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Abstract 
Learning to deal with social dilemmas can be difficult as 
outcomes depend not only on a person’s decisions but also on 
other people’s decisions and on how past decisions have 
changed that environment. We investigate how people might 
learn about social dilemmas by studying how simulated 
players using a cognitive model known as instance-based 
learning (IBL) interact with each other and with a set of fixed 
strategies in the Prisoner’s Dilemma (PD). The current 
simulation study presents systematic variations in the payoff 
structure and the other player’s strategy. Results indicate that 
the IBL model can reproduce predicted patterns of 
cooperation based on the payoff structure and that the model 
is sensitive to the strategies with which it is matched. The 
simulations offer explanations of how cognitive processes 
handle social dilemmas and how the environment of social 
dilemmas can influence this process. 

Keywords: Instance-Based Learning; Cognitive Modeling; 
Prisoner’s Dilemma; Cooperation. 

Introduction 
Instance-based learning (IBL) is a cognitively-inspired, 
descriptive model of how we make decisions in dynamic 
environments, i.e., environments that change over time and 
in which earlier decisions can inform and influence future 
actions (Gonzalez, Lerch, & Lebiere, 2003). Dynamic 
decision making often occurs in repeated social dilemmas, 
when people are asked to decide between actions that 
benefit themselves at a cost to the group or benefits the 
group at a cost to themselves. Past responses can influence 
how members of the group respond in the future, creating a 
dynamically complex learning environment. The Prisoner’s 
Dilemma (PD) is a commonly studied social dilemma that 
instantiates this type of situation in a two-person game. 

Classical game theory assumes that players understand 
explicit information about outcomes, reason about the other 
player’s strategy, and solves for the best solution.  
Behavioral game theory assumes a similar understanding 
and adds preferences about the other player’s actions and 
outcomes (e.g., Fehr & Schmidt, 1999; Rabin, 1993). 
Evolutionary game theory and related models of simulation 
assume no understanding of the game nor consideration of 
the other player, but rather that players follow pre-
determined strategies (Axelrod & Hamilton, 1981; 
Danielson, 1992; Messick & Liebrand, 1995). The game is 

resolved by finding strategies that get better outcomes when 
different combinations of strategies interact in different 
ways. Approaches that consider learning including 
reinforcement learning (C. F. Camerer & Ho, 1998; C. 
Camerer & Ho, 1999) and applying cognitive models to the 
PD (Gonzalez, Ben-Asher, Martin, & Dutt, 2015; Gonzalez 
& Ben-Asher, 2014; Lebiere, Wallach, & West, 2000; 
Stevens, Taatgen, & Cnossen, 2016) ask how learning 
responds to changes in the decision-making environment. 

This paper integrates approaches from these various 
traditions to develop a different perspective on learning in 
the PD. Our primary approach stems from cognitive 
modeling, using an IBL model to study the learning process. 
This contrasts with the common methods in classical and 
behavioral game theory in which the PD can be solved 
before the players interact. Similar to evolutionary game 
theory, IBL models interact with and respond to the 
environment (including payoffs and the strategies of other 
players), prompting questions of how the environment can 
change this interaction.  Contrasted with evolutionary game 
theory, the focus of IBL is on learning by individual agents 
– rather than populations – using paradigms that are more 
similar to those of repeated interaction in classical and 
behavioral game theory.  Under IBL, changes in behavior 
are a consequence of dynamic learning rather than 
population dynamics. A more fundamental assumption with 
the IBL models that contrasts with much of the classical and 
behavioral economic research is a focus on descriptive 
models rather than optimization.  While IBL models try to 
make better decisions, the goal of this paper is not to find 
the “best” way to solve the PD but to understand how the 
environment influences the nature of decision-making in the 
PD as well as the stability of those decisions. 

The present focus on environmental variation contrasts 
with much of the previous cognitive modeling research, as 
well.  Similar to evolutionary game theory, the current work 
uses simulations to support studying a broad range of 
environments. We adopt general IBL models with robust 
parameters derived from previous research, but do not 
emphasize creating a specific model to fit a specific set of 
human data, as is commonly the case with past cognitive 
modeling research. The emphasis of the current work is not 
to develop the most comprehensive or best-fitting model of 
human decision-making in the PD, but to develop a clearer 
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understanding of how the environment interacts with 
learning dynamics.  Thus, our comparisons to human data 
are on general trends rather than absolute fit, which may 
require, as in the case of some of the more sophisticated 
cognitive models, integration of additional features beyond 
what a basic IBL learning model provides. 

