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Abstract 

For several decades, production systems have been the 
dominant framework in which (primarily) symbolic cognitive 
models have been developed. This paper proposes a different 
approach, cognitive code, in which behavioral models are 
developed directly in a modern programming language. 
However, unlike standard code, cognitive code has simulated 
timing and error characteristics intended to mimic those of 
human cognitive, perceptual, and motor processes. Some of the 
benefits of this new approach are illustrated in sample models 
of a paired-associates task, reading task, and dual-choice task. 
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Introduction 
Since their introduction decades ago, cognitive architectures 
(Anderson, 1983; Newell, 1990; see also Gray, 2008) have 
provided a rigorous computational framework in which 
scientists can build and run cognitive models. Most 
importantly, a cognitive architecture represents a “unified 
theory of cognition” (Newell, 1990) that allows detailed 
exploration of the integration among various human systems, 
including cognitive, perceptual, and motor systems. 
Cognitive architectures have facilitated major advancements 
in cognitive science for specific research domains such as list 
memory (Anderson, Bothell, Lebiere, & Matessa, 1998) and 
multitasking (Borst, Taatgen, & van Rijn, 2010); at the same 
time, architectures have been applied to real-world domains 
such as gaming (Laird, 2002) and driving (Salvucci, 2006). 
 Even considering these successes, adoption of cognitive 
models outside of the academic research community1 has 
been limited. There are arguably several reasons for this 
limited adoption: 

Programming Paradigm and Language. Production 
systems have been the dominant framework in which 
(primarily symbolic) cognitive models have been 
implemented. Production systems, based on representation of 
processes as condition-action production rules, have been key 
to certain theoretical claims (e.g., learning from instructions: 
Taatgen, Huss, Dickison, & Anderson, 2008). However, from 
the perspective of programmers outside the cognitive-
architecture community, production systems are largely an 
unknown quantity; instead, modern programmers typically 

                                                             
1 Companies such as Carnegie Learning and Soar Technology have 
successfully applied cognitive models beyond the walls of the 
research community; still, the impact of cognitive modeling pales in 

develop code using modern procedural and object-oriented 
programming languages (Java, C++, Python, etc.). Learning 
the very different programming paradigms and patterns used 
in production systems is a significant barrier to developing 
models, even for those with a significant computer-science or 
programming background. 

Model-Centered Development. For those in the research 
community, the cognitive model is often the centerpiece of 
the main research effort, and a great deal of time and care is 
taken to develop these models. For this reason, modeling 
frameworks often include an integrated user-interface 
environment and suite of tools to facilitate model 
development. However, for an outsider looking to embed a 
cognitive model into their own project—say, a game-engine 
programmer who wants to develop a cognitive agent to 
embed into a larger game—the model is a peripheral 
component rather than a central one. For this audience, 
learning an entirely new modeling language and development 
environment can be a large investment, often too large to 
make it worthwhile. 

Lack of Model Integration. Cognitive modelers, especially 
those interested in cognitive architectures, have long stressed 
the benefits of a community-driven approach to unified 
theories of cognition. Over the years, this integration has 
largely come about at the architectural level, with a wide set 
of models using a single architecture or framework to 
generate behavior. Unfortunately, integration among models 
themselves—for example, reuse of existing models to 
develop new models—has arisen much less frequently, partly 
because modeling frameworks have not emphasized rigorous 
formal APIs that are crucial for integration. 
 
 Modern cognitive architectures and models have much to 
offer beyond the boundaries of the research community; with 
a blend of psychological theory and computational 
simulation, they contain a breadth and depth of predictive 
accounts that can be widely useful for other research and 
practical domains. Yet, because of the reasons above, the 
investment needed to extracting predictions from these 
models is often too large for those with less than a primary 
interest in cognitive modeling. 

comparison to related research methodologies—for instance, 
machine learning—that have exploded in popularity. 

