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Abstract 

The main challenge of implementing cognitive models for 
usability testing lies in reducing the modeling effort, while 
including all relevant cognitive mechanisms, such as learning 
and relearning, in the model. In this paper we introduce a 
general cognitive modeling approach with ACT-R for 
hierarchical, list-based smartphone apps. These apps support 
the task of selecting a target, via navigating through 
subtargets positioned on different layers. Mean target 
selection time for repeated app interaction, learning and 
relearning behavior was collected in four studies conducted 
with either a shopping app or a real-estate app. The 
predictions of the general modeling approach match the 
empirical data very well, both in terms of trends and absolute 
values. We also explain how such a general modeling 
approach can be followed. The presented general model 
approach requires little modeling effort to be used for 
predicting overall efficiency of other apps. It supports more 
complex interface, as well.  

Keywords: ACT-R; usability; apps; cognitive modeling; 
learning; relearning; updates; general model 

Introduction 

Numbers of smartphone apps are growing and so is the need 
for efficient usability testing methods. Cognitive models 
simulate human behavior and can in theory be utilized either 
as a supplement to, or instead of real user testing. To 
achieve this aim, especially in terms of costs and effort, it is 
crucial to develop valid cognitive models for specific tasks 
and app characteristics. These models should be written in a 
general manner, in order to minimize the effort to transfer 
them to other similar apps. Such general models could then 
be used to predict specific usability measures like 
efficiency. This would be particularly helpful in the 
prototyping phase of apps, where these models could be 
used instead of user tests. Moreover, the model traces could 
provide evidence on potential (cognitive) causes of usability 
problems that are not achievable with user tests.  

Theory 

Smartphone apps often support a limited amount of tasks 
and although apps for a great variety of tasks exist, the 
structures and functionalities of these apps are similar. 
Consequently, predicting usability of such apps with a 
general cognitive modeling approach would be useful and 
worthwhile. In order to provide meaningful predictions, user 
behavior should be depicted accurately by such general  

ACT-R has a modularized structure, resembling the architecture of the 
human brain. Specified modules handle different types of information, 
called chunks. Each chunk has slots; this is where the smallest pieces of 
information are stored. The different modules interact via specialized 
buffers. Visual information is processed by the visual module and its two 
buffers (visual-object and visual-location). Motor movement is controlled 
by the manual module and its manual buffer. The declarative module 
serves as the systems memory and retrieved information from memory is 
stored in the systems retrieval buffer. The imaginal module and its 
correspondent buffer are required for learning new information. The 
steering of the model is governed by the goal module and buffer. The 
procedural module connects the modules and selects (production-) rules 
that steer the model behavior. A production is selected and executed, if the 
states of the buffers are met. The production then alters the states of the 
modules. Subsymbolic processes are also addressed in ACT-R. If a 
production requests a chunk and two chunks match the request, then the 
chunk with the higher activation level is selected. The activation level of a 
chunk depends on how long ago the chunk was created, on how often it 
was used and on when it was last accessed. Other parameters are the 
latency factor which influences the duration until a retrieved chunk is 
available in the retrieval buffer and the duration until a retrieval failure 
occurs. The later is also manipulated by the retrieval threshold parameter. 

 
Box 1: A brief introduction to ACT-R 

 
cognitive models. It is crucial that these models are written 
in a manner that transferability to other similar, but not 
identical apps, in terms of content and structure, is feasible 
with minimal effort. Such an approach implicates that not 
all cognitive mechanisms of users are represented by the 
models. In respect to transferability, simplifications are 
necessary for such an approach.  

Hierarchical, list style apps are a common type of apps. 
They are often designed to support the task to find and 
select a target by navigating through different layers and 
selecting a subtarget on each layer. This paper presents a 
general cognitive model of a user interacting with 
hierarchical list style apps. The model covers repeated 
interaction, thus investigating learning and relearning 
effects. 

