
Cognitive Code: An Embedded Approach to Cognitive Modeling

Dario D. Salvucci (salvucci@drexel.edu)
Department of Computer Science, Drexel University

3141 Chestnut St., Philadelphia, PA 19104, USA

Abstract

For several decades, production systems have been the
dominant framework in which (primarily) symbolic cognitive
models have been developed. This paper proposes a different
approach, cognitive code, in which behavioral models are
developed directly in a modern programming language.
However, unlike standard code, cognitive code has simulated
timing and error characteristics intended to mimic those of
human cognitive, perceptual, and motor processes. Some of the
benefits of this new approach are illustrated in sample models
of a paired-associates task, reading task, and dual-choice task.

Keywords: Cognitive architectures; ACT-R

Introduction
Since their introduction decades ago, cognitive architectures
(Anderson, 1983; Newell, 1990; see also Gray, 2008) have
provided a rigorous computational framework in which
scientists can build and run cognitive models. Most
importantly, a cognitive architecture represents a “unified
theory of cognition” (Newell, 1990) that allows detailed
exploration of the integration among various human systems,
including cognitive, perceptual, and motor systems.
Cognitive architectures have facilitated major advancements
in cognitive science for specific research domains such as list
memory (Anderson, Bothell, Lebiere, & Matessa, 1998) and
multitasking (Borst, Taatgen, & van Rijn, 2010); at the same
time, architectures have been applied to real-world domains
such as gaming (Laird, 2002) and driving (Salvucci, 2006).
 Even considering these successes, adoption of cognitive
models outside of the academic research community1 has
been limited. There are arguably several reasons for this
limited adoption:

Programming Paradigm and Language. Production
systems have been the dominant framework in which
(primarily symbolic) cognitive models have been
implemented. Production systems, based on representation of
processes as condition-action production rules, have been key
to certain theoretical claims (e.g., learning from instructions:
Taatgen, Huss, Dickison, & Anderson, 2008). However, from
the perspective of programmers outside the cognitive-
architecture community, production systems are largely an
unknown quantity; instead, modern programmers typically

1 Companies such as Carnegie Learning and Soar Technology have
successfully applied cognitive models beyond the walls of the
research community; still, the impact of cognitive modeling pales in

develop code using modern procedural and object-oriented
programming languages (Java, C++, Python, etc.). Learning
the very different programming paradigms and patterns used
in production systems is a significant barrier to developing
models, even for those with a significant computer-science or
programming background.

Model-Centered Development. For those in the research
community, the cognitive model is often the centerpiece of
the main research effort, and a great deal of time and care is
taken to develop these models. For this reason, modeling
frameworks often include an integrated user-interface
environment and suite of tools to facilitate model
development. However, for an outsider looking to embed a
cognitive model into their own project—say, a game-engine
programmer who wants to develop a cognitive agent to
embed into a larger game—the model is a peripheral
component rather than a central one. For this audience,
learning an entirely new modeling language and development
environment can be a large investment, often too large to
make it worthwhile.

Lack of Model Integration. Cognitive modelers, especially
those interested in cognitive architectures, have long stressed
the benefits of a community-driven approach to unified
theories of cognition. Over the years, this integration has
largely come about at the architectural level, with a wide set
of models using a single architecture or framework to
generate behavior. Unfortunately, integration among models
themselves—for example, reuse of existing models to
develop new models—has arisen much less frequently, partly
because modeling frameworks have not emphasized rigorous
formal APIs that are crucial for integration.

 Modern cognitive architectures and models have much to
offer beyond the boundaries of the research community; with
a blend of psychological theory and computational
simulation, they contain a breadth and depth of predictive
accounts that can be widely useful for other research and
practical domains. Yet, because of the reasons above, the
investment needed to extracting predictions from these
models is often too large for those with less than a primary
interest in cognitive modeling.

comparison to related research methodologies—for instance,
machine learning—that have exploded in popularity.

In D. Reitter & F. E. Ritter (Eds.), Proceedings of the 14th International Conference on Cognitive Modeling
(ICCM 2016). University Park, PA: Penn State.

