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Abstract 
We present a Swift re-implementation of the ACT-R 
cognitive architecture, which can be used to quickly build iOS 
Apps that incorporate an ACT-R model as a core feature. We 
discuss how this implementation can be used in an example 
model, and explore the breadth of possibilities by presenting 
six Apps resulting from a newly developed course in which 
students make use of Swift ACT-R to combine cognitive 
models with mobile applications.  

Keywords: ACT-R, mobile apps, game design 

Introduction 
Cognitive models have proven to be a valuable research tool 
in advancing our understanding of human cognition. 
Because of their ability to model human behavior, cognitive 
models also have a great potential for use outside of 
research, such as in educational or recreational settings. In 
this role, the model is not used to explain human data, but to 
act as a simulated human agent. In previous cases, such as 
the ACT-R model that played SET (Taatgen et al., 2003), 
and DISTRACT-R (Salvucci et al., 2005), the model was 
implemented directly in the target programming language. 
In this paper, we present an ACT-R re-implementation that 
can be used as a component in an iOS App. The 
implementation makes it possible to quickly build Apps 
with ACT-R inside. As a demonstration, we present a Rock-
Paper-Scissors App that the first author built in just one-
and-a-half hour. We further look at the results of a course 
that we taught using the implementation, and the six Apps 
that came out of that course. 

Swift ACT-R 
The re-implementation of ACT-R uses the new Swift 
programming language. Swift is an object-oriented 
programming language similar to Java and C++. The Swift 
implementation of ACT-R consists of a set of classes that 
implement the different components of ACT-R, such as 
Chunks, Declarative Memory, Procedural Memory, and the 
overarching Model class.  

The simplest way to use Swift ACT-R is to write a text-
file with a regular ACT-R model (with some limitations). 
The next step is to build a controller for the App, that 
responds to button presses and other actions the user can 
take. This controller creates an instance of the model class, 
and loads the ACT-R model into that instance: 

 
model = Model() 
model.loadModel("example") 

The model can then be run using the run method: 
 
model.run() 
 

The model communicates with the App through the action 
buffer (a new buffer that takes the role of standard 
perception and action buffers). Whenever a production rule 
takes a +action> action, the model stops, and hands 
control back to the main program. The main program can 
then read out the contents of the action buffer, make 
appropriate changes to the interface, wait for user input, 
place information back into the action buffer, and then run 
the model again. 

There are several alternatives to using ACT-R code, for 
example, it is also possible to access declarative memory 
directly, or even to have no explicit ACT-R model, but 
instead use declarative memory directly. The ACT-R code 
can be downloaded from: 
 https://github.com/ntaatgen/ACT-R  
It has two example models, both of the prisoner's dilemma 
(Lebiere, Wallach & West, 2000 and Stevens, Taatgen, & 
Cnossen, 2016).  

Example model: Rock - Paper - Scissors 
Lebiere and West (1999) built an ACT-R model that can 
play Rock-Paper-Scissors, and adapts itself to its opponent 
by trying to predict the next move based on previous 
experiences. The lag 1 model of Lebiere et al. stores 
sequences of two consecutive moves of the opponent in 
declarative memory and uses these to predict the opponent’s 
next move. For example, the model has the following 
chunks for sequences that start with rock: 

 
(RR isa decision step1 rock step2 rock) 
(RP isa decision step1 rock step2 paper) 
(RS isa decision step1 rock step2 scissors) 

 
Each time the opponent plays rock twice in a row, the RR 

chunk is strengthened, each time rock is followed by paper, 
the RP chunk is strengthened, and each time rock is 
followed by scissors, the RS chunk is strengthened. When 
the model needs to decide what to do in the turn after the 
opponent has played rock, it retrieves the most active chunk 
with rock in step1. The value in step2 is then the model's 
prediction for the next move of the opponent. It only needs 
to decide what move to counter that with. The whole model 
consists of only four production rules (actually, five: one 
more rule to play the first game, when there is no previous 
decision). Figure 1 lists these productions. 
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Figure 1: Productions in the Rock-Paper-Scissors model 

 
The model makes a decision in three steps. It first 

retrieves its prediction for what the opponent will do next 
based on their previous move. Based on that prediction, it 
will retrieve from memory the move that will beat the 
predicted action (e.g. rock beats scissors). It will then put 
this action into the action buffer. Control is then returned to 
the main program, which waits until the human player takes 
an action by pushing one of three buttons in the interface 
(Figure 2). 

