
Using a cognitive architecture in educational and recreational games:
How to incorporate a model in your App

Niels A. Taatgen (n.a.taatgen@rug.nl) and Harmen de Weerd (h.a.de.weerd@rug.nl)

Institute of Artificial Intelligence, Nijenborgh 9
9747 AG Groningen, The Netherlands

Abstract
We present a Swift re-implementation of the ACT-R
cognitive architecture, which can be used to quickly build iOS
Apps that incorporate an ACT-R model as a core feature. We
discuss how this implementation can be used in an example
model, and explore the breadth of possibilities by presenting
six Apps resulting from a newly developed course in which
students make use of Swift ACT-R to combine cognitive
models with mobile applications.

Keywords: ACT-R, mobile apps, game design

Introduction
Cognitive models have proven to be a valuable research tool
in advancing our understanding of human cognition.
Because of their ability to model human behavior, cognitive
models also have a great potential for use outside of
research, such as in educational or recreational settings. In
this role, the model is not used to explain human data, but to
act as a simulated human agent. In previous cases, such as
the ACT-R model that played SET (Taatgen et al., 2003),
and DISTRACT-R (Salvucci et al., 2005), the model was
implemented directly in the target programming language.
In this paper, we present an ACT-R re-implementation that
can be used as a component in an iOS App. The
implementation makes it possible to quickly build Apps
with ACT-R inside. As a demonstration, we present a Rock-
Paper-Scissors App that the first author built in just one-
and-a-half hour. We further look at the results of a course
that we taught using the implementation, and the six Apps
that came out of that course.

Swift ACT-R
The re-implementation of ACT-R uses the new Swift
programming language. Swift is an object-oriented
programming language similar to Java and C++. The Swift
implementation of ACT-R consists of a set of classes that
implement the different components of ACT-R, such as
Chunks, Declarative Memory, Procedural Memory, and the
overarching Model class.

The simplest way to use Swift ACT-R is to write a text-
file with a regular ACT-R model (with some limitations).
The next step is to build a controller for the App, that
responds to button presses and other actions the user can
take. This controller creates an instance of the model class,
and loads the ACT-R model into that instance:

model = Model()
model.loadModel("example")

The model can then be run using the run method:

model.run()

The model communicates with the App through the action
buffer (a new buffer that takes the role of standard
perception and action buffers). Whenever a production rule
takes a +action> action, the model stops, and hands
control back to the main program. The main program can
then read out the contents of the action buffer, make
appropriate changes to the interface, wait for user input,
place information back into the action buffer, and then run
the model again.

There are several alternatives to using ACT-R code, for
example, it is also possible to access declarative memory
directly, or even to have no explicit ACT-R model, but
instead use declarative memory directly. The ACT-R code
can be downloaded from:
 https://github.com/ntaatgen/ACT-R
It has two example models, both of the prisoner's dilemma
(Lebiere, Wallach & West, 2000 and Stevens, Taatgen, &
Cnossen, 2016).

Example model: Rock - Paper - Scissors
Lebiere and West (1999) built an ACT-R model that can
play Rock-Paper-Scissors, and adapts itself to its opponent
by trying to predict the next move based on previous
experiences. The lag 1 model of Lebiere et al. stores
sequences of two consecutive moves of the opponent in
declarative memory and uses these to predict the opponent’s
next move. For example, the model has the following
chunks for sequences that start with rock:

(RR isa decision step1 rock step2 rock)
(RP isa decision step1 rock step2 paper)
(RS isa decision step1 rock step2 scissors)

Each time the opponent plays rock twice in a row, the RR

chunk is strengthened, each time rock is followed by paper,
the RP chunk is strengthened, and each time rock is
followed by scissors, the RS chunk is strengthened. When
the model needs to decide what to do in the turn after the
opponent has played rock, it retrieves the most active chunk
with rock in step1. The value in step2 is then the model's
prediction for the next move of the opponent. It only needs
to decide what move to counter that with. The whole model
consists of only four production rules (actually, five: one
more rule to play the first game, when there is no previous
decision). Figure 1 lists these productions.

In D. Reitter & F. E. Ritter (Eds.), Proceedings of the 14th International Conference on Cognitive Modeling
(ICCM 2016). University Park, PA: Penn State.

119

Figure 1: Productions in the Rock-Paper-Scissors model

The model makes a decision in three steps. It first

retrieves its prediction for what the opponent will do next
based on their previous move. Based on that prediction, it
will retrieve from memory the move that will beat the
predicted action (e.g. rock beats scissors). It will then put
this action into the action buffer. Control is then returned to
the main program, which waits until the human player takes
an action by pushing one of three buttons in the interface
(Figure 2).