In D. Reitter & F. E. Ritter (Eds.), Proceedings of the 14th International Conference on Cognitive Modeling 
(ICCM 2016). University Park, PA: Penn State.
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Cognitive Code 
Cognitive code is code embedded in a modern programming 
language that aims to simulate and mimic human cognitive, 
perceptual, and motor processes. Of course, cognitive models 
and architectures have long used computational 
representations to simulate human processes, but they have 
(as noted earlier) generally defined their own programming 
language for this purpose, and generally relied on production 
systems as a central tenet of their representations. In contrast, 
cognitive code is embedded and written directly in an existing 
programming language, using structures and patterns already 
familiar to most programmers. At the same time, cognitive 
code differs from standard code in that it includes new 
software design patterns and libraries to facilitate the 
simulation of timing and errors inherent in human processes. 
  Before delving into the details, let us illustrate the basic 
concept with a simple example. Consider sample cognitive 
code (here in Java) that stores a new piece of information into 
memory: 

memory.store(new Chunk("cat") 
 .set("owner", "Jane") 
 .set("name", "Whiskers")); 

Here we create a “chunk” of information (as in ACT-R: 
Anderson, 2007) that defines knowledge about Jane’s cat, 
and we store it into memory. Later, we try to recall this 
information from memory with a query:  

Chunk chunk = memory.recall(new Query("cat") 
 .add("owner", "Jane")); 

In each case, the code uses patterns that would be 
straightforward and recognizable by most programmers. At 
the same time, this code conceptually differs from standard 
code in two ways. First, each step incurs a simulated temporal 
cost that corresponds to the time needed to perform this 
action in the cognitive system. In our example, the 
memory.store() action incurs some time, say a few hundred 
milliseconds, to add this knowledge to memory, and the 
memory.recall() action also incurs an amount of time that 
may depend on many factors (time since learning, number of 
times practiced, etc.). Second, each step has some potential 
for failure that mimics a true cognitive system; for example, 
the memory.recall() action could fail and return a null result 
depending on the current state of the cognitive system. 
 We now describe a prototype system that embodies the 
cognitive code approach. The system is implemented in Java 
as a library that can be readily integrated into other projects. 

Core Simulation System 
The core system centers on the concept of an agent that acts 
within the simulated world. An agent consists of any number 
of modules that define behavior for a particular subsystem 
(e.g., memory, vision, etc.) or for a particular domain 
(arithmetic, driving, etc.). The basic unit of information 
shared across modules is an item, which comprises a set of 
slot-value pairs, one of which can be the “isa” type of the 
item. Modules can utilize workers to perform work for them, 
and can share information with other threads through buffers. 

 Because the passage of time is central to the cognitive code 
approach, we also require some way to simulate a central 
clock within the code. Within a single thread, we simply 
maintain a simulated time to be incremented by each 
cognitive step. In the general case, though, we need multiple 
threads to share a single clock; human multitasking will be 
best represented as separate cognitive threads, as discussed 
later, and even a single thread may require that certain 
operations happen in parallel (e.g., moving a hand while 
recalling information). 
 The core simulation enables the central clock as follows. 
The system assumes that individual operators on a particular 
thread can define their own delays, effectively stopping 
execution until the clock reaches the new time after delay. 
For example, let’s say we run the following code on one agent 
thread: 

agent.wait(1.0); 
memory.store(new Chunk("cat")); 

and run the following code on another agent thread: 
agent.wait(2.0); 
Chunk chunk = memory.recall(new Query("cat")); 

The first thread requests that time advance to 1.0 seconds, 
while the second thread requests an advance to 2.0 seconds. 
In this situation, the first thread succeeds in advancing the 
clock to 1.0 seconds, and then performs the memory store. 
The second thread’s wait step will block until 2.0 simulated 
seconds have passed, guaranteeing that the subsequent recall 
step will happen only after the first thread’s store step. 
 The underlying implementation of the shared clock uses a 
type of cyclic barrier (Java’s Phaser class) to ensure that all 
concurrent threads are synchronized as each reaches a new 
time step. If desired, the system can be run in real time such 
that the clock corresponds to the actual time (or a multiple 
thereof). In typical usage, however, simulated time does not 
need to correspond to real time; in fact, it is often 
advantageous to run the simulation as quickly as possible, 
and then examining time after the fact for various purposes 
(e.g., to predict how long a particular set of actions might 
take). 