 

 
Figure 2. The Rock-Paper-Scissors game on an iPhone 
 
The program itself is straightforward. The function that is 

called when the App is started already loads in the model 
and carries out a first run. The model has therefore made its 
decision, and now waits for the player to tap one of the 
buttons. Once the player has made a decision, the code 
checks who has won, and adjust the scores. Figure 3 shows 
all the basic code that is necessary. Some additional code is 
needed to update the display with appropriate feedback, and 
show the scores.   

To explore the breadth of possibilities of constructing 
Apps with a built-in model, we made this the goal of an 
advanced cognitive modeling course. 

Course outline 
The course ‘Cognitive Modeling: Complex Behaviour’ is 
part of the Master Human-Machine Communication and the 
Master Artificial Intelligence at the University of 
Groningen. It has been set up as a so-called learning 
community. For the purpose of the course, students had 
access to a lab room with several workstations to develop 
apps on, as well as a number of iPads and iPhones for 
testing. The lab room was available to the students for the 
full duration of the ten-week course. In line with the concept 
of a learning community, the focus is on letting the students 
present their work for open discussion among themselves, 
rather than on formal lectures. 
The course followed the plan outlined in Table 1. At the 
first meeting, students divided themselves into three-person 

(p retrieve-decision 
    =goal> 
        isa goal 
        state start 
        playerlast =last 
==> 
    =goal> 
        state retrieve 
    +retrieval> 
        isa decision 
        step1 =last) 
 
 (p retrieve-beats 
    =goal> 
        isa goal 
        state retrieve 
    =retrieval> 
        isa decision 
        step2 =prediction 
==> 
    =goal> 
        state retrieve-beats 
    +retrieval> 
        isa beats 
        slot1 =prediction) 
 
(p make-decision 
   =goal> 
     isa goal 
     state retrieve-beats 
   =retrieval> 
     isa beats 
     slot2 =decision 
==> 
   =goal> 
     state decide 
   +action> 
     isa move 
     choice =decision) 
 
(p restart-after-action 
  =goal> 
    isa goal 
    state decide 
    playerlast =last 
  =action> 
    isa move 
    opponent =decision 
==> 
  +goal> 
     isa goal 
     state start 
     playerlast =decision 
  +imaginal> 
    isa decision 
    step1 =last 
    step2 =decision 
  -action>) 
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project teams, and were encouraged to immediately start 
developing a project proposal. A project proposal was 
subject to two conditions: (1) the App had to be developed 
in Swift, and (2) the core of the App should be the Swift 
implementation of the ACT-R cognitive architecture. No 
further requirements were given, although project proposals 
had to be approved before a team could start. In particular, 
students were free to choose to build a game, an educational 
app, or different applications using an ACT-R model. In 
addition, students were free to make their App for iPad, 
iPhone, Apple Watch, or any combination of the three. 

Each team consisted of three people, with one member 
being responsible for graphical user interface (GUI) design, 
one for cognitive model design, and for programming and 
coordination. The first two weeks were meant for students 
to familiarize themselves with the Swift programming 
language and the Swift ACT-R implementation. Each of 
these topics included a short lecture and a small, ungraded 
assignment. 

Students presented their finalized project proposals in the 
third week. Over the following five weeks, students gave 
weekly progress reports on the status of their project, either 
privately with one of the lecturers, or as a presentation to 
fellow students to encourage discussion of common 
problems and solutions. 

Final presentations and demonstrations of the App were 
due in week 8 and 9, which left the students one additional 
week to write a final report on their App. Mirroring the 
structure of the student projects, the final report was 
required to discuss the graphical user interface, the cognitive 
model, and general programming. 
 

 
Table 1: Course plan for ‘Cognitive Modeling: Complex 

Behavior’. 
 

Week Activity 
1 Introductory lecture on Swift 

Creating project teams 
Assignment: Build simple calculator app 

2 Introductory lecture on Swift ACT-R 
Assignment: Build rock-paper-scissors 
opponent using Swift ACT-R 

3 Presentation final project proposals 
4-7 Progress reports 
8 Final presentation 
9 Demonstration of the App and election of 

the best App 
10 Deadline final report 

 

     override func viewDidLoad() { // This function is called when the App starts up 
    super.viewDidLoad() 
        model.loadModel("rps") 
        model.run() 
    } 
 