Figure 2. The Rock-Paper-Scissors game on an iPhone

The program itself is straightforward. The function that is

called when the App is started already loads in the model
and carries out a first run. The model has therefore made its
decision, and now waits for the player to tap one of the
buttons. Once the player has made a decision, the code
checks who has won, and adjust the scores. Figure 3 shows
all the basic code that is necessary. Some additional code is
needed to update the display with appropriate feedback, and
show the scores.

To explore the breadth of possibilities of constructing
Apps with a built-in model, we made this the goal of an
advanced cognitive modeling course.

Course outline
The course ‘Cognitive Modeling: Complex Behaviour’ is
part of the Master Human-Machine Communication and the
Master Artificial Intelligence at the University of
Groningen. It has been set up as a so-called learning
community. For the purpose of the course, students had
access to a lab room with several workstations to develop
apps on, as well as a number of iPads and iPhones for
testing. The lab room was available to the students for the
full duration of the ten-week course. In line with the concept
of a learning community, the focus is on letting the students
present their work for open discussion among themselves,
rather than on formal lectures.
The course followed the plan outlined in Table 1. At the
first meeting, students divided themselves into three-person

(p retrieve-decision
 =goal>
 isa goal
 state start
 playerlast =last
==>
 =goal>
 state retrieve
 +retrieval>
 isa decision
 step1 =last)

 (p retrieve-beats
 =goal>
 isa goal
 state retrieve
 =retrieval>
 isa decision
 step2 =prediction
==>
 =goal>
 state retrieve-beats
 +retrieval>
 isa beats
 slot1 =prediction)

(p make-decision
 =goal>
 isa goal
 state retrieve-beats
 =retrieval>
 isa beats
 slot2 =decision
==>
 =goal>
 state decide
 +action>
 isa move
 choice =decision)

(p restart-after-action
 =goal>
 isa goal
 state decide
 playerlast =last
 =action>
 isa move
 opponent =decision
==>
 +goal>
 isa goal
 state start
 playerlast =decision
 +imaginal>
 isa decision
 step1 =last
 step2 =decision
 -action>)

120

project teams, and were encouraged to immediately start
developing a project proposal. A project proposal was
subject to two conditions: (1) the App had to be developed
in Swift, and (2) the core of the App should be the Swift
implementation of the ACT-R cognitive architecture. No
further requirements were given, although project proposals
had to be approved before a team could start. In particular,
students were free to choose to build a game, an educational
app, or different applications using an ACT-R model. In
addition, students were free to make their App for iPad,
iPhone, Apple Watch, or any combination of the three.

Each team consisted of three people, with one member
being responsible for graphical user interface (GUI) design,
one for cognitive model design, and for programming and
coordination. The first two weeks were meant for students
to familiarize themselves with the Swift programming
language and the Swift ACT-R implementation. Each of
these topics included a short lecture and a small, ungraded
assignment.

Students presented their finalized project proposals in the
third week. Over the following five weeks, students gave
weekly progress reports on the status of their project, either
privately with one of the lecturers, or as a presentation to
fellow students to encourage discussion of common
problems and solutions.

Final presentations and demonstrations of the App were
due in week 8 and 9, which left the students one additional
week to write a final report on their App. Mirroring the
structure of the student projects, the final report was
required to discuss the graphical user interface, the cognitive
model, and general programming.

Table 1: Course plan for ‘Cognitive Modeling: Complex

Behavior’.

Week Activity
1 Introductory lecture on Swift

Creating project teams
Assignment: Build simple calculator app

2 Introductory lecture on Swift ACT-R
Assignment: Build rock-paper-scissors
opponent using Swift ACT-R

3 Presentation final project proposals
4-7 Progress reports
8 Final presentation
9 Demonstration of the App and election of

the best App
10 Deadline final report

 override func viewDidLoad() { // This function is called when the App starts up
 super.viewDidLoad()
 model.loadModel("rps")
 model.run()
 }

 // The following function is called when the player pushed one of the buttons
 @IBAction func gameAction(sender: UIButton) {
 // The player action is the title of the button that was pressed
 let playerAction = sender.currentTitle!
 // The model action is in the choice slot in the action buffer
 let modelAction = model.lastAction("choice")!
 // Determine the outcome of the game
 switch (playerAction,modelAction) {
 case ("Rock","rock"),("Paper","paper"),("Scissors","scissors"):
 // Tie
 break
 case ("Rock","scissors"),("Paper","rock"),("Scissors","paper"):
 // Players wins
 pScore += 1
 mScore -= 1
 default:
 // Model wins
 pScore -= 1
 mScore += 1
 }
 // Communicate the player's action back to the model by setting a slot
 // in the action buffer
 model.modifyLastAction("opponent", value: playerAction.lowercaseString)
 // And run the model again for the next trial
 model.run()
 }

Figure 3. Code in the App to handle the interaction between the player and the model.