15

Cognitive Code
Cognitive code is code embedded in a modern programming
language that aims to simulate and mimic human cognitive,
perceptual, and motor processes. Of course, cognitive models
and architectures have long used computational
representations to simulate human processes, but they have
(as noted earlier) generally defined their own programming
language for this purpose, and generally relied on production
systems as a central tenet of their representations. In contrast,
cognitive code is embedded and written directly in an existing
programming language, using structures and patterns already
familiar to most programmers. At the same time, cognitive
code differs from standard code in that it includes new
software design patterns and libraries to facilitate the
simulation of timing and errors inherent in human processes.
 Before delving into the details, let us illustrate the basic
concept with a simple example. Consider sample cognitive
code (here in Java) that stores a new piece of information into
memory:

memory.store(new Chunk("cat")
 .set("owner", "Jane")
 .set("name", "Whiskers"));

Here we create a “chunk” of information (as in ACT-R:
Anderson, 2007) that defines knowledge about Jane’s cat,
and we store it into memory. Later, we try to recall this
information from memory with a query:

Chunk chunk = memory.recall(new Query("cat")
 .add("owner", "Jane"));

In each case, the code uses patterns that would be
straightforward and recognizable by most programmers. At
the same time, this code conceptually differs from standard
code in two ways. First, each step incurs a simulated temporal
cost that corresponds to the time needed to perform this
action in the cognitive system. In our example, the
memory.store() action incurs some time, say a few hundred
milliseconds, to add this knowledge to memory, and the
memory.recall() action also incurs an amount of time that
may depend on many factors (time since learning, number of
times practiced, etc.). Second, each step has some potential
for failure that mimics a true cognitive system; for example,
the memory.recall() action could fail and return a null result
depending on the current state of the cognitive system.
 We now describe a prototype system that embodies the
cognitive code approach. The system is implemented in Java
as a library that can be readily integrated into other projects.

Core Simulation System
The core system centers on the concept of an agent that acts
within the simulated world. An agent consists of any number
of modules that define behavior for a particular subsystem
(e.g., memory, vision, etc.) or for a particular domain
(arithmetic, driving, etc.). The basic unit of information
shared across modules is an item, which comprises a set of
slot-value pairs, one of which can be the “isa” type of the
item. Modules can utilize workers to perform work for them,
and can share information with other threads through buffers.

 Because the passage of time is central to the cognitive code
approach, we also require some way to simulate a central
clock within the code. Within a single thread, we simply
maintain a simulated time to be incremented by each
cognitive step. In the general case, though, we need multiple
threads to share a single clock; human multitasking will be
best represented as separate cognitive threads, as discussed
later, and even a single thread may require that certain
operations happen in parallel (e.g., moving a hand while
recalling information).
 The core simulation enables the central clock as follows.
The system assumes that individual operators on a particular
thread can define their own delays, effectively stopping
execution until the clock reaches the new time after delay.
For example, let’s say we run the following code on one agent
thread:

agent.wait(1.0);
memory.store(new Chunk("cat"));

and run the following code on another agent thread:
agent.wait(2.0);
Chunk chunk = memory.recall(new Query("cat"));

The first thread requests that time advance to 1.0 seconds,
while the second thread requests an advance to 2.0 seconds.
In this situation, the first thread succeeds in advancing the
clock to 1.0 seconds, and then performs the memory store.
The second thread’s wait step will block until 2.0 simulated
seconds have passed, guaranteeing that the subsequent recall
step will happen only after the first thread’s store step.
 The underlying implementation of the shared clock uses a
type of cyclic barrier (Java’s Phaser class) to ensure that all
concurrent threads are synchronized as each reaches a new
time step. If desired, the system can be run in real time such
that the clock corresponds to the actual time (or a multiple
thereof). In typical usage, however, simulated time does not
need to correspond to real time; in fact, it is often
advantageous to run the simulation as quickly as possible,
and then examining time after the fact for various purposes
(e.g., to predict how long a particular set of actions might
take).

Memory System
The memory system is based wholly on the ACT-R theory of
declarative memory (Anderson, 2007). In this theory,
memory consists of chunks of knowledge with slot-value
pairs, which over time strengthen or decay with practice or
lack of use. In particular, each chunk has an associated
activation that defines how readily the chunk can be recalled,
as dependent on its prior usage: if a chunk is “used” (recalled
or re-stored) at times !", the activation #$ for chunk % can be
defined as

#$ = '(!"*+

"

	

16

where , is the memory decay factor that determines how
quickly the usages decay. Given the chunk’s activation, we
can determine the probability to recall the chunk as

-.	(.012'') =
1

0*(56*7)/9
	

for a retrieval threshold : and noise level ;. If the chunk can
be successfully retrieved, the time needed for retrieval is
defined as