Memory System 
The memory system is based wholly on the ACT-R theory of 
declarative memory (Anderson, 2007). In this theory, 
memory consists of chunks of knowledge with slot-value 
pairs, which over time strengthen or decay with practice or 
lack of use. In particular, each chunk has an associated 
activation that defines how readily the chunk can be recalled, 
as dependent on its prior usage: if a chunk is “used” (recalled 
or re-stored) at times !", the activation #$ for chunk % can be 
defined as 

#$ = '(	 !"*+

"
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where , is the memory decay factor that determines how 
quickly the usages decay. Given the chunk’s activation, we 
can determine the probability to recall the chunk as 

-.	(.012'') =
1

0*(56*7)/9
	

for a retrieval threshold : and noise level ;. If the chunk can 
be successfully retrieved, the time needed for retrieval is 
defined as 

<=>?@AA = B0*56	

 In our cognitive code system, chunks are stored using the 
memory.store() action, which incurs only a 50 ms time for 
a cognitive step—the same 50 ms delay used in many 
cognitive architectures for the firing time for a production 
rule (e.g., ACT-R, Soar). For recall, our system includes two 
types of actions. First, there is a non-blocking action 
memory.startRecall() that initiates the recall action but 
allows the code to continue past this point after a 50 ms 
cognitive step time. A non-blocking action of this type allows 
the code to continue and perform other actions while recall is 
taking place (e.g., watching for a visual stimulus or typing a 
key). The memory.getRecalled() action is then used to 
access the recalled information, and this command blocks 
until the recall is complete. Second, there is the blocking 
command we saw earlier, memory.recall(), which is 
equivalent to performing a memory.startRecall() followed 
by a memory.getRecalled(). Both types of recall actions 
take as an argument a query that partially defines the desired 
chunk (as seen earlier with the “cat” example), and both can 
fail and return null if the chunk is not successfully recalled. 
 Chunk rehearsal—that is, the usages defined earlier—can 
take several forms. When a chunk is initially created, this is 
defined as its first use. If an exact copy of this chunk is stored 
later, the copy is merged into the original chunk and becomes 
another use of the chunk. Finally, any recall of the chunk 
serves as a rehearsal and adds to the use count. Thus, all of 
these forms contribute to the gradual increase in a chunk’s 
activation; in contrast, the lack of use causes any early uses 
to decay away, making the chunk more difficult to recall and 
more costly (in terms of time) if successfully recalled. 

Perceptual System 
The perceptual system is primarily based on ACT-R and 
partly based on a related theory of eye movements. The vision 
module, following ACT-R, assumes a spotlight of visual 
attention that moves according to a two-stage where-what 
process of finding objects and encoding objects. The non-
blocking action vision.startFind() attempts to find a 
visual location that matches the given query based on 
perceptual features available in peripheral vision (like 
position, color, etc.), and its complementary command 
vision.getFound() returns the found location. Their 
blocking counterpart vision.find() achieves the same 
effect in a shorthand simpler action. Another command, 
vision.waitFor(), waits until a location matching the query 
appears in view (e.g., to model waiting for a visual stimulus). 

Once a location is found, there are analogous actions for 
encoding the object at the location and returning information 
about the object: the non-blocking action 
vision.startEncode() and its associated action 
vision.startEncode(), along with their blocking 
counterpart vision.encode(). 
 The movement of visual attention from one object to 
another generates movements of the system’s simulated eyes 
as defined by the EMMA theory (Salvucci, 2001), which in 
turns derives from the E-Z Reader theory of eye movements 
in reading (Reichle, Pollatsek, Fisher, & Rayner, 1998). This 
provides the system with a powerful predictive dimension: 
the code never explicitly moves the eyes, but in moving 
attention, the eyes follow and demonstrate several interesting 
aspects of eye-movement behavior: the time lag between a 
movement of attention and a movement of the eyes; the 
possibility of skipping over an encoded object when that 
object is easy to encode (e.g., a high-frequency word); and 
the possibility of re-fixating an encoded object with multiple 
eye fixations when that object is difficult to encode (e.g., a 
low-frequency word).  
 In addition to vision, the system includes audition to model 
detection and encoding of aural information. Specifically, the 
audition module includes audition.startDetect() and 
audition.detect() actions (non-blocking and blocking, 
respectively) to detect a sound, and an associated action 
audition.waitFor()that waits for the next sound that 
matches a query. It also includes audition.startEncode() 
and audition.encode() actions that are analogous to these 
actions in the vision module. 

