
Towards a General Model of Repeated App Usage

Sabine Prezenski (sabine.prezenski@tu-berlin.de)

 Department of Cognitive Modeling in Dynamic Human-Machine Systems, Technische Universität Berlin
10587 Berlin, Germany

Nele Russwinkel (nele.russwinkel@tu-berlin.de)

 Department of Cognitive Modeling in Dynamic Human-Machine Systems, Technische Universität Berlin
10587 Berlin, Germany

Abstract

The main challenge of implementing cognitive models for
usability testing lies in reducing the modeling effort, while
including all relevant cognitive mechanisms, such as learning
and relearning, in the model. In this paper we introduce a
general cognitive modeling approach with ACT-R for
hierarchical, list-based smartphone apps. These apps support
the task of selecting a target, via navigating through
subtargets positioned on different layers. Mean target
selection time for repeated app interaction, learning and
relearning behavior was collected in four studies conducted
with either a shopping app or a real-estate app. The
predictions of the general modeling approach match the
empirical data very well, both in terms of trends and absolute
values. We also explain how such a general modeling
approach can be followed. The presented general model
approach requires little modeling effort to be used for
predicting overall efficiency of other apps. It supports more
complex interface, as well.

Keywords: ACT-R; usability; apps; cognitive modeling;
learning; relearning; updates; general model

Introduction

Numbers of smartphone apps are growing and so is the need
for efficient usability testing methods. Cognitive models
simulate human behavior and can in theory be utilized either
as a supplement to, or instead of real user testing. To
achieve this aim, especially in terms of costs and effort, it is
crucial to develop valid cognitive models for specific tasks
and app characteristics. These models should be written in a
general manner, in order to minimize the effort to transfer
them to other similar apps. Such general models could then
be used to predict specific usability measures like
efficiency. This would be particularly helpful in the
prototyping phase of apps, where these models could be
used instead of user tests. Moreover, the model traces could
provide evidence on potential (cognitive) causes of usability
problems that are not achievable with user tests.

Theory

Smartphone apps often support a limited amount of tasks
and although apps for a great variety of tasks exist, the
structures and functionalities of these apps are similar.
Consequently, predicting usability of such apps with a
general cognitive modeling approach would be useful and
worthwhile. In order to provide meaningful predictions, user
behavior should be depicted accurately by such general

ACT-R has a modularized structure, resembling the architecture of the
human brain. Specified modules handle different types of information,
called chunks. Each chunk has slots; this is where the smallest pieces of
information are stored. The different modules interact via specialized
buffers. Visual information is processed by the visual module and its two
buffers (visual-object and visual-location). Motor movement is controlled
by the manual module and its manual buffer. The declarative module
serves as the systems memory and retrieved information from memory is
stored in the systems retrieval buffer. The imaginal module and its
correspondent buffer are required for learning new information. The
steering of the model is governed by the goal module and buffer. The
procedural module connects the modules and selects (production-) rules
that steer the model behavior. A production is selected and executed, if the
states of the buffers are met. The production then alters the states of the
modules. Subsymbolic processes are also addressed in ACT-R. If a
production requests a chunk and two chunks match the request, then the
chunk with the higher activation level is selected. The activation level of a
chunk depends on how long ago the chunk was created, on how often it
was used and on when it was last accessed. Other parameters are the
latency factor which influences the duration until a retrieved chunk is
available in the retrieval buffer and the duration until a retrieval failure
occurs. The later is also manipulated by the retrieval threshold parameter.

Box 1: A brief introduction to ACT-R

cognitive models. It is crucial that these models are written
in a manner that transferability to other similar, but not
identical apps, in terms of content and structure, is feasible
with minimal effort. Such an approach implicates that not
all cognitive mechanisms of users are represented by the
models. In respect to transferability, simplifications are
necessary for such an approach.

Hierarchical, list style apps are a common type of apps.
They are often designed to support the task to find and
select a target by navigating through different layers and
selecting a subtarget on each layer. This paper presents a
general cognitive model of a user interacting with
hierarchical list style apps. The model covers repeated
interaction, thus investigating learning and relearning
effects.

