. As each program
may also use the standard streams, files must be defined that
will substitute for stdin, stdout and stderr.

For example, the extract below is from a submit description
file for a job to run 100 instances of an ACT-R model defined
in the file paired.lisp. It specifies that only 64-bit Windows
machines in the network should be used, that the executable
is ACT-R for 64-bit Windows, and that the arguments to the

executable are to load the model file, run it for 20 participants,
and then quit. In addition, output, error, and log files are de-
fined that will be created for each instance of the model and
specifications made that both the executable and the model
file should be transferred to each machine. Finally, the last
command sets the job to run 100 instances of the model.
requirements = (OpSys == "WINNT61" && Arch == "INTEL") ||

(OpSys == "WINDOWS" && Arch == "INTEL") ||
(OpSys == "WINDOWS" && Arch == "X86_64"))

executable = actr-s-64.exe
arguments = "-l ’paired.lisp’ -e ’(collect-data 20)’ -e ’(quit)’"

transfer_executable = ALWAYS
transfer_input_files = paired.lisp

output = out.stdout.$(Cluster).$(Process)
error = out.err.$(Cluster).$(Process)
log = out.clog.$(Cluster).$(Process)

queue 100

When all of the model instances have been run, their out-
puts will be available in numbered output files which can then
be collected together and analysed.

Example code
To enable further investigation of these methods, code to op-
timise an ACT-R model of paired associate learning taken
from Unit 4 of the ACT-R tutorials (available from the
ACT-R website), together with full instructions is avail-
able on GitHub. The repository for differential evolution
can be found at https://github.com/peebz/actr-paired-de while
that for running the model on HTCondor is available at
https://github.com/peebz/actr-paired-htc.

References
Das, S., & Suganthan, P. N. (2011). Differential evolution: A

survey of the state-of-the-art. IEEE Transactions on Evo-
lutionary Computation, 15(1), 4–31.

Gämperle, R., Müller, S. D., & Koumoutsakos, P. (2002). A
parameter study for differential evolution. Advances in in-
telligent systems, fuzzy systems, evolutionary computation,
10, 293–298.

Litzkow, M. J., Livny, M., & Mutka, M. W. (1988, June).
Condor—A hunter of idle workstations. In Proceedings of
the 8th international conference on distributed computing
systems (pp. 104–111).

Neri, F., & Tirronen, V. (2010). Recent advances in differen-
tial evolution: A survey and experimental analysis. Artifi-
cial Intelligence Review, 33(1-2), 61–106.

Pedersen, M. E. H. (2010). Good parameters for differential
evolution (Tech. Rep. No. HL1002). www.hvass-labs.org:
Hvass Laboratories.

Storn, R., & Price, K. (1995). Differential evolution: A simple
and efficient adaptive scheme for global optimization over
continuous spaces (Tech. Rep. No. TR-95-012). Berkeley,
CA: ICSI Berkeley.

Storn, R., & Price, K. (1997). Differential evolution: A sim-
ple and efficient heuristic for global optimization over con-
tinuous spaces. Journal of global optimization, 11(4), 341–
359.

235

https://research.cs.wisc.edu/htcondor
http://act-r.psy.cmu.edu/software/
https://github.com/peebz/actr-paired-de
https://github.com/peebz/actr-paired-htc