<=>?@AA = B0*56	

 In our cognitive code system, chunks are stored using the
memory.store() action, which incurs only a 50 ms time for
a cognitive step—the same 50 ms delay used in many
cognitive architectures for the firing time for a production
rule (e.g., ACT-R, Soar). For recall, our system includes two
types of actions. First, there is a non-blocking action
memory.startRecall() that initiates the recall action but
allows the code to continue past this point after a 50 ms
cognitive step time. A non-blocking action of this type allows
the code to continue and perform other actions while recall is
taking place (e.g., watching for a visual stimulus or typing a
key). The memory.getRecalled() action is then used to
access the recalled information, and this command blocks
until the recall is complete. Second, there is the blocking
command we saw earlier, memory.recall(), which is
equivalent to performing a memory.startRecall() followed
by a memory.getRecalled(). Both types of recall actions
take as an argument a query that partially defines the desired
chunk (as seen earlier with the “cat” example), and both can
fail and return null if the chunk is not successfully recalled.
 Chunk rehearsal—that is, the usages defined earlier—can
take several forms. When a chunk is initially created, this is
defined as its first use. If an exact copy of this chunk is stored
later, the copy is merged into the original chunk and becomes
another use of the chunk. Finally, any recall of the chunk
serves as a rehearsal and adds to the use count. Thus, all of
these forms contribute to the gradual increase in a chunk’s
activation; in contrast, the lack of use causes any early uses
to decay away, making the chunk more difficult to recall and
more costly (in terms of time) if successfully recalled.

Perceptual System
The perceptual system is primarily based on ACT-R and
partly based on a related theory of eye movements. The vision
module, following ACT-R, assumes a spotlight of visual
attention that moves according to a two-stage where-what
process of finding objects and encoding objects. The non-
blocking action vision.startFind() attempts to find a
visual location that matches the given query based on
perceptual features available in peripheral vision (like
position, color, etc.), and its complementary command
vision.getFound() returns the found location. Their
blocking counterpart vision.find() achieves the same
effect in a shorthand simpler action. Another command,
vision.waitFor(), waits until a location matching the query
appears in view (e.g., to model waiting for a visual stimulus).

Once a location is found, there are analogous actions for
encoding the object at the location and returning information
about the object: the non-blocking action
vision.startEncode() and its associated action
vision.startEncode(), along with their blocking
counterpart vision.encode().
 The movement of visual attention from one object to
another generates movements of the system’s simulated eyes
as defined by the EMMA theory (Salvucci, 2001), which in
turns derives from the E-Z Reader theory of eye movements
in reading (Reichle, Pollatsek, Fisher, & Rayner, 1998). This
provides the system with a powerful predictive dimension:
the code never explicitly moves the eyes, but in moving
attention, the eyes follow and demonstrate several interesting
aspects of eye-movement behavior: the time lag between a
movement of attention and a movement of the eyes; the
possibility of skipping over an encoded object when that
object is easy to encode (e.g., a high-frequency word); and
the possibility of re-fixating an encoded object with multiple
eye fixations when that object is difficult to encode (e.g., a
low-frequency word).
 In addition to vision, the system includes audition to model
detection and encoding of aural information. Specifically, the
audition module includes audition.startDetect() and
audition.detect() actions (non-blocking and blocking,
respectively) to detect a sound, and an associated action
audition.waitFor()that waits for the next sound that
matches a query. It also includes audition.startEncode()
and audition.encode() actions that are analogous to these
actions in the vision module.

Motor System
The motor system is currently focused on using a mouse and
keyboard in a desktop computer environment. The mouse-
movement module uses Fitts’ law in the same manner as
ACT-R and EPIC (Meyer & Kieras, 1997). The module
includes the expected actions to move and click the mouse:
mouse.startMoveTo() and mouse.startClick() as non-
blocking actions, and mouse.moveTo() and mouse.click()
as blocking actions.
 For typing, the motor system is based on the TYPIST
model (John, 1996). Typing is invoked with a typing.type()
action that specifies the text to output. The typing module
breaks up the given text into words and then types each word
as a 50 ms cognitive step followed by the execution of the
motor actions for each keystroke; shifted keys (e.g., capital
letters) require a keystroke for the shift key before the
keystroke for the character. The time for each keystroke was
estimated as a function of typing speed as measured in gross
words per minute. Specifically, a function was fit to Figure 4
of John (1996) to yield the following estimate of keystroke
time <">C as a function of words per minute DEF:

<">C = 	 .0000083(DEF)K − .003051 DEF + .31727	

The typing module can thus be set to any typing speed
between 30 and 120 words per minute for an estimate of
typing times at that speed.