Some cognitive modeling approaches addressing the 
usability of HMI already exist. The most prominent is 
CogTool (John, Prevas, Salvucci, & Koedinger, 2004). This 
is a rapid prototyping tool that enables the creation of 
cognitive models and predicts execution times for 
predefined task. But important aspects for the usability of 
apps such as version updates and learning behavior cannot 
be modeled with CogTool. A main objective of our work is 
to develop a model that learns through experience with the 
interface. A modeling procedure that is strong in 
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representing learning mechanism is the cognitive 
architecture ACT-R (for a brief outline of the mechanisms 
of ACT-R see box 1). Successful ACT-R models of menu 
and mobile interaction exist. The following aspects of these 
models are used our model. In an eye-tracking study using 
desktop computers, Byrne (2001) showed that menu search 
can be modeled with ACT-R. The fact that this model reads 
the menu from top to bottom is adopted in our model. In a 
study on learning of mobile phone usage for elderly novice 
users (Das & Stuerzlinger 2007), the performance increase 
in the model was due to the successful recall of locations of 
keys. Our model also uses the retrieval of locations as a 
learning mechanism. St.Amant, Horton, & Ritter (2007) 
developed a model that predicted time on task for expert 
users searching in hierarchical menus with a feature phone. 
Their assumptions that experienced users navigate with 
parent child chunks through hierarchies is implemented in a 
specialized chunk of our model. 

The aim of this paper is to develop and test a general 
cognitive model with ACT-R that predicts user behavior 
during repeated interaction. Thus, the model incorporates 
learning and relearning mechanisms. The modeled task is 
repeated target selection with different hierarchical list apps. 

Methods 

Four studies were conducted with either a shopping app 
(shopping 3-4, shopping 4-3) or a real-estate app (house 
apartment, apartment house). Both apps are custom-
designed android apps. The empirical studies are presented 
elsewhere in greater detail (Prezenski, Lindner, Moegele, & 
Russwinkel, in preparation.; Prezenski & Russwinkel, 
2014). Since this paper focuses on the modeling approach, 
only a brief outline of the apps and the study procedure will 
be given. See figure 1 for an overview of the apps. 

The main functionality of the shopping app is to compose 
a shopping list. To place products on the list, navigation 
through various stores and product categories in the menu is 
required. The real-estate app allows the selection of search 
criteria for real-estates, such as the number of rooms or the 
city district. Again, the criteria can be found by navigating 
through different categories. Both apps are multi-layer 
hierarchical list apps with variations in menu depth. The 
main functionality of the apps is target selection via 
navigating through a number of layers (see figure 1). On 
each layer a subtarget has to be preselected. For each target, 
there is only one correct path of subtargets leading to the 
target. Two versions of the shopping app are used: one with 
three and one with four layers of menu depth for all targets. 
As illustrated in figure 1, the path leading to the target e.g. 
alcohol free beer differs between the two versions. The real-
estate app has a mixed number of layers (either three or four 
layers per target). Furthermore, the real-estate app is 
adaptive. Depending on preselection the paths leading to 
targets and the position of some subtargets changed. As can 
be seen in figure 1 the path leading to the target lawn differs 
if either house or apartment has previously been selected. 

 
 

Figure 1: Screenshots of the apps with the modified paths 
leading to the targets for the different versions (shopping 
app) or different previous selections (real-estate app). 

Task 

Participants repeatedly selected targets using the apps 
installed on a Google Nexus 5 smartphone, running android 
4.1.1. Targets were read to the participants and after 
selecting the target, participants were required to navigate 
back to the first layer of the app. In all four studies there 
were four runs, each run required the participants to select a 
number of targets. Participants of the studies shopping 3-4, 
and shopping 4-3 had to select nine targets (products) per 
run. The same targets were used for all four runs. After the 
second run the version of the shopping app was updated, 
either a layer was added (shopping 3-4) or removed 
(shopping 4-3). Thus, the paths leading to the targets were 
the same for the first and second layer but were altered from 
the third layer on. Participants of the studies with the real-
estate apps had to select six or seven targets (criteria) per 
run. Some of the targets were the same for all runs, e.g. 
numerical criteria such as the rent remained the same for all 
four runs. Others, like the city district varied between all 
four runs. Participants of the study apartment house 
searched for an apartment in the first two runs and then 
switched to searching for a house. The order was reverse for 
participants of the study house apartment. Due to the 
adaptive character of the real-estate app, the pre selection of 
house or apartment altered the position of the numerical 
criteria (e.g. the number of rooms) and also changed the 
path leading to lawn. This path differed for house and 
apartment from the second layer on. 