 // The following function is called when the player pushed one of the buttons 
 @IBAction func gameAction(sender: UIButton) { 
    // The player action is the title of the button that was pressed 
        let playerAction = sender.currentTitle!        
    // The model action is in the choice slot in the action buffer 
        let modelAction = model.lastAction("choice")! 
    // Determine the outcome of the game 
        switch (playerAction,modelAction) { 
        case ("Rock","rock"),("Paper","paper"),("Scissors","scissors"): 
         // Tie 
         break 
        case ("Rock","scissors"),("Paper","rock"),("Scissors","paper"): 
         // Players wins 
            pScore += 1 
            mScore -= 1 
        default: 
         // Model wins 
  pScore -= 1 
            mScore += 1 
        } 
    // Communicate the player's action back to the model by setting a slot 
    // in the action buffer 
        model.modifyLastAction("opponent", value: playerAction.lowercaseString) 
    // And run the model again for the next trial 
        model.run() 
 } 
 

Figure 3. Code in the App to handle the interaction between the player and the model. 
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Description of developed mobile apps 
Six projects were developed during the course, each with a 
corresponding App. As mentioned in the course outline, 
students were free to choose the topic of their application, as 
long as it included Swift ACT-R as a core mechanism. The 
six projects included three recreational games, two 
educational games, and one other application. In this 
section, we describe each of these apps in more detail. 

Six-Dice game 

 
 

The six-dice game is a recreational game of incomplete 
information played over a number of rounds. Two players 
control three dice each. At the start of each round, each 
player is given a goal that involves a certain number of dice 
that should show a given number of pips. For example, the 
human player in the screenshot above has the goal to have at 
least one of the six dice show a 3, while the cognitive agent 
may have the goal to have one die to have rolled a 6. Note 
that these goals are private information. That is, neither 
player knows the other player's goal. 

Once the goals are revealed, all dice are rolled and 
revealed. Next, one of the players may offer to reroll any 
subset of their own three dice. The other player must decide 
whether or not to accept this proposal. If the proposal is 
rejected, the round ends and each player who has achieved 
his or her goal gains one point. If the second player accepts 
the proposal, the dice selected by the proposing player are 
rerolled, but the second player also has to select the same 

number of their own dice to reroll. Note that the deciding 
player controls which dice are rerolled. 

At the end of the game, the player with the highest score 
wins. However, when the combined score of both players is 
below a certain threshold, the game ends without a winner. 
The game is therefore a game of mixed motives. Especially 
near the end of the game, it may be in the best interest of a 
player to allow the opponent to reach their goal. 

The ACT-R model is used to assess the opponent's 
trustworthiness. Each game, the model would assess the 
outcome of the game, and assign it a trust value between 1 
and 10, and add this as a chunk to declarative memory. 
When it later had to make a decision in which trust of the 
other player played a role, it would perform a blended 
retrieval of the trust value. 

Memory 

 
 
Memory (also known as Concentration) is a recreational 
card game played by placing a number of cards face down 
on a surface. Players take turns revealing two of the cards. If 
these two cards form a pair, the cards are removed from the 
game and the player scores a point. Otherwise, the cards are 
placed back face down. The game continues until no cards 
are left, at which point the player with the most points wins. 

Note that for a computer player, the game of Memory is a 
trivial one. After all, turning the cards face down after 
revealing only presents a challenge for players without a 
perfect memory. The goal of incorporating a cognitive agent 
in Memory is therefore to create a fun and challenging 
competitor, rather than to make an agent that follows an 
optimal strategy in playing Memory. 

The ACT-R Memory player makes use of declarative 
memory to store card information such as the identities and 
positions of previously revealed cards. When the ACT-R 
player believes to have found a pair of cards, it tries to 
retrieve the locations and claim the pair. To simulate 
human-like errors, the model adds noise to the stored 
positions of cards. This causes cards on the edges and 
corners of the surface to be remembered better than interior 
cards.  
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Pyramid game 

 
 
The pyramid game is a recreational game played with a 
standard deck of 52 cards. Ten cards are placed face down 
as a pyramid (see screenshot above). In addition, each 
player receives four facedown cards. At the start of the 
game, each player is allowed to look at their own four cards. 
A player cannot look at the cards of the other player, and 
once the game starts, a player is no longer allowed to review 
their own cards either.  

The game is divided into multiple rounds. In each round, 
a face down pyramid card is turned over, starting at the 
bottom left and moving slowly up the pyramid. The value of 
a card depends on its position in the pyramid. Cards on the 
bottom row are worth 1 point, while the top card is worth 4 
points. Once a card is revealed, both players decide whether 
or not to claim that one of their four cards has the same face 
value. If a player decides to do so, they select one of their 
four cards. The other player may then choose to challenge 
this claim by turning over the selected card and check its 
face value. 