Motor System 
The motor system is currently focused on using a mouse and 
keyboard in a desktop computer environment. The mouse-
movement module uses Fitts’ law in the same manner as 
ACT-R and EPIC (Meyer & Kieras, 1997). The module 
includes the expected actions to move and click the mouse: 
mouse.startMoveTo() and mouse.startClick() as non-
blocking actions, and mouse.moveTo() and mouse.click() 
as blocking actions. 
 For typing, the motor system is based on the TYPIST 
model (John, 1996). Typing is invoked with a typing.type() 
action that specifies the text to output. The typing module 
breaks up the given text into words and then types each word 
as a 50 ms cognitive step followed by the execution of the 
motor actions for each keystroke; shifted keys (e.g., capital 
letters) require a keystroke for the shift key before the 
keystroke for the character. The time for each keystroke was 
estimated as a function of typing speed as measured in gross 
words per minute. Specifically, a function was fit to Figure 4 
of John (1996) to yield the following estimate of keystroke 
time <">C as a function of words per minute DEF: 

<">C = 	 .0000083(DEF)K − .003051 DEF + .31727	

The typing module can thus be set to any typing speed 
between 30 and 120 words per minute for an estimate of 
typing times at that speed. 
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 The other component of the motor system is the speech 
module, as represented by a speech.say() action that takes 
a simple string as input. Roughly like the ACT-R speech 
system, this module breaks the string into syllables and 
outputs the speech with a delay equal to a base time (200 ms) 
plus an execution time per syllable (150 ms). Whereas ACT-
R has a simple assumption of syllables (one syllable per 3 
characters), the module here uses a more complex method to 
break up syllables according to a number of rules for English 
pronunciation tested on a small corpus of common words. 

Cognitive Code as Software 
The fact that cognitive code is implemented as software in a 
mainstream programming language lends it several benefits 
over cognitive models developed in a typical cognitive 
architecture approach. In contrast to a monolithic cognitive 
architecture, modules in cognitive code are instantiated as 
needed, and using different implementations of a particular 
type of module does not pose a problem. For example, the 
following code defines a new agent, the eyes of the agent, and 
finally the vision module: 

Agent agent = new Agent(); 
Eyes eyes = new Eyes(agent); 
Vision vision = new Vision(agent, eyes); 

Various methods for these components are easily accessible: 
for instance, a programmer might check aspects of the agent 
(e.g., agent.getTime()), move the eyes to a new location 
(eyes.moveTo()), or change parameters of the visual system 
(vision.setFindTime()). Developers can extend objects to 
include additional functions, or can build new objects that use 
cognitive-code objects as primitives. In fact, as the approach 
evolves, we expect different implementations of the modules 
to provide alternative theoretical approaches—in this case, 
say, we might have a different visual system based on pixels 
and salient features. 
 Another large benefit is that cognitive code inherits the 
many structures and tools already used by modern software 
for developing, interfacing, and testing code. Instead of 
having specialized IDEs (integrated development 
environments), cognitive code allows a programmer to use 
their preferred IDE for development. Cognitive code also 
inherits the robust APIs (application program interfaces) of 
modern programming languages, such as packages, classes, 
interfaces, and related constructs—a big advantage in 
accessing others’ code and successfully integrating it with 
one’s own code. Finally, cognitive code can be tested 

                                                             
2 http://act-r.psy.cmu.edu 

rigorously utilizing the same tools commonly in use today 
(e.g., JUnit tests in Java). In this case, each test can check not 
only whether the code runs correctly as a piece of software, 
but also whether some cognitive code fits an appropriate 
empirical (human) data set; in other words, the code’s 
correctness also depends on whether it accurately mimics the 
behavior of human behavior in the chosen domain. 

Illustrative Examples 
We now provide a few illustrative examples of cognitive 
code, all of which represent re-implementations of existing 
models developed in a cognitive architecture. Our goal here 
is to demonstrate that cognitive code can produce much the 
same behavior and predictions as architecture models, but the 
code blocks that generate these behaviors are simpler and 
more learnable than their architectural counterparts. 