Model 

The data obtained with the studies shopping 3-4 and 
shopping 4-3 was utilized to develop the main model 
mechanisms and a first ACT-R model. The subsequent 
studies house apartment and apartment house were 
designed for two reasons: First, to test whether the model 
can predict data obtained with a different app and second, to 
ensure that the model mechanisms are held in a general 
matter. Thus, the model incorporates mechanisms for 
handling variations in depth within an app, changes in paths 
from varying layers on and variations in locations of targets 
and subtargets. The task of repeatedly selecting targets in 
multilayer applications is captured in the model. 
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Table 1: Examples of the chunk types of the model 

Summary of Main Mechanisms
1

Without prior experience with the specific target, visual 
attention is directed to the top of the page. For each visual 
processed word, a retrieval request for a meaning chunk 
containing the word as string and as meaning is made (see 
table 1 for examples of the chunk types used in the model). 
Navigation through the application is achieved via world 
knowledge, which consists of associations between two 
words (association chunk). For each read word the attempt 
to retrieve an association chunk with the target is made. If 
an association chunk containing the current word and the 
target is retrieved, a path chunk is built, holding the path 
leading to the target in the imaginal buffer and the word is 
selected. A path chunk consists of the slots first, second, 
third and fourth for the subtargets. The slot target-im holds 
the target word. The count slot of the path chunk holds 
information on the current menu depth and is changed if a 
different subtarget is required. 

 

With experience with the specific target, navigating to 
this target is realized via the path chunks previously built. 
After a successful retrieval of a path chunk a chunk with the 
location of the relevant subtarget in the path is requested. 
The retrieved location is visually inspected and the subtarget 
is selected. 

Model steering 

Learning mechanisms are incorporated in the model. 
Furthermore, the model can handle a number of changes to 
the interface; such as version updates influencing all targets 
and smaller changes affecting only some targets Model 
steering is implemented with the goal in mind to reuse or 
extend the model for other applications. Thus, 
simplifications of some cognitive mechanisms and special 
chunk slots to account for interface variations are used. 
Model steering is realized via a count slot in the imaginal 
buffer, which holds the current depth and via different slots 
in the goal buffer. The menudepth slot holds information on 
changes in depth for the current target (e.g. number of layers 
leading to the target). The model can handle varying and 
constant depth values Currently, mechanism exist for a 
constant depth of three and two layers and for depth 
changing from three to four and vice versa, with the path 

                                                           
1 The model can be downloaded at https://depositonce.tu-

berlin.de/handle/11303/5548. 

leading to the target altered either from the second or from 
the third layer on. The menudepth slot is used to 
differentiate between strategies for the last versus the other 
layers in the path leading to the target. The menudepth slot 
is also required after an error in the path leading to the target 
is noted. From the affected layer on different path chunks 
are built and retrieved. Therefore, the menudepth slot holds 
the assumption that after an error in the path is noted, the 
erroneous (old) path chunks are used only for the layers that 
have not changed. The menudepth chunk furthermore holds 
knowledge about which layer is the final layer for each 
target. The errorpath slot in the goal buffer holds the 
knowledge about an occurred change in the path leading to 
any target; it is not reset between different targets. The 
finaltarget and the subtarget slot hold the target and the 
subtarget as a string. These two slots are used to determine 
if the target has been found and also required for a 
superficial visual search utilized on the last page and for 
researching a subtarget. 