17

 The other component of the motor system is the speech
module, as represented by a speech.say() action that takes
a simple string as input. Roughly like the ACT-R speech
system, this module breaks the string into syllables and
outputs the speech with a delay equal to a base time (200 ms)
plus an execution time per syllable (150 ms). Whereas ACT-
R has a simple assumption of syllables (one syllable per 3
characters), the module here uses a more complex method to
break up syllables according to a number of rules for English
pronunciation tested on a small corpus of common words.

Cognitive Code as Software
The fact that cognitive code is implemented as software in a
mainstream programming language lends it several benefits
over cognitive models developed in a typical cognitive
architecture approach. In contrast to a monolithic cognitive
architecture, modules in cognitive code are instantiated as
needed, and using different implementations of a particular
type of module does not pose a problem. For example, the
following code defines a new agent, the eyes of the agent, and
finally the vision module:

Agent agent = new Agent();
Eyes eyes = new Eyes(agent);
Vision vision = new Vision(agent, eyes);

Various methods for these components are easily accessible:
for instance, a programmer might check aspects of the agent
(e.g., agent.getTime()), move the eyes to a new location
(eyes.moveTo()), or change parameters of the visual system
(vision.setFindTime()). Developers can extend objects to
include additional functions, or can build new objects that use
cognitive-code objects as primitives. In fact, as the approach
evolves, we expect different implementations of the modules
to provide alternative theoretical approaches—in this case,
say, we might have a different visual system based on pixels
and salient features.
 Another large benefit is that cognitive code inherits the
many structures and tools already used by modern software
for developing, interfacing, and testing code. Instead of
having specialized IDEs (integrated development
environments), cognitive code allows a programmer to use
their preferred IDE for development. Cognitive code also
inherits the robust APIs (application program interfaces) of
modern programming languages, such as packages, classes,
interfaces, and related constructs—a big advantage in
accessing others’ code and successfully integrating it with
one’s own code. Finally, cognitive code can be tested

2 http://act-r.psy.cmu.edu

rigorously utilizing the same tools commonly in use today
(e.g., JUnit tests in Java). In this case, each test can check not
only whether the code runs correctly as a piece of software,
but also whether some cognitive code fits an appropriate
empirical (human) data set; in other words, the code’s
correctness also depends on whether it accurately mimics the
behavior of human behavior in the chosen domain.

Illustrative Examples
We now provide a few illustrative examples of cognitive
code, all of which represent re-implementations of existing
models developed in a cognitive architecture. Our goal here
is to demonstrate that cognitive code can produce much the
same behavior and predictions as architecture models, but the
code blocks that generate these behaviors are simpler and
more learnable than their architectural counterparts.

Paired Associates
One of the standard models in Unit 4 of the ACT-R tutorial2
is a model of the paired-associates task. In this task,
participants see a word stimulus (e.g., “king”) and must type
a digit that is associated to that word in the experiment (e.g.,
“7”). The participant does not know the associations at the
outset, but over time, they learn them and gradually become
better at recalling the associated digit, improving their
correctness and (for correct responses) improving their
response times. Students studying the ACT-R architecture
might model this task as they learn to understand ACT-R
memory theory and implement their first models of memory
storage and recall. Even after a few prior lessons in the syntax
and semantics of the ACT-R modeling language, the paired-
associates model can be difficult for students to understand
and might take a typical student one to a few hours to work
through and understand.
 A cognitive-code model of the paired-associates task is
shown in Figure 1. Starting at line 1, the model first waits for
a word, blocking on the vision.waitFor() command until
the stimulus appears, and then encodes the word. It then tries
to recall a chunk that represents the word-digit pair in
memory; if the chunk is successfully recalled, the model
types the digit as a response. The model then waits for the
digit (which appears in all cases) and stores the word-digit
pair to memory. (Note that if the word-digit pair is already in
memory, this strengthens the pair chunk as described earlier.)
This model behaves essentially the same as the ACT-R
tutorial model, and successfully produces the behavioral

[1] String word = (String) vision.encode(vision.waitFor(new Query("word")));
[2] Chunk chunk = memory.recall(new Query("pair").add("word", word));
[3] if (chunk != null)
[4] typing.type(chunk.getString("digit"));
[5] int digit = (Integer) vision.encode(vision.waitFor(new Query("digit")));
[6] memory.store(new Chunk("pair").set("word", word).set("digit", digit));

Figure 1: Cognitive code for the paired-associates task.