Paired Associates 
One of the standard models in Unit 4 of the ACT-R tutorial2 
is a model of the paired-associates task. In this task, 
participants see a word stimulus (e.g., “king”) and must type 
a digit that is associated to that word in the experiment (e.g., 
“7”). The participant does not know the associations at the 
outset, but over time, they learn them and gradually become 
better at recalling the associated digit, improving their 
correctness and (for correct responses) improving their 
response times. Students studying the ACT-R architecture 
might model this task as they learn to understand ACT-R 
memory theory and implement their first models of memory 
storage and recall. Even after a few prior lessons in the syntax 
and semantics of the ACT-R modeling language, the paired-
associates model can be difficult for students to understand 
and might take a typical student one to a few hours to work 
through and understand. 
 A cognitive-code model of the paired-associates task is 
shown in Figure 1. Starting at line 1, the model first waits for 
a word, blocking on the vision.waitFor() command until 
the stimulus appears, and then encodes the word. It then tries 
to recall a chunk that represents the word-digit pair in 
memory; if the chunk is successfully recalled, the model 
types the digit as a response. The model then waits for the 
digit (which appears in all cases) and stores the word-digit 
pair to memory. (Note that if the word-digit pair is already in 
memory, this strengthens the pair chunk as described earlier.) 
This model behaves essentially the same as the ACT-R 
tutorial model, and successfully produces the behavioral 

[1]   String word = (String) vision.encode(vision.waitFor(new Query("word"))); 
[2]   Chunk chunk = memory.recall(new Query("pair").add("word", word)); 
[3]   if (chunk != null) 
[4]       typing.type(chunk.getString("digit")); 
[5]   int digit = (Integer) vision.encode(vision.waitFor(new Query("digit"))); 
[6]   memory.store(new Chunk("pair").set("word", word).set("digit", digit)); 

Figure 1: Cognitive code for the paired-associates task. 
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patterns exhibited by people, namely the increased accuracy 
and decreased response time with practice. 
 Upon learning the cognitive-code approach, arguably the 
most difficult aspect of this code is learning the way that 
timing works—especially understanding that some actions 
will block until a stimulus appears or until a chunk is recalled. 
In general, though, a programmer versed in Java can easily 
understand the control flow here, and knows how to get this 
code to compile correctly and how to access API 
documentation when needed. (For example, we have not 
explained the details of the Query class used in the visual and 
memory requests, but these details are easily discovered in 
the documentation through a modern IDE.) 

Reading 
As part of a validation of the EMMA model of eye 
movements, Salvucci (2001) described a parsimonious model 
of sentence reading that simply encoded words from left to 
right (ignoring any deeper understanding to focus on the eye 
movements themselves). This model was a test of EMMA’s 

ability to predict eye movements directly from 
straightforward shifts of visual attention, examining 
measures of gaze durations, first-fixation durations, and skip 
probabilities as a function of word frequency. 
 A similarly straightforward snippet of cognitive code that 
performs sentence reading is shown in Figure 2. The code 
implements a loop that iteratively finds and encodes each 
word. The find actions in lines 1 and 5 utilize the property of 
the visual system that, by default, vision finds locations 
closest to the current eye location; in line 5, the find 
command also makes sure to find a word that has yet to be 
seen. When a “visual” is found, the model encodes the 
contents of the word and fakes the semantic processing of the 
word by simply waiting for some time delay intended to 
mimic a lexical retrieval. Of course, a more rigorous model 
of reading would need to flesh out this aspect of the code, but 
for now, this code is sufficient to move attention along from 
one word to the next, triggering the predictions of the EMMA 
model and its resulting eye movements. The behavior of this 
model fits well to the empirical data, with correlations above 
.95 and low errors for the three measures mentioned above. 

[1]   Visual visual = vision.find(new Query("word")); 
[2]   while (visual != null) { 
[3]       vision.encode(visual); 
[4]       agent.wait(MEMORY_RECALL_DURATION); 
[5]       visual = vision.find(new Query("word").add(Visual.SEEN, false)); 
[6]   } 

Figure 2: Cognitive code for the reading task. 
 

[1]   agent.run(() -> { 
[2]       Object tone = audition.encode(audition.waitFor(new Query("tone"))); 
[3]       if (tone.equals("low")) 
[4]           speech.say("low"); 
[5]   }); 
[6]   agent.run(() -> { 
[7]       Object stimulus = vision.encode(vision.waitFor(new Query("stimulus"))); 
[8]       if (stimulus.equals("O--")) 
[9]           typing.type("1"); 
[10]  }); 
[11]  agent.wait(1.0); 
[12]  vision.add(new Visual("stimulus", 10, 10, 10, 10), "O--"); 
[13]  audition.add(new Aural("tone"), "low"); 
[14]  agent.waitForAll(); 

Figure 3: Cognitive code for the dual-choice task: blue for the aural-vocal task, green for the visual-manual task. 
 