Mechanisms en-detail 

Initiation In the beginning of each run, the production start 
requests a meaning chunk. The building of a path chunk is 
initiated. The production meaning-in-goal then copies the 
retrieved meaning of the target into the slot target-meaning 
of the chunk in the goal buffer and into the target-im slot of 
the chunk in the imaginal buffer. Then, a retrieval request 
for a path chunk leading to the target is initiated with 
variations2

 

 of the production look-for-path. 

Association approach Without prior experience with the 
specific target, a path chunk leading to the target is not 
retrievable and the production change-strategy fires, 
followed by find-word and reading-word. Visual attention is 
directed to the top of the page (to the highest location 
bellow the current visual attended location) and this location 
is visually processed. Variations3 of the production process-
word then visually encode the current word. For all layers, 
except the last layer, a request for a meaning chunk holding 
the meaning of the current word is initiated. If such a chunk 
is found the production searching association then initiates 
the search for an association chunk containing the current 
word and the target. If such an association chunk cannot be 
found, the production no-association-found clears the visual 
buffer and the search continues with the production find-
word. If an association chunk is retrieved, variations4

                                                           
2  The variations of look-for-path consider two aspects: First, 

whether or not there was an error in the path and second, the 
differences in menu depths. This ensures that for a detected change 
in menu depth the old (misleading) path is not retrieved.  

 of the 

3 There are variations of process-word for the last layer and for 
the other layers except the last. The variations consider the value of 
errorpath slot in the goal buffer and the value of the count in the 
imaginal buffer.  

3 Variations of association- found depend on the value of the 
count slot of the imaginal buffer. 
 

meaning chunk association chunk path chunk 
NAME "SEARCH" 
OBJECT SEARCH 

OBJECTS HOUSE 
CATEGORY SEARCH 
 

FIRST SEARCH 
SECOND WHAT 
THIRD RENT 
FOURTH HOUSE 
TARGET-IM HOUSE 
COUNT FOUR 

chunk with location goal chunk 
SCREEN-POS 
VISUAL LOCATION35-0-0 
VALUE "House" 
COLOR BLACK 
HEIGHT 10 
WIDTH 28 
TEXT T 

STATE PREPARECLICK 
SUBTARGET "SEARCH" 
FINALTARGET "HOUSE" 
TARGET-MEANING HOUSE 
MENUDEPTH FOUR 
IMMOLIST ("MOABIT" ….) 
MENUDEPTHLIST (THREE …) 
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production association-found update the path chunk in the 
imaginal buffer. If, for example the first subtarget in path is 
found, then the value of the count slot in the imaginal buffer 
is changed from one to two. Furthermore, the first slot of the 
path chunk is filled with the current subtarget, which is also 
copied into the subtarget slot of the goal buffer. A cursor 
move is initiated and the productions prepare-click and click 
initiate the motor movements to press the button. The 
productions waiting-click or waiting-last-click (for the final 
click, in order to initiate the backing procedure) let the 
model wait until the manual buffer is free. After the manual 
buffer is free a variation of the production look-for-path 
fires again. For the last layer, the elaborate procedure of 
reading from top to bottom and searching for association 
chunks is replaced by a superficial visual search procedure. 
If the word in the visual buffer and the word in the slot 
finaltarget of the chunk in the goal buffer are different, a 
variation of the production process-word-last-page-wrong 
will fire. Via the production find-word the next word is 
searched. If they are the same a variation5

Path Navigation If a path chunk leading to the target is 
retrieved a variation of the production found-that-path, 
depending on the value of the count slot in the imaginal 

 of process-word-
last-page-correct will copy the last slot of the path into the 
path chunk in the imaginal buffer, raise the count slot and 
change the value of the subarget slot in the chunk in the 
goal buffer. A cursor move is initiated and the productions 
prepare-click and click press the button with the target. 