121

Description of developed mobile apps
Six projects were developed during the course, each with a
corresponding App. As mentioned in the course outline,
students were free to choose the topic of their application, as
long as it included Swift ACT-R as a core mechanism. The
six projects included three recreational games, two
educational games, and one other application. In this
section, we describe each of these apps in more detail.

Six-Dice game

The six-dice game is a recreational game of incomplete
information played over a number of rounds. Two players
control three dice each. At the start of each round, each
player is given a goal that involves a certain number of dice
that should show a given number of pips. For example, the
human player in the screenshot above has the goal to have at
least one of the six dice show a 3, while the cognitive agent
may have the goal to have one die to have rolled a 6. Note
that these goals are private information. That is, neither
player knows the other player's goal.

Once the goals are revealed, all dice are rolled and
revealed. Next, one of the players may offer to reroll any
subset of their own three dice. The other player must decide
whether or not to accept this proposal. If the proposal is
rejected, the round ends and each player who has achieved
his or her goal gains one point. If the second player accepts
the proposal, the dice selected by the proposing player are
rerolled, but the second player also has to select the same

number of their own dice to reroll. Note that the deciding
player controls which dice are rerolled.

At the end of the game, the player with the highest score
wins. However, when the combined score of both players is
below a certain threshold, the game ends without a winner.
The game is therefore a game of mixed motives. Especially
near the end of the game, it may be in the best interest of a
player to allow the opponent to reach their goal.

The ACT-R model is used to assess the opponent's
trustworthiness. Each game, the model would assess the
outcome of the game, and assign it a trust value between 1
and 10, and add this as a chunk to declarative memory.
When it later had to make a decision in which trust of the
other player played a role, it would perform a blended
retrieval of the trust value.

Memory

Memory (also known as Concentration) is a recreational
card game played by placing a number of cards face down
on a surface. Players take turns revealing two of the cards. If
these two cards form a pair, the cards are removed from the
game and the player scores a point. Otherwise, the cards are
placed back face down. The game continues until no cards
are left, at which point the player with the most points wins.

Note that for a computer player, the game of Memory is a
trivial one. After all, turning the cards face down after
revealing only presents a challenge for players without a
perfect memory. The goal of incorporating a cognitive agent
in Memory is therefore to create a fun and challenging
competitor, rather than to make an agent that follows an
optimal strategy in playing Memory.

The ACT-R Memory player makes use of declarative
memory to store card information such as the identities and
positions of previously revealed cards. When the ACT-R
player believes to have found a pair of cards, it tries to
retrieve the locations and claim the pair. To simulate
human-like errors, the model adds noise to the stored
positions of cards. This causes cards on the edges and
corners of the surface to be remembered better than interior
cards.

122

Pyramid game

The pyramid game is a recreational game played with a
standard deck of 52 cards. Ten cards are placed face down
as a pyramid (see screenshot above). In addition, each
player receives four facedown cards. At the start of the
game, each player is allowed to look at their own four cards.
A player cannot look at the cards of the other player, and
once the game starts, a player is no longer allowed to review
their own cards either.

The game is divided into multiple rounds. In each round,
a face down pyramid card is turned over, starting at the
bottom left and moving slowly up the pyramid. The value of
a card depends on its position in the pyramid. Cards on the
bottom row are worth 1 point, while the top card is worth 4
points. Once a card is revealed, both players decide whether
or not to claim that one of their four cards has the same face
value. If a player decides to do so, they select one of their
four cards. The other player may then choose to challenge
this claim by turning over the selected card and check its
face value.

The players’ scores change based on the outcome of a
round. If no claim is made, scores remain unchanged. When
a claim remains unchallenged, the claimant adds the value
of the pyramid card to their score. If the claim is challenged
and found to be false, the challenger adds twice the value of
the pyramid card to their score. Finally, if a claim is
challenged and found to be true, the claimant adds twice the
value of the pyramid card to his score.

Independent of whether a claim was challenged, any card
that was used to claim points are replaced with new cards
from the deck. Only the owner of a new card is allowed to
inspect it.

For the purpose of the app, the human player always starts
by deciding to make a claim. Once this claim is resolved,
the computer player takes its turn and the game continues to
the next pyramid card. When there are no cards left on the
pyramid to turn over, the player with the highest score wins.

The ACT-R opponent makes use of declarative memory
to remember its own cards, and regularly rehearses these
cards to avoid forgetting. In addition, the ACT-R player

tries to model the behavior of the human player in terms of
the likelihood that the human player is bluffing and the
likelihood that the human player will challenge a claim of
the ACT-R player.

Mathgician game

Mathgician is an educational App aimed at training addition
to children in the form of a competitive game. In the game,
players are presented with a goal number and six tiles. Each
tile has a number printed on it. Players have to select tiles
such that the numbers on the selected tiles add up to the goal
number. For example, to get the goal of 27, as in the
screenshot above, players could select the tiles with the
numbers 17, 6, and 4, but also the tiles with the numbers 18,
6, 2, and 1.