     0.000   agent              wait for {isa=stimulus} 
     0.050   agent              wait for {isa=tone} 
     1.000   agent.vision       found {isa:"stimulus" x:10 y:10 w:10 h:10 seen:false} 
     1.000   agent              encode {isa:"stimulus" x:10 y:10 w:10 h:10 seen:false} 
     1.050   agent.audition     found {isa:"tone" heard:false} 
     1.050   agent              encode {isa:"tone" heard:false} 
     1.185   agent.vision       encoded O-- 
     1.185   agent              type "1" 
     1.235   agent.hands        typing "1" 
     1.385   agent.audition     encoded low 
     1.385   agent              say "low" 
     1.435   agent.speech       saying "low" 
     1.444   agent.hands        typed 1 
     1.785   agent.speech       said "low" 

Figure 4: Trace of the cognitive code in Figure 3: blue for the aural-vocal task, green for the visual-manual task. 
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 When developing such a model in a production-system 
architecture, the control flow of the model can be very 
difficult for students to grasp—both the flow within an 
individual production rule and the higher-level control flow 
among the production rules. In contrast, the iterative loop 
here is a familiar construct to programmers, and more clearly 
demonstrates the simplicity of the reading model and thus the 
predictive power of the underlying model of eye movements. 

Dual Choice 
Human multitasking has been characterized as the interaction 
of separate cognitive threads that interleave their processing 
(Salvucci & Taatgen, 2008, 2011). Figure 3 shows a simple 
example of how threading would work in a cognitive-code 
approach, illustrating a model of a dual-choice task that has 
been characterized as “perfect time-sharing” (Schumacher et 
al., 2001). This code starts two threads (via the agent.run() 
command): the first thread (lines 2-4, blue text) listens for a 
tone and then generates a speech response; and the second 
thread (lines 7-9, green text) waits for a visual stimulus and 
then generates a keystroke response. The task code (lines 11-
14) waits 1 second, presents simultaneous visual and aural 
stimuli, and finally waits for all threads to complete. 
 The resulting simulation trace of this model, including 
timing (left-most column), is shown in Figure 4, with trace 
events color-coded as belonging to the first thread (blue) or 
the second (green). Both threads start waiting for their 
respective stimuli at the outset of the simulation. When the 
stimuli appear at the 1.0-second mark, the second thread sees 
the visual stimulus and begins to encode it; meanwhile, the 
first thread requires 50 ms to detect the aural stimulus, and 
after this delay it also encodes the sound. The motor 
responses—typing for the second thread, speech for the 
first—overlap such that neither thread experiences any time 
delays. Thus, the overall trace closely resembles the kind of 
perfect time-sharing behavior exhibited by more complex 
ACT-R models of this task (e.g., Salvucci & Taatgen, 2008). 

Discussion 
Cognitive code aims to strike a balance between the 
theoretical rigor of modern cognitive architectures and the 
practicality of modern programming languages and 
environments. The above examples show how concepts of 
cognitive code can lead to much simpler models, especially 
when compared with production-system architectures, and 
especially for the typical programmer versed in procedural 
and object-oriented languages commonly in use today. 
 There are at least two limitations of cognitive code 
compared to production systems that should be noted. First, 
production systems have the potential to be more flexible in 
their flow of control, whereas the procedural code here has a 
more rigid sequencing of actions. However, one might argue 
that most production-system models do not exploit this 
flexibility, but instead constrain the rules to embody the same 
kind of procedural control flow as the cognitive code here. 
Second, production systems allow for learning of the rules 
themselves (e.g., ACT-R’s production compilation), whereas 

cognitive code is fixed by the developer. Allowing for 
procedural learning through cognitive code is still under 
exploration, but for now, this is perhaps its biggest limitation 
compared to production systems. Nevertheless, we remain 
hopeful that the benefits of the cognitive-code approach will 
ultimately pay dividends in expanding the usability and 
learnability of cognitive modeling to a wider audience. 
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