18

patterns exhibited by people, namely the increased accuracy
and decreased response time with practice.
 Upon learning the cognitive-code approach, arguably the
most difficult aspect of this code is learning the way that
timing works—especially understanding that some actions
will block until a stimulus appears or until a chunk is recalled.
In general, though, a programmer versed in Java can easily
understand the control flow here, and knows how to get this
code to compile correctly and how to access API
documentation when needed. (For example, we have not
explained the details of the Query class used in the visual and
memory requests, but these details are easily discovered in
the documentation through a modern IDE.)

Reading
As part of a validation of the EMMA model of eye
movements, Salvucci (2001) described a parsimonious model
of sentence reading that simply encoded words from left to
right (ignoring any deeper understanding to focus on the eye
movements themselves). This model was a test of EMMA’s

ability to predict eye movements directly from
straightforward shifts of visual attention, examining
measures of gaze durations, first-fixation durations, and skip
probabilities as a function of word frequency.
 A similarly straightforward snippet of cognitive code that
performs sentence reading is shown in Figure 2. The code
implements a loop that iteratively finds and encodes each
word. The find actions in lines 1 and 5 utilize the property of
the visual system that, by default, vision finds locations
closest to the current eye location; in line 5, the find
command also makes sure to find a word that has yet to be
seen. When a “visual” is found, the model encodes the
contents of the word and fakes the semantic processing of the
word by simply waiting for some time delay intended to
mimic a lexical retrieval. Of course, a more rigorous model
of reading would need to flesh out this aspect of the code, but
for now, this code is sufficient to move attention along from
one word to the next, triggering the predictions of the EMMA
model and its resulting eye movements. The behavior of this
model fits well to the empirical data, with correlations above
.95 and low errors for the three measures mentioned above.

[1] Visual visual = vision.find(new Query("word"));
[2] while (visual != null) {
[3] vision.encode(visual);
[4] agent.wait(MEMORY_RECALL_DURATION);
[5] visual = vision.find(new Query("word").add(Visual.SEEN, false));
[6] }

Figure 2: Cognitive code for the reading task.

[1] agent.run(() -> {
[2] Object tone = audition.encode(audition.waitFor(new Query("tone")));
[3] if (tone.equals("low"))
[4] speech.say("low");
[5] });
[6] agent.run(() -> {
[7] Object stimulus = vision.encode(vision.waitFor(new Query("stimulus")));
[8] if (stimulus.equals("O--"))
[9] typing.type("1");
[10] });
[11] agent.wait(1.0);
[12] vision.add(new Visual("stimulus", 10, 10, 10, 10), "O--");
[13] audition.add(new Aural("tone"), "low");
[14] agent.waitForAll();

Figure 3: Cognitive code for the dual-choice task: blue for the aural-vocal task, green for the visual-manual task.

 0.000 agent wait for {isa=stimulus}
 0.050 agent wait for {isa=tone}
 1.000 agent.vision found {isa:"stimulus" x:10 y:10 w:10 h:10 seen:false}
 1.000 agent encode {isa:"stimulus" x:10 y:10 w:10 h:10 seen:false}
 1.050 agent.audition found {isa:"tone" heard:false}
 1.050 agent encode {isa:"tone" heard:false}
 1.185 agent.vision encoded O--
 1.185 agent type "1"
 1.235 agent.hands typing "1"
 1.385 agent.audition encoded low
 1.385 agent say "low"
 1.435 agent.speech saying "low"
 1.444 agent.hands typed 1
 1.785 agent.speech said "low"

Figure 4: Trace of the cognitive code in Figure 3: blue for the aural-vocal task, green for the visual-manual task.

19

 When developing such a model in a production-system
architecture, the control flow of the model can be very
difficult for students to grasp—both the flow within an
individual production rule and the higher-level control flow
among the production rules. In contrast, the iterative loop
here is a familiar construct to programmers, and more clearly
demonstrates the simplicity of the reading model and thus the
predictive power of the underlying model of eye movements.

