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Abstract

Visual working memory (VWM) is a construct hypothesized
to store a small amount of accurate perceptual information
that can be brought to bear on a task. Much research con-
cerns the construct’s capacity and the precision of the infor-
mation stored. Two prominent theories of VWM representa-
tions have emerged: slot-based and continuous-resource mech-
anisms. Prior modeling work suggests that a continuous re-
source that varies over trials with variable capacity and a po-
tential to make localization errors best accounts for the empir-
ical data. Questions remain regarding the variability in VWM
capacity and precision. Using a novel eye-tracking paradigm,
we demonstrate that VWM facilitates search and exhibits ef-
fects of fixation frequency and recency, particularly for prior
targets. Whereas slot-based memory models cannot account
for the human data, a novel continuous-resource model pro-
vides a better fit and identifies the relevant resource as item
activation.
Keywords: visual working memory; visual search; ACT-R.

Introduction
Visual working memory (VWM) is a construct hypothesized
to be a limited capacity system that maintains representations
of visual information for temporary storage and manipula-
tion for ongoing tasks (Luck & Vogel, 2013). This construct
has garnered much attention and has been the focus of many
studies and computational models. Even so, answers to fun-
damental questions, such as its capacity and representation
precision, remain elusive (van den Berg & Ma, 2014).

Two theories of VWM representations dominate the litera-
ture: slot and continuous resource mechanisms. Slot theories
generally posit a fixed capacity of 3 to 4 items with high to
perfect precision (Luck & Vogel, 2013). A slot is a discrete
memory container filled with an object representation with
bound visual features (Luria & Vogel, 2011). Information
stored within a slot can be accurately applied to a task re-
gardless of its visual complexity, be it a single vertical line or
a complex Chinese character.

By contrast, continuous resource theories of VWM posit
a finite resource that can be spread across di↵erent areas of
a scene or item. This resource is seen as a pool of mental
processing power dedicated to VWM, which can be flexibly
distributed across items in a display (Wilken & Ma, 2004).

Fewer objects to be encoded lead to less distributed memory
resources and allow for more precise object representations.

Recently, Donkin, Kary, Tahir, and Taylor (2016) have ar-
gued that a VWM system using a continuous resource may
appear to support a slot interpretation when the number of
items to remember varies from trial to trial. At times highly
precise representations of a small number of objects appear to
favor a slot-based model, but when set size is unpredictable
participants are biased to focus on a small subset of items,
leading to performance suggestive of a slot model. When
set size was predictable (the same across multiple trials), re-
source models best characterized the data.

Van den Berg, Awh, and Ma (2014) varied precision, ca-
pacity, and the potential for spatial binding errors as three
independent factors of VWM to test lingering questions. Us-
ing a 4x4x2 factorial design, all models were tested on 10
previously published empirical results from a change detec-
tion paradigm. The results indicated that a continuous model
which varied both storage capacity and precision across tri-
als, combined with the presence of the potential for spatial
binding errors best accounts for the data. However, questions
regarding the mechanisms behind the variance in precision
and capacity remain unanswered.

A passive, tachistoscopic version of the change detection
paradigm has been the dominant approach to establishing
prominent theories of VWM (Alvarez & Cavanagh, 2004),
and continues to be the paradigm most used in contempo-
rary empirical research on VWM (Donkin et al., 2016). In
this task, a participant is instructed to attend to and remem-
ber information within a stimulus display. The information
is typically a set of unique objects that di↵er across features,
such as shape and color. After some time the stimulus dis-
appears and after a delay the object of the possible change is
cued, or a new stimulus appears. If a change occurred, the
participant must indicate the change in some manner, either
by responding yes/no (c.f., Alvarez & Cavanagh, 2004), by
identifying what has changed (c.f., D. E. Anderson, Vogel, &
Awh, 2013), where the change occurred (c.f., Barton, Ester,
& Awh, 2009), or some combination thereof. Researchers
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vary the number of items in a stimulus (i.e., set size) to eval-
uate VWM capacity and use change identification to evaluate
VWM precision.