The game is played against an ACT-R opponent, which
follows a human-like greedy strategy, in which it tries to get
to the goal number with high numbers first. If this fails, the
model tries lower numbers. In addition, the App has the
option to play against an adaptive opponent, which tries to
match the search speed of the ACT-R model with the
behavioral data of the human player.

OMGLogic game
OMGLogic is an educational App that is intended to help
players learn how to construct semantic tableaux. In the app,
players are presented with formulas from propositional
logic. They are asked to construct a semantic tableau to
show that the formula cannot be satisfied. To do so, players
have to select part of the formula and decide how it should
be handled to continue the tableau. Whenever a player takes
a correct action their score increases, while incorrect
answers decrease a player’s score.

The ACT-R model presents a competitor that attempts to
gain points for itself while constructing the semantic
tableau. The ACT-R model attempts to match the skill level
of the human player in solving the formulas. If the model
successfully retrieves a correct course of action before the
human player, the step is executed and the human player
loses points.

123

LagMusic app

LagMusic is a music player that makes use of ACT-R to
predict when a listener wants to listen to a previously heard
song again, given a user-specified mood. The model uses
the actions of the user as feedback. Skipping a song is
considered to be an indication that the user is unwilling to
listen to the song, while a user that listens to a song for the
full duration is considered to be happy with the model’s
selection. Finally, a user can indicate that it likes a song, but
does not want to listen to it at the current moment by
shaking the device.

The ACT-R model uses activation of a song chunk to
determine whether, given the user’s current mood, a song
has sufficiently faded from memory for the user to
appreciate hearing it again, as well as whether or not the
user appreciates the song at all in the current mood.
Whenever a song is played in full, the positive feedback
increases activation. Skipping a song provides negative
feedback by decreasing a song’s activity. In addition, the
model updates the retrieval threshold, making it more likely
for the model to retrieve songs with higher activation. The
neutral feedback, which indicates that the song is
appreciated but played too soon, adjusts the retrieval
threshold in the other direction, making it more likely for
the model to retrieve songs with lower activation.

Conclusion
Cognitive models are not only useful to build theories of
human cognition, but they can also be applied to build
simulated humans. In this paper we explored possible ways
in which the ACT-R architecture can be used in the context
of a mobile application. One of the conclusions we can draw
at this stage is that for most purposes declarative memory is
the most useful component in ACT-R. It can model how we
remember and forget information, and can also model
decision making through instances-based learning. Further
potential of incorporating a model in an App is that the App
can gather its own information to train the model. Again,
declarative learning is the lowest hanging fruit here, but
procedural learning is potentially very powerful as well.

Acknowledgments
The underlying research project is funded by the Metalogue
project; a Seventh Framework Programme collaboration
funded by the European Commission, grant agreement
number: 611073.

We want to thank the following students for their efforts
in bringing the ACT-R Apps to life: Harmke Alkemade,
Roberto De Cecilio De Carlos, Andrija Curganov, Thomas
Derksen, Annemarie Galetzka, Joram Koiter, Michael
LeKander, Milena Mandic, Rick van der Mark, Hugo van
Plateringen, Tom Renkema, Jordi Top, Teun van Tuijl, Olaf
Visker, Alex de Vries, Evert van der Weit, Marco Wirthlin,
and Maikel Withagen.

References
Anderson, J.R. (2007). How Can the Human Mind Occur in

the Physical Universe? Oxford, USA: Oxford University
Press.

Lebiere, C., Wallach, D., & West, R. (2000). A memory-
based account of the prisoner’s dilemma and other 2x2
games. In N. Taatgen, & J. Aasman (Eds.), Proceedings
of the Third International Conference on Cognitive
Modeling (pp. 185–193). Veenendaal: Universal Press.

Lebiere, C., & West, R.L. (1999). Using ACT-R to
model the dynamic properties of simple games. In
Proceedings of the Twenty-first Conference of the
Cognitive Science Society (pp. 296-301).

Salvucci, D.D., Zuber, M., Beregovaia, E., & Markley, D.
(2005). Distract-R: Rapid prototyping and evaluation of
in-vehicle interfaces. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(pp. 581-589).

Stevens, C.A., Taatgen, N.A., & Cnossen, F. (2016).
Instance-based models of metacognition in the prisoner's
dilemma. Topics in Cognitive Science, 8(1), 322-334.

Taatgen, N.A., van Oploo, M., Braaksma, J. &
Niemantsverdriet, J. (2003). How to construct a
believable opponent using cognitive modeling in the
game of Set. In Proceedings of the Fifth International
Conference on Cognitive Modeling (pp. 201-206).

124