Some cognitive modeling approaches addressing the
usability of HMI already exist. The most prominent is
CogTool (John, Prevas, Salvucci, & Koedinger, 2004). This
is a rapid prototyping tool that enables the creation of
cognitive models and predicts execution times for
predefined task. But important aspects for the usability of
apps such as version updates and learning behavior cannot
be modeled with CogTool. A main objective of our work is
to develop a model that learns through experience with the
interface. A modeling procedure that is strong in

In D. Reitter & F. E. Ritter (Eds.), Proceedings of the 14th International Conference on Cognitive Modeling
(ICCM 2016). University Park, PA: Penn State.

201

representing learning mechanism is the cognitive
architecture ACT-R (for a brief outline of the mechanisms
of ACT-R see box 1). Successful ACT-R models of menu
and mobile interaction exist. The following aspects of these
models are used our model. In an eye-tracking study using
desktop computers, Byrne (2001) showed that menu search
can be modeled with ACT-R. The fact that this model reads
the menu from top to bottom is adopted in our model. In a
study on learning of mobile phone usage for elderly novice
users (Das & Stuerzlinger 2007), the performance increase
in the model was due to the successful recall of locations of
keys. Our model also uses the retrieval of locations as a
learning mechanism. St.Amant, Horton, & Ritter (2007)
developed a model that predicted time on task for expert
users searching in hierarchical menus with a feature phone.
Their assumptions that experienced users navigate with
parent child chunks through hierarchies is implemented in a
specialized chunk of our model.

The aim of this paper is to develop and test a general
cognitive model with ACT-R that predicts user behavior
during repeated interaction. Thus, the model incorporates
learning and relearning mechanisms. The modeled task is
repeated target selection with different hierarchical list apps.

Methods

Four studies were conducted with either a shopping app
(shopping 3-4, shopping 4-3) or a real-estate app (house
apartment, apartment house). Both apps are custom-
designed android apps. The empirical studies are presented
elsewhere in greater detail (Prezenski, Lindner, Moegele, &
Russwinkel, in preparation.; Prezenski & Russwinkel,
2014). Since this paper focuses on the modeling approach,
only a brief outline of the apps and the study procedure will
be given. See figure 1 for an overview of the apps.

The main functionality of the shopping app is to compose
a shopping list. To place products on the list, navigation
through various stores and product categories in the menu is
required. The real-estate app allows the selection of search
criteria for real-estates, such as the number of rooms or the
city district. Again, the criteria can be found by navigating
through different categories. Both apps are multi-layer
hierarchical list apps with variations in menu depth. The
main functionality of the apps is target selection via
navigating through a number of layers (see figure 1). On
each layer a subtarget has to be preselected. For each target,
there is only one correct path of subtargets leading to the
target. Two versions of the shopping app are used: one with
three and one with four layers of menu depth for all targets.
As illustrated in figure 1, the path leading to the target e.g.
alcohol free beer differs between the two versions. The real-
estate app has a mixed number of layers (either three or four
layers per target). Furthermore, the real-estate app is
adaptive. Depending on preselection the paths leading to
targets and the position of some subtargets changed. As can
be seen in figure 1 the path leading to the target lawn differs
if either house or apartment has previously been selected.

Figure 1: Screenshots of the apps with the modified paths
leading to the targets for the different versions (shopping
app) or different previous selections (real-estate app).

Task

Participants repeatedly selected targets using the apps
installed on a Google Nexus 5 smartphone, running android
4.1.1. Targets were read to the participants and after
selecting the target, participants were required to navigate
back to the first layer of the app. In all four studies there
were four runs, each run required the participants to select a
number of targets. Participants of the studies shopping 3-4,
and shopping 4-3 had to select nine targets (products) per
run. The same targets were used for all four runs. After the
second run the version of the shopping app was updated,
either a layer was added (shopping 3-4) or removed
(shopping 4-3). Thus, the paths leading to the targets were
the same for the first and second layer but were altered from
the third layer on. Participants of the studies with the real-
estate apps had to select six or seven targets (criteria) per
run. Some of the targets were the same for all runs, e.g.
numerical criteria such as the rent remained the same for all
four runs. Others, like the city district varied between all
four runs. Participants of the study apartment house
searched for an apartment in the first two runs and then
switched to searching for a house. The order was reverse for
participants of the study house apartment. Due to the
adaptive character of the real-estate app, the pre selection of
house or apartment altered the position of the numerical
criteria (e.g. the number of rooms) and also changed the
path leading to lawn. This path differed for house and
apartment from the second layer on.