There are weaknesses in the passive change detection ap-
proach to understanding VWM (Rouder, Morey, Morey, &
Cowan, 2011). Specifically, many, if not all, VWM studies
rely on a passive approach to understanding VWM rather than
an active one (Findlay & Gilchrist, 2003). Outside the exper-
imental laboratory, visual search does not occur in a vacuum,
but rather in the context of a task where targets contained
in some visual array are distinguished from distractors. We
argue that passive change detection with delayed responses
(~2–3 s) does not tap into the functional importance of VWM
— to facilitate the accurate completion of an active visual
task through the temporary storage of readily available and
accurate visual information.

In the current paper we provide an explanation for the vari-
ance in VWM precision and capacity. To do so, we intro-
duce a new eye-tracking paradigm that moves away from the
change detection tasks commonly used to investigate VWM.
Our new paradigm of repeated serial search (Neth, Gray, &
Myers, 2006) requires an individual to actively search for dif-
ferent (and sometimes repeating) targets within a stable visual
display and thus represents a task that is more realistic and
ecologically valid than a passive change detection paradigm.
Importantly, it allows us to ask questions of VWM that in-
form how VWM drives search behavior and the potential dif-
ferences in depth of encoding between targets and distractors
since we have access to the full history of fixations.

Our empirical and modeling work leads to five important
conclusions: (1) the variability in VWM capacity results from
recency and frequency e↵ects from selectively encoding vi-
sual information; (2) VWM precision variability results from
the same recency and frequency e↵ects; (3) memory facili-
tates search behavior; (4) targets have a stronger mnemonic
trace than distractors; and (5) the relevant “resource” involved
is memory activation. In the following sections we introduce
our paradigm and present empirical results, followed by a
model analysis of the empirical data.

Experiment
To determine the degree to which VWM facilitates visual
search, we designed an experiment using a novel repeated
serial search paradigm. In this paradigm, participants were
required to search the same spatial configuration of 10 static
items a total of 20 times. This paradigm taps into the
VWM construct, motivating participants to retain a maximum
amount of information in VWM to facilitate future searches.

Paradigm. On each trial, ten circular objects with a di-
ameter of 60 pixels were distributed randomly over a cen-
tered white rectangular display area (measuring 1270-by-970
pixels). The objects were positioned at least 60 pixels away
from any edge and the distance between the centers of any
two objects was constrained to be at least 200 pixels. Each
circle contained a hidden label (upper case letter, number, or
monosyllabic four-letter word) that specified the target sought

Figure 1. Example stimulus used in the experiment. Al-
though all labels are visible here, they were hidden from par-
ticipants’ view until a cursor hovered within the circle.

by the participant. On any given trial only one type of label
was in the circles (letters, numbers, or words). The order
of label types was randomized within each participant’s task
presentation.

Each trial was composed of 20 searches through the dis-
play. At the beginning of each search, the experimental soft-
ware announced the current target label to the participant
(e.g., “cell” in Figure 1). Participants could hover with the
mouse cursor over each circle to uncover its hidden label.
Once the cursor was moved o↵ the circle, the correspond-
ing label was hidden again. Participants were instructed to
click on the circle corresponding to the target label. If the
clicked circle indeed contained the correct target label, a new
target was announced; however, if a clicked circle contained
a di↵erent label the software recorded an error and the cur-
rent target was announced again to provide a reminder to
the searcher. Consequently, searchers typically uncover non-
targets (distractors) in the process of searching for targets and
these distractors may turn into targets in subsequent searches.

There were three within-participants information presenta-
tion types that manipulated the number of intervening targets
between identical targets. While they are of theoretical inter-
est, we collapse across these presentation types for the current
analyses to save space and mitigate complexity.

Participants. A total of 13 Rensselaer Polytechnic Insti-
tute undergraduates (3 females) volunteered for course credit.
Their mean age was 18.92 years (S D = 1.04).

Procedure. Participants signed informed consent forms,
viewed a slideshow of the instructions, and were calibrated to
an LC Technologies eye tracker prior to beginning the study.
Every participant completed 60 trials in total. Each trial con-
sisted of a series of 20 searches. Every search commenced
when a computer generated voice announced the next target
to be found.