In brief, this paper asks how systematic changes in 
payoffs and partner strategies influence the learning process 
of an IBL model. We examine how an IBL model interacts 
with other simulated players in a repeated PD under various 
payoff conditions. 

Repeated Prisoner’s Dilemma 
In the Prisoner’s Dilemma players pick between two 
options: cooperate or defect. Payoffs are operationalized as 
follows. If both players cooperate, each receives a payoff of 
R (Reward). If one cooperates and the other defects, the 
cooperator receives S (Sucker) and the defector receives T 
(Temptation). If both defect, each receives P (Punishment). 
The PD is defined by the following relationship: 𝑇 > 𝑅 >
𝑃 > 𝑆, and the best response for each player is to defect. 
However, if both players cooperate, they would each receive 
more than they would have had both defected. Repeating the 
PD with the same partner makes the game more complex, as 
current decisions can influence future outcomes. Over time, 
players not only learn what outcomes are likely for any 
given decision, but also influence the behavior of the other 
player, changing the likelihood of the different outcomes. 
 
Payoff sensitivity. A common finding in empirical studies 
of the PD is that the player’s likelihood of cooperation is 
related to the values of T, R, P, and S. One of the strongest 
representations of this was proposed by Rapoport (1967) as 
the K-index, with a higher K-index predicting higher 
cooperation. The K-index was defined as: 𝐾 = 𝑅−𝑃

𝑇−𝑆
. 

However, rational economic models always predict 
defection and no correlation between cooperation and the K-
index. According to these models, players can reason that 
defection is best in the last round, since reputation has no 
effect after the last round; that defection is the best in the 
second to last round, since reputation has no effect in the 
last round; and so on in a process known as backward 
induction. 

In contrast, learning models, such as IBL, expect players 
to explore their options and learn through trial-and-error. 
Past research predicts that two IBL models acting 
independently of each other would result in a decrease of 
cooperation from early to later rounds (Gonzalez et al., 
2015), and IBL models have also been found to be sensitive 
to the payoffs of the PD, consistent with Rapaport’s K-index 
(Gonzalez & Ben-Asher, 2014). In this research we explore 
these predictions systematically in a wider range of payoff 
values of the PD and when the IBL model is paired against 
various known strategies. 

 
Strategic sensitivity. Outcomes depend not only on 
payoffs, but on the likelihood of each outcome from each 

decision. These likelihoods depend on the partner’s 
behavior in the game. In contrast to the reasoned approach 
taken by rational economic theory, where each player 
attempts to predict what other will do, evolutionary game 
theorists assume that players follow predetermined 
strategies (Axelrod & Hamilton, 1981). Strategies that are 
successful against other strategies are replicated, whereas 
unsuccessful strategies are removed from the population, 
leaving the most ‘robust’ strategies. However, this approach 
focuses on population characteristics (groups of agents) with 
‘learning’ occurring over generations, rather than on 
learning of individual members of the population.  

Two better-known strategies in evolutionary game theory 
are tit-for-tat (TFT) and win-stay-lose-shift (WSLS). TFT 
cooperates in the first round and, in all following rounds, 
copies the other player’s action from the previous round. 
Thus, it cooperates if the other player cooperated and 
defects if the other player defected. WSLS also cooperates 
in the first round. In all subsequent rounds, WSLS will stick 
with the decision it made in the last round if it received 
either R or T; or will change its decision if it received either 
S or P. 

In contrast, IBL models focus on how individuals learn – 
but how IBL models interact with other strategies has not 
been explored. As IBL models learn over time, they may 
adjust to other strategies within one game of the repeated 
PD. 