Dual Choice
Human multitasking has been characterized as the interaction
of separate cognitive threads that interleave their processing
(Salvucci & Taatgen, 2008, 2011). Figure 3 shows a simple
example of how threading would work in a cognitive-code
approach, illustrating a model of a dual-choice task that has
been characterized as “perfect time-sharing” (Schumacher et
al., 2001). This code starts two threads (via the agent.run()
command): the first thread (lines 2-4, blue text) listens for a
tone and then generates a speech response; and the second
thread (lines 7-9, green text) waits for a visual stimulus and
then generates a keystroke response. The task code (lines 11-
14) waits 1 second, presents simultaneous visual and aural
stimuli, and finally waits for all threads to complete.
 The resulting simulation trace of this model, including
timing (left-most column), is shown in Figure 4, with trace
events color-coded as belonging to the first thread (blue) or
the second (green). Both threads start waiting for their
respective stimuli at the outset of the simulation. When the
stimuli appear at the 1.0-second mark, the second thread sees
the visual stimulus and begins to encode it; meanwhile, the
first thread requires 50 ms to detect the aural stimulus, and
after this delay it also encodes the sound. The motor
responses—typing for the second thread, speech for the
first—overlap such that neither thread experiences any time
delays. Thus, the overall trace closely resembles the kind of
perfect time-sharing behavior exhibited by more complex
ACT-R models of this task (e.g., Salvucci & Taatgen, 2008).

Discussion
Cognitive code aims to strike a balance between the
theoretical rigor of modern cognitive architectures and the
practicality of modern programming languages and
environments. The above examples show how concepts of
cognitive code can lead to much simpler models, especially
when compared with production-system architectures, and
especially for the typical programmer versed in procedural
and object-oriented languages commonly in use today.
 There are at least two limitations of cognitive code
compared to production systems that should be noted. First,
production systems have the potential to be more flexible in
their flow of control, whereas the procedural code here has a
more rigid sequencing of actions. However, one might argue
that most production-system models do not exploit this
flexibility, but instead constrain the rules to embody the same
kind of procedural control flow as the cognitive code here.
Second, production systems allow for learning of the rules
themselves (e.g., ACT-R’s production compilation), whereas

cognitive code is fixed by the developer. Allowing for
procedural learning through cognitive code is still under
exploration, but for now, this is perhaps its biggest limitation
compared to production systems. Nevertheless, we remain
hopeful that the benefits of the cognitive-code approach will
ultimately pay dividends in expanding the usability and
learnability of cognitive modeling to a wider audience.

References
Anderson, J. R. (1983). The Architecture of Cognition.

Cambridge, MA: Harvard University Press.
Anderson, J. R. (2007). How Can the Human Mind Occur in

the Physical Universe? New York: Oxford University
Press.

Anderson, J. R., Bothell, D., Lebiere, C., & Matessa, M.
(1998). An integrated theory of list memory. Journal of
Memory and Language, 38, 341-380.

Borst, J.P., Taatgen, N.A., & van Rijn, H. (2010). The
problem state: A cognitive bottleneck in multitasking.
Journal of Experimental Psychology: Learning, Memory,
& Cognition, 36, 363-382.

Gray, W. D. (2008). Cognitive architectures: Choreographing
the dance of mental operations with the task environment.
Human Factors, 50, 497-505.

John, B. E. (1996). TYPIST: A theory of performance in
skilled typing. Human-computer interaction, 11, 321- 355.

Meyer, D. E., & Kieras, D. E. (1997). A computational theory
of executive cognitive processes and multiple-task
performance: Part 1. Basic mechanisms. Psychological
Review, 104, 3-65.

Laird, J. E. (2002). Research in human-level AI using
computer games. Communications of the ACM, 45, 32-35.

Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). Soar:
An architecture for general intelligence. Artificial
Intelligence, 33, 1-64.

Newell, A. (1990). Unified Theories of Cognition.
Cambridge, MA: Harvard University Press.

Reichle, E. D., Pollatsek, A., Fisher, D. L., & Rayner, K.
(1998). Toward a model of eye movement control in
reading. Psychological Review, 105, 125-157.

Salvucci, D. D. (2001). An integrated model of eye
movements and visual encoding. Cognitive Systems
Research, 1, 201-220.

Salvucci, D. D. (2006). Modeling driver behavior in a
cognitive architecture. Human Factors, 48, 362-380.

Salvucci, D. D., & Taatgen, N. A. (2008). Threaded
cognition: An integrated theory of concurrent multitasking.
Psychological Review, 115, 101-130.

Salvucci, D. D., & Taatgen, N. A. (2011). The Multitasking
Mind. New York: Oxford University Press.

Schumacher, E. H., et al. (2001). Virtually perfect time
sharing in dual-task perfor- mance: Uncorking the central
cognitive bottleneck. Psychological Science, 12, 101–108.

Taatgen, N. A., Huss, D., Dickison, D. & Anderson, J. R.
(2008). The acquisition of robust and flexible cognitive
skills. Journal of Experimental Psychology: General, 137,
548-565.

20