47



Results
A timeline of the sequence of fixations during every search
within a trial was created for each participant. This was
made possible through the collection of visual point of regard
and mouse click data while participants performed the visual
search task. Given this sequence of fixations, we can deter-
mine the frequency of fixations across labels and how long
ago — in terms of duration and the number of intermediate
items — each label was last viewed to investigate recency and
frequency e↵ects in finding a target. We can also determine
di↵erences that are due to the functional role of labels (i.e.,
whether labels were previously seen and encoded as targets
or as distractors).

Recency e↵ects. For this analysis we restricted the data
to the first two times an item was a target of a search. A
2 (label-type)-by-10 (recency) ANOVA was performed to
evaluate the e↵ect of label encoding and recency of last fixa-
tion. There was an interaction between whether an item was a
target before and how recently it was last fixated, F(9, 108) =
3.76, p < .001, ⌘2=0.24. There was also a significant main
e↵ect of recency, F(9, 108) = 11.94, p < .001, ⌘2=0.50 (see
Figure 2 top). This e↵ect was greater for labels that had not
been previous targets, F(1, 12) = 73.42, p < .001, ⌘2=0.86.
In general, labels that were prior targets were less impacted
by recency of fixation.

One explanation for the inverted U-shape of the items that
were only distractors prior to the current search is that as
participants are searching the display, they are only encoding
whether or not the current item is the target, rather than the
identity of the item. This depth of encoding may result in an
inhibition of return e↵ect for more recently fixated items (2–
5 fixations ago) leading to longer search times than when the
distractor was seen longer ago.

Frequency e↵ects. A 2 (label-type)-by-7 (frequency)
AVOVA was performed to evaluate the e↵ect of label en-
coding frequency. There was insu�cient data in frequency
bins 1 and 2 (i.e., in cases where a second search for a tar-
get was preceded by one or no fixations on the item prior to
the search), leaving bins 2–8 for analysis (see Figure 2 bot-
tom). Nonetheless, these bins reflect the general trend in the
data. There was a significant interaction between fixation fre-
quency and label-type on the number of fixations to find the
target, F(6, 72) = 5.92, p < .001, ⌘2=0.33, where searches
required fewer fixations when a label had been a target before
despite being seen less than 5 times, F(1, 12) = 38.37, p <
.001, ⌘2=0.76, (Figure 2 bottom). Further, there was a main
e↵ect of frequency on number of fixations to find the target,
F(6, 72) = 3.25, p < .01, ⌘2=0.21. In particular, items that
were not prior targets show a benefit of having seen the item
more times, whereas items that were previously targets seem
to be encoded su�ciently enough that it takes roughly the
same number of fixations to find the target regardless of the
number of previous fixations.

Recency and frequency e↵ects. In order to provide a
more robust description of the human data, we examined the

Figure 2. Mean number of fixations needed to find a target
as a function of recency and frequency of seeing the target
before.

proportion of all searches in which a target was last seen
R (Recency) fixations ago or was seen F (Frequency) times
prior to the search and was found within N fixations. Figure 3
illustrates the respective distributions generated by analyzing
the human data in this way. In particular, in the recency graph,
the peak of each distribution shifts to the right (more fixations
to find target) as R increases. It should be noted that the hu-
man data exhibits a bell-shaped curve across all recency val-
ues, with the proportion of searches in which target is found
in a higher number of fixations falling o↵ gradually.

In the frequency graph, when the item has never before
been fixated (F==0), the proportion of all searches in which
the target is found stays at roughly 10% across all N. Items
which have been seen more times (F==9) have a slightly
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Figure 3. Proportions of recency and frequency e↵ects in the
human data.

more pronounced peak at N=3 as compared to items which
were fixated fewer times.

Subsequent model runs were compared on the basis of
these distributions. We wanted to be able to capture both the
magnitude of the proportions in both recency and frequency,
as well as the general shape of the distributions as proportions
gradually tapered o↵ for the higher N. Note that this collapses
across whether or not the item was a prior target.

Experiment Discussion

The results from the study indicated that the number of fixa-
tions to find a target is a↵ected by (1) whether that label had
been a prior search target, (2) the recency of a label’s previous
fixation, and (3) the frequency of a label’s previous fixations.
Each of these e↵ects contributes to the variability in VWM
capacity and precision. A label more recently encoded will
lead to the appearance of a larger VWM capacity and higher
VWM precision. Similarly, a label more frequently encoded
will lead to the appearance of a a larger capacity with greater

precision. In passive change detection, the probe is chosen at
random and may sometimes select a target that has neither
been recently or frequently encoded. This could naturally
lead to the perception of capacity and precision variability
of VWM. By looking at the selective attention process during
the search, we can more concretely point to the mechanisms
leading to this variability.