Model

The data obtained with the studies shopping 3-4 and
shopping 4-3 was utilized to develop the main model
mechanisms and a first ACT-R model. The subsequent
studies house apartment and apartment house were
designed for two reasons: First, to test whether the model
can predict data obtained with a different app and second, to
ensure that the model mechanisms are held in a general
matter. Thus, the model incorporates mechanisms for
handling variations in depth within an app, changes in paths
from varying layers on and variations in locations of targets
and subtargets. The task of repeatedly selecting targets in
multilayer applications is captured in the model.

STORES

BOTTLESHOP BEER

ALCOHOL FREE BEER

Other

Garde

Lawn

Lawn

Garde

n
Other

LAWN

SEARCH
OTHER

GARDEN

LAWN

GARDEN

OTHER

202

Table 1: Examples of the chunk types of the model

Summary of Main Mechanisms
1

Without prior experience with the specific target, visual
attention is directed to the top of the page. For each visual
processed word, a retrieval request for a meaning chunk
containing the word as string and as meaning is made (see
table 1 for examples of the chunk types used in the model).
Navigation through the application is achieved via world
knowledge, which consists of associations between two
words (association chunk). For each read word the attempt
to retrieve an association chunk with the target is made. If
an association chunk containing the current word and the
target is retrieved, a path chunk is built, holding the path
leading to the target in the imaginal buffer and the word is
selected. A path chunk consists of the slots first, second,
third and fourth for the subtargets. The slot target-im holds
the target word. The count slot of the path chunk holds
information on the current menu depth and is changed if a
different subtarget is required.

With experience with the specific target, navigating to
this target is realized via the path chunks previously built.
After a successful retrieval of a path chunk a chunk with the
location of the relevant subtarget in the path is requested.
The retrieved location is visually inspected and the subtarget
is selected.

Model steering

Learning mechanisms are incorporated in the model.
Furthermore, the model can handle a number of changes to
the interface; such as version updates influencing all targets
and smaller changes affecting only some targets Model
steering is implemented with the goal in mind to reuse or
extend the model for other applications. Thus,
simplifications of some cognitive mechanisms and special
chunk slots to account for interface variations are used.
Model steering is realized via a count slot in the imaginal
buffer, which holds the current depth and via different slots
in the goal buffer. The menudepth slot holds information on
changes in depth for the current target (e.g. number of layers
leading to the target). The model can handle varying and
constant depth values Currently, mechanism exist for a
constant depth of three and two layers and for depth
changing from three to four and vice versa, with the path

1 The model can be downloaded at https://depositonce.tu-

berlin.de/handle/11303/5548.

leading to the target altered either from the second or from
the third layer on. The menudepth slot is used to
differentiate between strategies for the last versus the other
layers in the path leading to the target. The menudepth slot
is also required after an error in the path leading to the target
is noted. From the affected layer on different path chunks
are built and retrieved. Therefore, the menudepth slot holds
the assumption that after an error in the path is noted, the
erroneous (old) path chunks are used only for the layers that
have not changed. The menudepth chunk furthermore holds
knowledge about which layer is the final layer for each
target. The errorpath slot in the goal buffer holds the
knowledge about an occurred change in the path leading to
any target; it is not reset between different targets. The
finaltarget and the subtarget slot hold the target and the
subtarget as a string. These two slots are used to determine
if the target has been found and also required for a
superficial visual search utilized on the last page and for
researching a subtarget.

Mechanisms en-detail

Initiation In the beginning of each run, the production start
requests a meaning chunk. The building of a path chunk is
initiated. The production meaning-in-goal then copies the
retrieved meaning of the target into the slot target-meaning
of the chunk in the goal buffer and into the target-im slot of
the chunk in the imaginal buffer. Then, a retrieval request
for a path chunk leading to the target is initiated with
variations2

 of the production look-for-path.

Association approach Without prior experience with the
specific target, a path chunk leading to the target is not
retrievable and the production change-strategy fires,
followed by find-word and reading-word. Visual attention is
directed to the top of the page (to the highest location
bellow the current visual attended location) and this location
is visually processed. Variations3 of the production process-
word then visually encode the current word. For all layers,
except the last layer, a request for a meaning chunk holding
the meaning of the current word is initiated. If such a chunk
is found the production searching association then initiates
the search for an association chunk containing the current
word and the target. If such an association chunk cannot be
found, the production no-association-found clears the visual
buffer and the search continues with the production find-
word. If an association chunk is retrieved, variations4

2 The variations of look-for-path consider two aspects: First,

whether or not there was an error in the path and second, the
differences in menu depths. This ensures that for a detected change
in menu depth the old (misleading) path is not retrieved.

 of the

3 There are variations of process-word for the last layer and for
the other layers except the last. The variations consider the value of
errorpath slot in the goal buffer and the value of the count in the
imaginal buffer.