                                                           
 

buffer, fires. This production copies the value of the relevant 
slot (e.g. the subtarget) from the path chunk in the retrieval 
buffer into the path chunk in the imaginal buffer and 
changes the count. The production find-location requests for 
a meaning chunk of the relevant subtarget. The production 
found-location indicates that a location was retrieved and 
the visual attention is moved to the retrieved location. Then 
the visual buffer and the subtarget slot of the chunk in the 
goal buffer are compared. If they are the same, then the 
retrieved location is correct and the production checking-
match fires, followed by click-location and waiting-click. 
 

Modified Interfaces In the following subsection an 
overview on mechanism dealing with the modified 
interfaces is given, for a detailed description see box 1. 

The retrieved location is visual inspected and the 
subtarget is not found at the retrieved location, either 
because there is a different word, or no word at the retrieved 
location. This is indicated by the productions checking-no-
match or checking-empty. A visual search for the subtarget 
is then initiated with the production read-top-to-bottum-
again-2. Visual attention is directed to the top of the page 
and the production scan-1 encodes the visual-location. If the 
word in visual buffer is the subtarget then scan-correct fires 
otherwise scan-incorrect moves the visual attention to the 
next highest word. If the subtarget is found it is selected via 
prepare-click and click. If the visual search via scan-1 and 
scan-incorrect does not lead to the subtarget and the bottom 

1. Depth changes from three to four layers; the path is different from the third layer on. An update adds a new layer to all targets of the shopping 
app, e.g. the old path for alcohol free beer is 1.stores 2.drinks 3.alcohol free beer the new path is 1.stores 2.drinks 3.beer 4.alcohol free beer. In the third 
run (after an update), alcohol free beer is searched on the third layer. But the retrieved location does not contain alcohol free beer. The third layer is 
rescanned from top to bottom in search for alcohol free beer, without success. The value of errorpath slot in the goal buffer is changed to true. The third 
layer is then read from top to bottom and for each word an attempt to retrieve an association chunk is made. The model visually encodes beer and an 
association chunk is retrieved The third slot of the path chunk in the imaginal buffer is assigned the value beer and beer is selected. On the fourth layer, the 
attempt to retrieve a path chunk that leads to alcohol free beer with the slot four having a value is made. Such a chunk cannot be retrieved. The superficial 
search approach for the last page will be used and directly search for alcohol free beer is initiated. For the next product, navigation is realized with the old 
path chunk for layer one and two. For the third and fourth layer the attempt to retrieve a path chunk with four layers will fail. The association approach or 
for the last page the superficial search will be used. In the fourth run the correct path chunks for all layers can be retrieved. 

2. Depth changes from three to four layers; the path is different from the second layer on, mixed list. The path for lawn in the real-estate 
application changes depending on preselection. If house is preselected, the path is 1.search, 2.garden, 3.lawn and changes to 1.search 2.more 3.garden 
4.lawn if apartment is preselected. On the second layer the subtarget garden is not found at the retrieved location. A rescanning of the page is unsuccessful. 
As in 1) an errorpath in the goal buffer is noted and the approach is changed to reading from top to bottom and searching for association chunks. A new 
path chunk is then built. For the third and fourth layer the attempt will be made to retrieve a path chunk with four layers leading to lawn and then utilize the 
reading and association approach or the scan approach for the last page. For the next target, the value of the menudepth slot in the goal buffer indicates 
constant depth; therefore it is not influenced by the error in the path. In the fourth run, a path chunk for lawn can be found. 

3. Depth changes from four to three layers; the path is different from the third layer on. An update removes a layer for all targets from the 
shopping list app. The path for alcohol free beer changes from 1.stores, 2 drinks, 3.beer 4.alcohol free beer to 1.stores, 2.drinks 3.alcohol free beer. On the 
third layer the subtarget beer is not found at the retrieved location. The third layer is rescanned from top to bottom in search for beer and the target alcohol 
free beer is found. The errorpath slot in the goal buffer is changed to true. The third slot of the path chunk in the imaginal buffer gets the value alcohol free 
beer assigned and the target is selected,. For the next product navigation is realized with the old path chunk for layer one and two. For the third layer the 
attempt to retrieve a path chunk with three layers will fail. The superficial search will be used for the last page and the building of path chunks will be 
completed. In the fourth run the correct path chunks can be retrieved. 