Instance-based Learning 
In IBL models decisions are stored in memory as a unique 
combination of actions and outcomes. Each pair of action 
and outcome is referred to as an instance. When facing a 
choice, the model estimates a blended value for each action 
being considered. The action with the highest blended value 
is selected. The blended value, 𝑉, for an action, 𝑥, at a point 
in time, 𝑡, is: 𝑉𝑥𝑡 = ∑ 𝑝𝑥𝑜t𝑢𝑥𝑜𝑜  [Eq. 1], where 𝑝𝑥𝑜𝑡  is the 
retrieval probability of an outcome, 𝑜, associated with the 
action, 𝑥; and 𝑢𝑥𝑜 is the utility associated with the action, 𝑥, 
and outcome of 𝑜. In the PD, the actions can be represented 
as either “cooperate” or “defect,” and the outcomes as T, R, 
P, and S.  

The retrieval probability of an instance is influenced by 
the activation of that instance relative to the sum of 
instances which include the same action. The retrieval 
probability, 𝑝𝑥𝑜𝑡, for action, 𝑥, and outcome, 𝑜, at a specific 

time, 𝑡, is: 𝑝𝑥𝑜t = 𝑒
𝐴𝑥𝑜t
𝜎√2 / ∑ 𝑒

𝐴𝑥𝑜t
𝜎√2𝑥  [Eq. 2], where 𝜎 is a noise 

parameter, 𝐴𝑥𝑜𝑡 is the activation of the instance with action, 
𝑥, outcome, 𝑜, and at time, 𝑡. 

Activation is higher for instances that were more frequent 
or more recently observed. The activation, 𝐴𝑥𝑜𝑡 for an 
option, 𝑥, and outcome, 𝑜, at time 𝑡𝑖 is: 𝐴𝑥𝑜𝑡 =
ln ∑(𝑡 − 𝑇𝑥𝑜)−𝑑 + 𝜎 ln (1−𝛾𝑥𝑜𝑡

𝛾𝑥𝑜𝑡
) [Eq. 3], where 𝑑 is a decay 

parameter, 𝜎 is the same noise parameter as in Eq. 2, 𝑇𝑥𝑜 is 
the set of all times in which the instances with action, 𝑥, and 
outcome, 𝑜 were observed, and 𝛾𝑥𝑜𝑡  is a draw from a 
uniform distribution bounded by 0 and 1 for the current 
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action, 𝑥, at time 𝑡.  For example, if “cooperate” is more 
often and more frequently met with the sucker outcome (S) 
than the reward outcome (R), then the cooperate/sucker 
instance would be higher in activation and retrieval 
probability, and the sucker payoff would more strongly 
influence the blended value of the “cooperate” option than 
the reward payoff. 

The IBL model often takes standard parameter values 
from ACT-R, the cognitive architecture from which the 
Activation mechanism comes from (Anderson & Lebiere, 
1998): 𝜎 is set to 0.25 and 𝑑 is set to 0.5. As people are not 
expected to approach decisions with an empty memory, a 
common approach is to create prepopulated instances that 
represent initial beliefs about the decisions they expect to 
experience (Lejarraga et al., 2012). The utility associated 
with these prepopulated instances is typically set to some 
value higher than the highest possible observable value from 
the actual decisions to allow for initial exploration and are 
entered into memory with a time of 0. 

The IBL model presented above is a model of an 
individual, aware of only (Gonzalez et al., 2015) interacts 
with different PD environments while controlling for 
broader social considerations including other-regarding 
preferences and beliefs. 

Simulation Overview 
In our simulations, we have an IBL model play the repeated 
PD with either another IBL model or another strategy over 
the course of 100 rounds. We simulate 400 pairs of players 
and focus on three measures: individual cooperation rates; 
alternation rates (switches from cooperate to defect or defect 
to cooperate); and how models behave as pairs (mutual 
cooperation, mutual defection, and mixed cases). 

The IBL model follows the definition noted above, with 𝜎 
set to 0.25 and 𝑑 set to 0.5. Prepopulated instances for 
cooperate and defect are included with utilities set higher 
than the temptation payoff to promote exploration. The 
utility is set arbitrarily at 1.5 times T, i.e., at 15.  When 
matched with other IBL models or other strategies, the IBL 
model receives information only about its actions and 
outcomes and no information about the other model’s 
actions or outcomes. 