The players’ scores change based on the outcome of a 
round. If no claim is made, scores remain unchanged. When 
a claim remains unchallenged, the claimant adds the value 
of the pyramid card to their score. If the claim is challenged 
and found to be false, the challenger adds twice the value of 
the pyramid card to their score. Finally, if a claim is 
challenged and found to be true, the claimant adds twice the 
value of the pyramid card to his score. 

Independent of whether a claim was challenged, any card 
that was used to claim points are replaced with new cards 
from the deck. Only the owner of a new card is allowed to 
inspect it. 

For the purpose of the app, the human player always starts 
by deciding to make a claim. Once this claim is resolved, 
the computer player takes its turn and the game continues to 
the next pyramid card. When there are no cards left on the 
pyramid to turn over, the player with the highest score wins. 

The ACT-R opponent makes use of declarative memory 
to remember its own cards, and regularly rehearses these 
cards to avoid forgetting. In addition, the ACT-R player 

tries to model the behavior of the human player in terms of 
the likelihood that the human player is bluffing and the 
likelihood that the human player will challenge a claim of 
the ACT-R player. 

Mathgician game 

 
 
Mathgician is an educational App aimed at training addition 
to children in the form of a competitive game. In the game, 
players are presented with a goal number and six tiles. Each 
tile has a number printed on it. Players have to select tiles 
such that the numbers on the selected tiles add up to the goal 
number. For example, to get the goal of 27, as in the 
screenshot above, players could select the tiles with the 
numbers 17, 6, and 4, but also the tiles with the numbers 18, 
6, 2, and 1. 

The game is played against an ACT-R opponent, which 
follows a human-like greedy strategy, in which it tries to get 
to the goal number with high numbers first. If this fails, the 
model tries lower numbers. In addition, the App has the 
option to play against an adaptive opponent, which tries to 
match the search speed of the ACT-R model with the 
behavioral data of the human player. 

OMGLogic game 
OMGLogic is an educational App that is intended to help 
players learn how to construct semantic tableaux. In the app, 
players are presented with formulas from propositional 
logic. They are asked to construct a semantic tableau to 
show that the formula cannot be satisfied. To do so, players 
have to select part of the formula and decide how it should 
be handled to continue the tableau. Whenever a player takes 
a correct action their score increases, while incorrect 
answers decrease a player’s score. 

The ACT-R model presents a competitor that attempts to 
gain points for itself while constructing the semantic 
tableau. The ACT-R model attempts to match the skill level 
of the human player in solving the formulas. If the model 
successfully retrieves a correct course of action before the 
human player, the step is executed and the human player 
loses points.  
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LagMusic app 

 
 

LagMusic is a music player that makes use of ACT-R to 
predict when a listener wants to listen to a previously heard 
song again, given a user-specified mood. The model uses 
the actions of the user as feedback. Skipping a song is 
considered to be an indication that the user is unwilling to 
listen to the song, while a user that listens to a song for the 
full duration is considered to be happy with the model’s 
selection. Finally, a user can indicate that it likes a song, but 
does not want to listen to it at the current moment by 
shaking the device. 

The ACT-R model uses activation of a song chunk to 
determine whether, given the user’s current mood, a song 
has sufficiently faded from memory for the user to 
appreciate hearing it again, as well as whether or not the 
user appreciates the song at all in the current mood. 
Whenever a song is played in full, the positive feedback 
increases activation. Skipping a song provides negative 
feedback by decreasing a song’s activity. In addition, the 
model updates the retrieval threshold, making it more likely 
for the model to retrieve songs with higher activation. The 
neutral feedback, which indicates that the song is 
appreciated but played too soon, adjusts the retrieval 
threshold in the other direction, making it more likely for 
the model to retrieve songs with lower activation. 

Conclusion 
Cognitive models are not only useful to build theories of 
human cognition, but they can also be applied to build 
simulated humans. In this paper we explored possible ways 
in which the ACT-R architecture can be used in the context 
of a mobile application. One of the conclusions we can draw 
at this stage is that for most purposes declarative memory is 
the most useful component in ACT-R. It can model how we 
remember and forget information, and can also model 
decision making through instances-based learning. Further 
potential of incorporating a model in an App is that the App 
can gather its own information to train the model. Again, 
declarative learning is the lowest hanging fruit here, but 
procedural learning is potentially very powerful as well. 
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