Model-based Analysis
Given the debate in the literature between slot based and con-
tinuous resource models of VWM, we chose to run a facto-
rial combination of models and search strategies. The three
classes of models were: No memory, Slot-Based Memory,
and Continuous Resource Memory. The search strategies
were either Nearest First or Random. For each memory-
strategy combination, scan-paths were generated for each of
the 20 searches within a trial. In all models, the assumption is
that once an object was visited, it was removed from the set
of possible next visits until the next target was announced.

No Memory Model
This model served as a theoretical baseline for the other mod-
els and searched the display for every search within a trial
without any memory for previous targets or distractors. In
the random search version, the model searched the display
in a random fashion. In the nearest first version, the model
allocated attention to the closest object to the one currently
being fixated. No parameters were varied in this model.

Slot-Based Memory Models
This class of models had a slot-based memory and the number
of slots available ranged from 0 to 10. Slots were instantiated
as a queue (FIFO) based on the human fixation history prior
to the current search (see Figure 4). Uncovering a label re-
instantiates slot 0 and pushes the labels contained in slot i
into slot i + 1. This corresponds closely to the R denotation
in the Recency human data analysis. At the beginning of ev-
ery search, the model queried its slot-based memory to de-
termine whether the target was already present in one of the
slots. If it was, the model immediately directed its attention
to the location of the target. If it was not in one of the slots,
the model searched the display in either a Random or Nearest
First manner. Only the number of slots parameter was varied
in this model type.

Figure 4. Slots are instantiated corresponding to the timeline
of fixations in the human data.
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Continuous Resource Memory Models
This class of models relied on human eye fixation history of
the trial prior to the current search, taking into consideration
both the time stamps of when the item was fixated and how
many previous fixations were made to the item. The ACT-R
memory equation (J. R. Anderson, 2007) was applied to each
of the items. It specifies the activation of a given item i in
memory as

Ai = ln
nX

j=1

t�d
i j + �i + ✏i (1)

where j is a fixation on the item and ti j is a time stamp of
how long ago the item was seen on fixation j, �d is a decay
value, � is a base level constant o↵set, and ✏ is logistically
distributed transient noise with a mean of 0 and standard de-
viation of �.

Activation of the target item was recalculated at the be-
ginning of each search and the model checked whether the
activation of the target was above threshold, T , and if so,
moved attention directly to the known location of the item.
If Atarget < T , then the model selected and encoded another
item based on either a random search or a nearest first strat-
egy. If the target item was still not found, activation was re-
calculated for the target at each additional movement of at-
tention.

Four parameters were varied in the context of ACT-R’s
memory equation (d, �, T , and �) to find the best fit to the
human recency and frequency data using MindModeling.org
(Harris, 2008). In particular, we varied the parameters as fol-
lows: d: [0,1], �: [0,10], T : [0,20], and �: [0,5]. This created
a total of 27, 951 combinations of parameters for each search
strategy.

Model Evaluation
Each of the above models was run through all trials (and
searches) obtained from human data. The ACT-R memory
equation uses recency and frequency information as sources
of activation for a given chunk in memory. Thus, we exam-
ined the human data as a function of both the recency and
the frequency of previous fixations to current targets. In this
case, recency refers to how many fixations ago the item was
last fixated, R with respect to the current fixation. For each
parameter set, summary statistics were calculated to deter-
mine the percentage of all trials on which the target was seen
R fixations ago or was previously seen F times and found in
N fixations. This resulted in 10 distributions for recency and
another 10 for frequency, each with 11 data points (one for
each N of fixations to find the target, see Figure 3 for human
data). Then Root Mean Squared Error (RMSE) and R2 scores
were calculated for each target recency curve and for each
target frequency curve.

A composite goodness-of-fit measure was created to com-
bine the R2 and RMSE measures to capture both the shape
and the magnitude of the di↵erences between human data and
model predictions. Because best fits according to R2 are val-
ues closer to 1, and best fits according to RMSE are values

Table 1
Best fits for all model types.