To examine a range of payoffs, we adapt a method used 
by Moisan, et al. (2015) and inspired by Rapaport and 
Chammah (1965) and Axelrod (1967), where the payoffs of 
the PD are normalized with a fixed value for T and S. In the 
present simulation, T is fixed at 10, S is fixed at 0, and R 
and P vary between 0 and 10 in intervals of 1 such that 𝑅 ≥
𝑃. Our simulations include boundary cases that are not 
strictly version of the PD: 𝑇 = 𝑅 = 10, 𝑃 = 𝑆 = 0, and 
𝑅 = 𝑃. These boundary cases give a sense as to how the 
models may behave close to the limits as 𝑅 → 𝑇, 𝑃 → 𝑆, 
and 𝑃 → 𝑅. This method also provides different payoff 
structures that have the same K-index, which occurs for any 
payoff structure in which R and P have the same difference. 

To examine strategic sensitivity, we consider two simple, 
unconditional and two sophisticated, conditional strategies. 

For simple strategies, we match the IBL model with models 
that unconditionally cooperate (All-C) or unconditionally 
defect (All-D). For sophisticated strategies, we match the 
IBL model with another IBL model, a TFT and WSLS 
strategy. 

Simulation Results 
Figure 1 presents the results of simulations in which two 
IBL models are paired with varying levels of R and P. The 
panels indicate the cooperation and alternation rates of one 
of the IBL models from each pair, with the top of each panel 
representing 100% cooperation/alternation and the bottom 
representing 0% cooperation/alternation; and the left of each 
panel representing the 1st round and the right representing 
the 100th round. Panels that are lightly shaded represent the 
boundary conditions and are not ‘true’ PD games. 

Across all games, the average cooperation rate starts at 
50% (prepopulated instances cause the models to randomly 
decide to cooperate and defect in the first round), but drift 
towards increased cooperation or increased defection over 
time. Behavior does not necessarily change consistently 
towards cooperation or defection, e.g., the environment in 
which 𝑅 = 9 and 𝑃 = 1, shows a slight increase in 
cooperation before settling at a lower rate of cooperation. 
Final round behavior (at the far right of each panel, 
discussed more below) includes a variety of cooperation 
rates across panels. While this behavior may stabilize at a 
certain cooperation rate, this does not imply that the players 
have settled on cooperation or defection. While alternation 
rates also tend to decrease, for many payoff environments, 
the alternation rates do not trend towards 0. End-of-game 
behaviors include environments where players may switch 
back and forth between cooperation and defection. 

Payoff sensitivity 
Cooperation Rate A logistic regression of the final round 
cooperation relative to the K-index of each simulation 
indicates that cooperation by the IBL models increases as 
the K-index increases, B = 4.225, 95% CI [4.097, 4.355]. 
The coefficient on an ordinary least squares (OLS) 
regression provides a more intuitive estimate of the effect of 
K-index on cooperation, B = 0.681, 95% CI [0.664, 0.698], 
implying a 68.1 percentage point increase from a K-index of 
0 to 1 (or a roughly 6.8% increase for each increase of 0.1). 
These findings are consistent with predictions that 
cooperation should increase with a higher K-index 
(Rapoport, 1967). This is visually confirmed in Figure 1, as 
each diagonal (bottom left to top right) indicates 
environments with the same K-index. For example, R = 2, P 
= 1 and R = 9, P = 8 have the same K-index (0.1) and 
relatively lower cooperation than both R = 5, P = 1 and R = 
9, P = 5 (K-index = 0.4). 

The K-index appears to account for most but not all of the 
influence of payoffs on cooperation. A logistic regression of 
the final round cooperation on the K-index and the R 
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payoff1 shows that the effect of the K-index is an order of 
magnitude larger than that of the R payoff, BK-index = 4.830, 
BR = -0.109; or with OLS, BK-index = 0.732, BR = -0.010. 