3 Variations of association- found depend on the value of the
count slot of the imaginal buffer.

meaning chunk association chunk path chunk
NAME "SEARCH"
OBJECT SEARCH

OBJECTS HOUSE
CATEGORY SEARCH

FIRST SEARCH
SECOND WHAT
THIRD RENT
FOURTH HOUSE
TARGET-IM HOUSE
COUNT FOUR

chunk with location goal chunk
SCREEN-POS
VISUAL LOCATION35-0-0
VALUE "House"
COLOR BLACK
HEIGHT 10
WIDTH 28
TEXT T

STATE PREPARECLICK
SUBTARGET "SEARCH"
FINALTARGET "HOUSE"
TARGET-MEANING HOUSE
MENUDEPTH FOUR
IMMOLIST ("MOABIT" ….)
MENUDEPTHLIST (THREE …)

203

https://depositonce.tu-berlin.de/handle/11303/5548
https://depositonce.tu-berlin.de/handle/11303/5548

production association-found update the path chunk in the
imaginal buffer. If, for example the first subtarget in path is
found, then the value of the count slot in the imaginal buffer
is changed from one to two. Furthermore, the first slot of the
path chunk is filled with the current subtarget, which is also
copied into the subtarget slot of the goal buffer. A cursor
move is initiated and the productions prepare-click and click
initiate the motor movements to press the button. The
productions waiting-click or waiting-last-click (for the final
click, in order to initiate the backing procedure) let the
model wait until the manual buffer is free. After the manual
buffer is free a variation of the production look-for-path
fires again. For the last layer, the elaborate procedure of
reading from top to bottom and searching for association
chunks is replaced by a superficial visual search procedure.
If the word in the visual buffer and the word in the slot
finaltarget of the chunk in the goal buffer are different, a
variation of the production process-word-last-page-wrong
will fire. Via the production find-word the next word is
searched. If they are the same a variation5

Path Navigation If a path chunk leading to the target is
retrieved a variation of the production found-that-path,
depending on the value of the count slot in the imaginal

 of process-word-
last-page-correct will copy the last slot of the path into the
path chunk in the imaginal buffer, raise the count slot and
change the value of the subarget slot in the chunk in the
goal buffer. A cursor move is initiated and the productions
prepare-click and click press the button with the target.

buffer, fires. This production copies the value of the relevant
slot (e.g. the subtarget) from the path chunk in the retrieval
buffer into the path chunk in the imaginal buffer and
changes the count. The production find-location requests for
a meaning chunk of the relevant subtarget. The production
found-location indicates that a location was retrieved and
the visual attention is moved to the retrieved location. Then
the visual buffer and the subtarget slot of the chunk in the
goal buffer are compared. If they are the same, then the
retrieved location is correct and the production checking-
match fires, followed by click-location and waiting-click.

Modified Interfaces In the following subsection an
overview on mechanism dealing with the modified
interfaces is given, for a detailed description see box 1.

The retrieved location is visual inspected and the
subtarget is not found at the retrieved location, either
because there is a different word, or no word at the retrieved
location. This is indicated by the productions checking-no-
match or checking-empty. A visual search for the subtarget
is then initiated with the production read-top-to-bottum-
again-2. Visual attention is directed to the top of the page
and the production scan-1 encodes the visual-location. If the
word in visual buffer is the subtarget then scan-correct fires
otherwise scan-incorrect moves the visual attention to the
next highest word. If the subtarget is found it is selected via
prepare-click and click. If the visual search via scan-1 and
scan-incorrect does not lead to the subtarget and the bottom