4. Depth changes from four to three layers; the path is different from the second layer on (special case). First apartment is preselected. Thus, the 
path for lawn in the real-estate application is 1.search 2.other 3.garden 4.lawn. Then house is preselected and the path is 1.search, 2.garden, 3.lawn.On the 
second layer, the subtarget other is not at the retrieved location. The page is rescanned and other is found and selected. On the third page garden is 
searched for unsuccessfully. The value of the errorpath slot in the goal buffer is then set to true and the model goes back to the second page. A new path 
chunk is built from the second page on via association chunks and reading top to bottom. For the next target, the value of the menudepth slot in the goal 
buffer indicates constant depth; therefore, it is not influenced by the error in the path. In the fourth run, a path chunk for lawn can be found.  

 
Box 2 : A description on how different changes in the interfaces are processed by the model. 
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of the page is reached, an errorpath will be noted in the goal  

buffer.  An errorpath in the goal buffer will also be noted, if 
the target is found while scanning for a subtarget (via 
scanning-path-is-wrong). After the errorpath slot in the 
goal buffer is set to true and the subtarget has not been 
found, the production error-in-path-2 resumes the visual 
attention to the top of the page and via find-word, reading-
word and association-found a path chunk is build in the 
imaginal buffer. The changed value of the errrorpath slot 
will stay in the chunk in the goal buffer for all further model 
runs. Therefore, if the errorpath value in the goal buffer is 
set to true, a wrong path chunk will not be retrieved. Either 
no path chunk is retrieved and navigation is implemented 
via association chunks, or path chunk are utilized only as 
long as they are correct. For example, if the path chunk is 
helpful for layer one and two – navigation with this chunk 
for these layers is implemented, but different path chunk are 
sought for on the third layer. 

Results 

Data processing 

The empirical data comprises of four studies, with a varying 
number of student participants (10 < n < 17). The model 
was run 10 times per study. Target selection time (for both 
model and empirical data) is defined as the time between the 
selection of the target and the selection of the first subtarget. 
Extreme values were excluded from analysis. Mean target 
selection time for each target was calculated and averaged 
over the runs (six to nine targets per run). Mean target 

selection time for each run was calculated and averaged 

over the participants. Model and empirical data were 
compared via goodness of fit indices and qualitative 
analysis of graphs. 

Model parameter 

The latency factor (lf) and the retrieval threshold (rt) 
parameter were fit to match the data of the study house 
apartment. They are set to the values: lf = 0.1 and rt = -1.5. 

Comparison of modeled and empirical data 

The model provides a good to very good fit to the data, see 
figure 2 for the comparison of the mean target selection 
times of the empirical and modeled data. The main trends of 
the four studies are mapped in the modeled data, as are most 
of the absolute values.  

1. The house apartment study reveals a decrease of mean 
target selection time followed by an increase and again a 
decrease. This is exactly represented in the modeled data; r² 
= 1.0. The absolute values of the modeled and empirical 
data are also very close; RSME = 0.011. 

2. The apartment house study reveals the same pattern 
(decrease, increase and decrease); r² = 0.888. The mean 
target selection time predicted by the model is slightly lower 
in the first two runs and a bit higher in the last two runs; 
RSME = 1.660. 

3. The empirical and modeled mean target selection time 
of the shopping 4-3 study indicate a decrease from run 1 to 
run 4, with the decrease leveling out towards the last run. 
The magnitude of the decrease is very similar for both 
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datasets; r²= 0.999. In all runs the mean target selection 
times predicted by the model are lower than those of the 
participants; RSME = 0.843. 

4. For the shopping 3-4 study, both datasets show a 
pattern of a decrease, followed by an increase and a final 
decrease. The modeled increase in mean target selection 
time between run 2 and 3 is greater than the increase found 
in the empirical data. The magnitude of the other variations 
are similar for the empirical and modeled data; r² = 0.799. 
The mean target selection time predicted by the model is 
lower than that of the participants, especially in the third 
run; RSME = 1.489. 