Memory Strategy Composite Score*
Continuous resource Nearest first 0.07
Continuous resource Random 0.09
Slot (2) Random 0.35
Slot (2) Nearest first 0.36
None Nearest first 0.37
None Random 0.37
Note: *Lower composite scores indicate better model fits.

closer to 0, we re-scaled the R2 measure (1-R2) and computed
an average of all curves for each parameter setting.

The best fitting slot-based model was one which contained
2 slots (‘remembered’ the last two items previously fixated;
see Table 1). The best fitting continuous resource model
resulted from the following parameter settings: d=1, �=1,
T=10, and �=4.0 (see Figure 5).

The no memory model established a baseline with which
the other memory models could be compared. As can be
seen in Table 1 and Figure 5, the continuous resource memory
model did a much better job of capturing human performance.
In particular, whereas a slot-based memory with 2 slots was
the best fitting in this particular class of models, it failed to
capture the shape of both the recency and frequency distri-
butions. The continuous resource model, on the other hand,
exhibited the bell-shape curve with gradual drop-o↵ seen in
the human data for both recency and frequency. Furthermore,
a nearest-first search strategy was marginally better at captur-
ing the e↵ects than a random search model, suggestive of the
type of strategy participants may have used as they conducted
their search of the display.

We further evaluated the flexibility of all the model types to
determine how convincing the fits actually are (and whether
they could have been achieved merely by searching such a
large space). Model Flexibility Analysis (MFA) was used to
calculate the proportion of all empirical outcomes that each
model could have potentially fit (Veksler, Myers, & Gluck,
2015). Although the slot model only has one parameter (num-
ber of slots), it’s actually more flexible than the continuous
resource model which has 4 parameters. MFA revealed flexi-
bility for the slot model to be � = .14 and for the continuous
resource model to be � = .014. Thus the continuous resource
model makes more precise predictions and is less flexible.

Discussion & Conclusions
In the current work, we explored why variability in VWM
capacity may at times exhibit variable precision and capac-
ity. The new paradigm of repeated serial search allowed us
to more readily observe the specific shifts of visual attention
that occur during natural search. Human data suggests that
the variability in VWM precision and capacity is closely tied
to selective attention as search progresses.

Selective attention directly a↵ects the ease with which sub-
sequent targets can be found, with both recency and fre-
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Figure 5. Model fits for best fitting slot and continuous re-
source models, nearest first search strategy.

quency playing a role. Items that were previously fixated
more recently resulted in faster search times and boosted the
likelihood of recalling the location of the target. Likewise,
items which had previously been fixated more often were eas-
ier to find. Importantly, there was a stronger mnemonic trace
for items which were previous targets as these items were
found faster than those which were only fixated as distractors
during previous searches.

We compared two models of VWM: a slot-based and a con-
tinuous resource-based model. In the case of the slot-based
model, the recency of an item’s encoding is taken into consid-
eration to facilitate subsequent searches. However, this was
not su�cient to account for the human data as it failed to
capture the shapes of the distributions in both recency and fre-
quency domains. A continuous resource model, on the other
hand, directly incorporated both e↵ects of selective attention.
The continuous resource was instantiated as the item’s acti-
vation, computed by taking into account both the frequency
and recency of previous item fixations.

One limitation of the current approach is that none of the
models explicitly account for the stronger mnemonic trace for
prior targets. The continuous resource model could poten-
tially account for this di↵erence by including an item’s fix-
ation duration in its computation of activation - target items
typically have longer fixations and more opportunity for re-
hearsal. While such models are beyond the scope of the cur-

rent work, they are an interesting avenue for future research.
Another possible concern is that humans may use an ‘adaptive
avoidance‘ strategy in which items known to not be the target
are actively not gazed at. Future work will need to address
the degree to which this type of strategy may drive behavior
in visual search.

In conclusion, the repeated serial search paradigm eluci-
dates the variability seen in VWM capacity and precision by
taking into account selective attention considerations. Fu-
ture work could apply the same continuous resource model
to other data sets to explore the robustness of the model in ac-
counting for various VWM results, as well as incorporating
potentially hybrid models which combine slots and continu-
ous resources.
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