1. Depth changes from three to four layers; the path is different from the third layer on. An update adds a new layer to all targets of the shopping
app, e.g. the old path for alcohol free beer is 1.stores 2.drinks 3.alcohol free beer the new path is 1.stores 2.drinks 3.beer 4.alcohol free beer. In the third
run (after an update), alcohol free beer is searched on the third layer. But the retrieved location does not contain alcohol free beer. The third layer is
rescanned from top to bottom in search for alcohol free beer, without success. The value of errorpath slot in the goal buffer is changed to true. The third
layer is then read from top to bottom and for each word an attempt to retrieve an association chunk is made. The model visually encodes beer and an
association chunk is retrieved The third slot of the path chunk in the imaginal buffer is assigned the value beer and beer is selected. On the fourth layer, the
attempt to retrieve a path chunk that leads to alcohol free beer with the slot four having a value is made. Such a chunk cannot be retrieved. The superficial
search approach for the last page will be used and directly search for alcohol free beer is initiated. For the next product, navigation is realized with the old
path chunk for layer one and two. For the third and fourth layer the attempt to retrieve a path chunk with four layers will fail. The association approach or
for the last page the superficial search will be used. In the fourth run the correct path chunks for all layers can be retrieved.

2. Depth changes from three to four layers; the path is different from the second layer on, mixed list. The path for lawn in the real-estate
application changes depending on preselection. If house is preselected, the path is 1.search, 2.garden, 3.lawn and changes to 1.search 2.more 3.garden
4.lawn if apartment is preselected. On the second layer the subtarget garden is not found at the retrieved location. A rescanning of the page is unsuccessful.
As in 1) an errorpath in the goal buffer is noted and the approach is changed to reading from top to bottom and searching for association chunks. A new
path chunk is then built. For the third and fourth layer the attempt will be made to retrieve a path chunk with four layers leading to lawn and then utilize the
reading and association approach or the scan approach for the last page. For the next target, the value of the menudepth slot in the goal buffer indicates
constant depth; therefore it is not influenced by the error in the path. In the fourth run, a path chunk for lawn can be found.

3. Depth changes from four to three layers; the path is different from the third layer on. An update removes a layer for all targets from the
shopping list app. The path for alcohol free beer changes from 1.stores, 2 drinks, 3.beer 4.alcohol free beer to 1.stores, 2.drinks 3.alcohol free beer. On the
third layer the subtarget beer is not found at the retrieved location. The third layer is rescanned from top to bottom in search for beer and the target alcohol
free beer is found. The errorpath slot in the goal buffer is changed to true. The third slot of the path chunk in the imaginal buffer gets the value alcohol free
beer assigned and the target is selected,. For the next product navigation is realized with the old path chunk for layer one and two. For the third layer the
attempt to retrieve a path chunk with three layers will fail. The superficial search will be used for the last page and the building of path chunks will be
completed. In the fourth run the correct path chunks can be retrieved.

4. Depth changes from four to three layers; the path is different from the second layer on (special case). First apartment is preselected. Thus, the
path for lawn in the real-estate application is 1.search 2.other 3.garden 4.lawn. Then house is preselected and the path is 1.search, 2.garden, 3.lawn.On the
second layer, the subtarget other is not at the retrieved location. The page is rescanned and other is found and selected. On the third page garden is
searched for unsuccessfully. The value of the errorpath slot in the goal buffer is then set to true and the model goes back to the second page. A new path
chunk is built from the second page on via association chunks and reading top to bottom. For the next target, the value of the menudepth slot in the goal
buffer indicates constant depth; therefore, it is not influenced by the error in the path. In the fourth run, a path chunk for lawn can be found.

Box 2 : A description on how different changes in the interfaces are processed by the model.

204

of the page is reached, an errorpath will be noted in the goal

buffer. An errorpath in the goal buffer will also be noted, if
the target is found while scanning for a subtarget (via
scanning-path-is-wrong). After the errorpath slot in the
goal buffer is set to true and the subtarget has not been
found, the production error-in-path-2 resumes the visual
attention to the top of the page and via find-word, reading-
word and association-found a path chunk is build in the
imaginal buffer. The changed value of the errrorpath slot
will stay in the chunk in the goal buffer for all further model
runs. Therefore, if the errorpath value in the goal buffer is
set to true, a wrong path chunk will not be retrieved. Either
no path chunk is retrieved and navigation is implemented
via association chunks, or path chunk are utilized only as
long as they are correct. For example, if the path chunk is
helpful for layer one and two – navigation with this chunk
for these layers is implemented, but different path chunk are
sought for on the third layer.