Summary 

In summary, all trends found in the empirical data are 
predicted by the model, with a high r² = [0.799; 1.0] for all 
four studies. Decreases and increases in target search time 
are predicted by the model. Therefore, the model provides 
information on learning and relearning effects for different 
applications. Moreover, the absolute values are met by the 
model for the majority of data points, with RSME = [0.011; 
1.660], values which are lower than the average STD of the 
empirical data. Hence, the model can appropriate depict 
mean user behavior at different time points during a 
repeated target selection task. 

Discussion 

The modeling approach provides accurate predictions of the 
data from four studies with two different apps. Efficiency, 
learnabilty and the impact of updates or of adaptivty are 
predicted by the model.  

Only a few steps are necessary to alter the model for a 
different app; world knowledge needs to be provided in 
form of association chunks and reading ability as meaning 
chunks. Furthermore, a compilation of the targetlist, 
containing the targets and of the menudepthlist, containing 
the menu depth of the targets before and after an update, is 
required. 

The model can easily be extended to other list-style 
hierarchical apps with different menu depths than 3 and 4 
layers and to apps with different switches in the number of 
layers. To do so, variations of the productions process-
word, process-word-last-page and look-for-path are 
required. 

Plausibility of Modeling Decision  

A general modeling approach facilitates the adaptability 
of the model. To achieve this, partially simplified 
assumptions have been made. This applies especially to the 
menudepth slot, which offers a technical solution for the 
handling of varying menudepth. This slot contains meta-
knowledge of the model, in other words knowledge about 
what kind of update occurred. The menudepth slot holds 
information if the update relates to the entire menu structure 
or if it relates to individual paths. Furthermore, the 
menudepth slot is useful to identify the last page. It is 
plausible to assume that users know if the current page is the 
last page. However, users are likely to obtain this 

knowledge with the help of visual features. Since these in 
turn significantly differ between apps, it is useful for a 
general approach to detect the last page in a simplified 
manner.  

The reading direction of the model is always directed 
from top to bottom and each item is processed, this is a 
further simplification. It is possible to model visual 
processing of menus more precisely (Bailly, Oulasvirta, 
Brumby and Howes, 2014). Since, the goal of our work was 
to predict average mean search time for items, our chosen 
simplification of visual processing was sufficient.    
Another simplified assumption is, that the imaginal holds 
the count of the current page. This is done only for practical 
reasons to make model steering easy and adjustable to 
different updates. Furthermore, it does not affect overall 
item search time. 

Limitations and Further Steps 
To use the model approach for usability testing, a 

remaining obstacle is the need of prototyping the interface. 
In order for the ACT-R model to interact with the 
application, a copy of the app in Lisp is required. To avoid 
this effortful step, we are working on a tool called ACT-
Droid (Doerr, Russwinkel, & Prezenski, 2016).With ACT-
Droid android apps can be connected directly with ACT-R 
models. This tool is will reduce the practical hurdle of 
testing usability of apps with cognitive models further. 
Further steps to improve the model are to replace the mouse 
movements in the model with touch movements, as 
provided by ACT-Touch (Greene & Tamborello, 2013). 
Besides, an in-depth validation of the model with eye 
tracking data is planned. A new study should also 
investigate if the model can predict average click times for 
each menu layer as well. The empirical data of the current 
studies, do not allow such predictions, due to the study 
design.  Nevertheless, on an individual level the model and 
empirical data show, that after an update (shopping app) and 
after an unexpected adaption (real-estate app) search time 
increases. 

We are also intending to look into how far mechanisms of 
the current model can be used to develop a model for 
hierarchical apps with icons instead of text. 

Moreover, our general modeling approach for hierarchical 
list-style apps is not only useful for such apps. It is well 
suited to predict the average user search time for all kinds of 
list-based interfaces that spread semantically related 
subtargets across multiple layers. 
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