Results

Data processing

The empirical data comprises of four studies, with a varying
number of student participants (10 < n < 17). The model
was run 10 times per study. Target selection time (for both
model and empirical data) is defined as the time between the
selection of the target and the selection of the first subtarget.
Extreme values were excluded from analysis. Mean target
selection time for each target was calculated and averaged
over the runs (six to nine targets per run). Mean target

selection time for each run was calculated and averaged

over the participants. Model and empirical data were
compared via goodness of fit indices and qualitative
analysis of graphs.

Model parameter

The latency factor (lf) and the retrieval threshold (rt)
parameter were fit to match the data of the study house
apartment. They are set to the values: lf = 0.1 and rt = -1.5.

Comparison of modeled and empirical data

The model provides a good to very good fit to the data, see
figure 2 for the comparison of the mean target selection
times of the empirical and modeled data. The main trends of
the four studies are mapped in the modeled data, as are most
of the absolute values.

1. The house apartment study reveals a decrease of mean
target selection time followed by an increase and again a
decrease. This is exactly represented in the modeled data; r²
= 1.0. The absolute values of the modeled and empirical
data are also very close; RSME = 0.011.

2. The apartment house study reveals the same pattern
(decrease, increase and decrease); r² = 0.888. The mean
target selection time predicted by the model is slightly lower
in the first two runs and a bit higher in the last two runs;
RSME = 1.660.

3. The empirical and modeled mean target selection time
of the shopping 4-3 study indicate a decrease from run 1 to
run 4, with the decrease leveling out towards the last run.
The magnitude of the decrease is very similar for both

0

2

4

6

8

10

12

1 2 3 4

se
le

ct
io

n
tim

e
(s

ec
)

house apartment

participants

model

r²=1.000
RSME=0.011
n=12

0

2

4

6

8

10

12

1 2 3 4

se
le

ct
io

n
tim

e
(s

ec
)

apartment house

participants

model

r²=0.888
RSME=1.660
n=10

0

2

4

6

8

10

12

14

16

1 2 3 4

se
le

ct
io

n
tim

e
(s

ec
)

shopping 3-4

participants

model

r²=0.799
RSME=1.489
n=17

0

2

4

6

8

10

12

14

16

1 2 3 4

se
le

ct
io

n
tim

e
(s

ec
)

shopping 4-3

participants

model

r²=0.999
RSME=0.843
n=12

run run

run run

house

house

house

house
apartment

apartment

apartment

apartment

4 layers

4 layers

4 layers

4 layers
3 layers 3 layers

3 layers

3 layers

updateupdate

adaptationadaptation

Figure 2: Mean target selection time for the four different studies for the modeled and empirical data.

205

datasets; r²= 0.999. In all runs the mean target selection
times predicted by the model are lower than those of the
participants; RSME = 0.843.

4. For the shopping 3-4 study, both datasets show a
pattern of a decrease, followed by an increase and a final
decrease. The modeled increase in mean target selection
time between run 2 and 3 is greater than the increase found
in the empirical data. The magnitude of the other variations
are similar for the empirical and modeled data; r² = 0.799.
The mean target selection time predicted by the model is
lower than that of the participants, especially in the third
run; RSME = 1.489.

Summary

In summary, all trends found in the empirical data are
predicted by the model, with a high r² = [0.799; 1.0] for all
four studies. Decreases and increases in target search time
are predicted by the model. Therefore, the model provides
information on learning and relearning effects for different
applications. Moreover, the absolute values are met by the
model for the majority of data points, with RSME = [0.011;
1.660], values which are lower than the average STD of the
empirical data. Hence, the model can appropriate depict
mean user behavior at different time points during a
repeated target selection task.

Discussion

The modeling approach provides accurate predictions of the
data from four studies with two different apps. Efficiency,
learnabilty and the impact of updates or of adaptivty are
predicted by the model.

Only a few steps are necessary to alter the model for a
different app; world knowledge needs to be provided in
form of association chunks and reading ability as meaning
chunks. Furthermore, a compilation of the targetlist,
containing the targets and of the menudepthlist, containing
the menu depth of the targets before and after an update, is
required.

The model can easily be extended to other list-style
hierarchical apps with different menu depths than 3 and 4
layers and to apps with different switches in the number of
layers. To do so, variations of the productions process-
word, process-word-last-page and look-for-path are
required.

Plausibility of Modeling Decision

A general modeling approach facilitates the adaptability
of the model. To achieve this, partially simplified
assumptions have been made. This applies especially to the
menudepth slot, which offers a technical solution for the
handling of varying menudepth. This slot contains meta-
knowledge of the model, in other words knowledge about
what kind of update occurred. The menudepth slot holds
information if the update relates to the entire menu structure
or if it relates to individual paths. Furthermore, the
menudepth slot is useful to identify the last page. It is
plausible to assume that users know if the current page is the
last page. However, users are likely to obtain this

knowledge with the help of visual features. Since these in
turn significantly differ between apps, it is useful for a
general approach to detect the last page in a simplified
manner.

The reading direction of the model is always directed
from top to bottom and each item is processed, this is a
further simplification. It is possible to model visual
processing of menus more precisely (Bailly, Oulasvirta,
Brumby and Howes, 2014). Since, the goal of our work was
to predict average mean search time for items, our chosen
simplification of visual processing was sufficient.
Another simplified assumption is, that the imaginal holds
the count of the current page. This is done only for practical
reasons to make model steering easy and adjustable to
different updates. Furthermore, it does not affect overall
item search time.

Limitations and Further Steps
To use the model approach for usability testing, a

remaining obstacle is the need of prototyping the interface.
In order for the ACT-R model to interact with the
application, a copy of the app in Lisp is required. To avoid
this effortful step, we are working on a tool called ACT-
Droid (Doerr, Russwinkel, & Prezenski, 2016).With ACT-
Droid android apps can be connected directly with ACT-R
models. This tool is will reduce the practical hurdle of
testing usability of apps with cognitive models further.
Further steps to improve the model are to replace the mouse
movements in the model with touch movements, as
provided by ACT-Touch (Greene & Tamborello, 2013).
Besides, an in-depth validation of the model with eye
tracking data is planned. A new study should also
investigate if the model can predict average click times for
each menu layer as well. The empirical data of the current
studies, do not allow such predictions, due to the study
design. Nevertheless, on an individual level the model and
empirical data show, that after an update (shopping app) and
after an unexpected adaption (real-estate app) search time
increases.

We are also intending to look into how far mechanisms of
the current model can be used to develop a model for
hierarchical apps with icons instead of text.

Moreover, our general modeling approach for hierarchical
list-style apps is not only useful for such apps. It is well
suited to predict the average user search time for all kinds of
list-based interfaces that spread semantically related
subtargets across multiple layers.

References

 Bailly, G., Oulasvirta, A., Brumby, D. P., & Howes, A.
(2014). Model of visual search and selection time in linear
menus. Proc. of the 32nd Annual ACM Conference on
Human Factors in Computing Systems - CHI ’14, (pp.
3865–3874). Toronto, Canada: ACM.
Byrne, M. D. (2001). ACT-R/PM and menu selection:

applying a cognitive architecture to HCI. Int. J. Human-
Computer Studies, 55, 41-84.

206

Das, A., & Stuerzlinger, W. (2007). A cognitive simulation
model for novice text entry on cell phone keypads. In
Proc. of the 14th European Conference on Cognitive
Ergonomics, (pp.141-147). London, UK: ACM.

Doerr, L.-M., Russwinkel, N., & Prezenski, S. (in
submission). ACT-Droid: ACT-R Interacting with
Android Applications. In D. Reitter & F. Ritter (Eds.), In
Proc. of the 14th Int. Conference on Cognitive Modeling.
Pennsylvania, USA.

Greene, K. K. & Tamborello, F. P. (2013). Initial ACT-R
extensions for user modeling in themobile touchscreen
domain In Proc. of the 12th Int. Conference on Cognitive
Modeling.(pp.348-353)Ottawa, Canada.

John, B. E., Prevas, K., Salvucci, D. D., & Koedinger, K.
(2004). Predictive human performance modeling made
easy. In Proc. of CHI´04, (pp. 455–462). New York,
USA: ACM.

Prezenski, S., Lindner, S., Moegele, H., & Russwinkel, N.
(in preparation). Archetyping the User.

Prezenski, S., & Russwinkel, N. (2014). Combining
Cognitive ACT-R Models with Usability Testing Reveals
Users Mental Model while Shopping with a Smartphone
Application. Int. J. on Advances in Intelligent Systems,
7(3), 700–715.

St.Amant, R., Horton, T.E., & Ritter, F.E. (2007). Model-
based evaluation of expert cell phone menu interaction.
Transactions on Computer-Human Interaction, 14(1), 1-
14.

207