 

 
Figure 1: Development of cooperation and alternation for 

paired IBL models with varying levels of R and P (T = 10, S 
= 0) across rounds; boundary conditions shaded in gray 

 
Alternation While cooperation rates indicate the general 
degree of cooperation between players, alternation provides 
an indication of how stable that cooperation is.  Alternation 
rate may be compared to the concept of evolutionarily stable 
strategies (ESS) from the evolutionary game theory 
literature – which suggest how resistant strategies are to 
changes in the environment (and in particular, invasion by 
other strategies).  In contrast to the idea of ESS, however, 
higher alternation, while seemingly less stable, may suggest 
a more robust learning mechanism, allowing agents to adapt 
more quickly from environmental changes. 

While distinct from cooperation, alternation is constrained 
by the cooperation rate. As cooperation rates trend towards 
0 or 1, alternation rates trend towards 0. For example, if 
everyone cooperates in both Round 99 and Round 100, it is 
impossible for anyone to have switched from defect to 
cooperate (since all cooperated in Round 99) or switched 
from cooperate to defect (since all cooperated in Round 
100). The highest possible alternation exists where 
cooperation rates are 50 percent.  Nonetheless, cooperation 
and alternation rates are not perfectly correlated. 
Environments which produce similar cooperation rates (e.g., 
R = 10, P = 3, cooperation = 0.293; R = 9, P = 3, 
cooperation = 0.305) can produce different alternation rates 
(e.g., R = 10, P = 3, alternation = 0.058; R = 9, P = 3, 
alternation = 0.210). 

Given the non-linear constraints placed by cooperation on 
the alternation rate, it is unsurprising that alternation is less 

                                                           
1 Only R or P can be included in addition to the K-index due 
to multicollinearity. 

well predicted by the K-index, although an effect still exists. 
A logistic regression of alternation between the second-to-
last and last rounds on the K-index suggests a positive effect 
of K-index on alternation, B = 1.400, 95% CI [1.277, 
1.525]; or by OLS, B = 0.179, 95% CI [0.164, 0.195]. 
Including both the K-index and R payoff as parameters in 
the regressions we find coefficients for the logistic 
regression of BK-index = 2.728, BR = -0.223; and by OLS, BK-

index = 0.285, BR = -0.021. 
Visual inspection of Figure 1 suggests that the pattern of 

the K-index predicting alternation seems stronger for our 
‘proper’ PDs (non-shaded panels) than for the boundary 
conditions (shaded panels). As we move towards the upper 
left panel and higher K-indices, we see that alternation 
increases. The trend breaks as we approach the boundary 
condition of 𝑅 = 10 (top row), which shows lower 
alternation relative to 𝑅 = 9. At this point, the R and T 
payoffs are identical and there is no temptation motive to 
draw players from mutual cooperation towards defection. 
This suggests that the dynamics between temptation and 
reward may be particularly critical in driving alternation.  

 
Table 1: Pattern of individual and paired behaviors at corner 

points within simulated Prisoner’s Dilemma 
 

K-index 0.8 0.1 0.1 
(R, P) (9, 1) (9, 8) (2, 1) 

C 44.50 4.25 7.50 
Alt 29.50 3.75 13.25 
CC 25.50 1.50 2.00 
DD 38.25 93.75 87.75 

CD/DC 36.25 4.75 10.25 
 

Paired behaviors. Looking at the strategies of both players 
in a pair provides further insight into the social dynamics of 
the PD. For example, a 50% cooperation rate could be 
achieved if half of the pairs are engaged in mutual 
cooperation (CC) and half in mutual defection (DD); or if 
all pairs include one cooperator and one defector (CD/DC). 

Table 1 provides a deeper analysis of the final round 
behavior for the cases of (R, P) ∈ {(9, 1), (9, 8), (2, 1)}, i.e., 
the simulations involving the highest/lowest K-indices that 
are not the boundary conditions. The top half provide results 
for a single player in each pair, with “C” as the probability 
of cooperation and “Alt” as the probability of alternation; 
and the bottom half provides results for the pair of players. 
The table highlights the differences in the two rightmost 
payoffs, which have identical K-indices, but with an 
implicitly painful sucker payoff but little temptation, (9, 8) 
or a relatively painless sucker payoff but high temptation (2, 
1). While there is low cooperation in both cases, the case 
with high temptation and a low sucker payoff shows more 
alternation that seems to pull people away from mutual 
defection in favor of increased mixed pairs (“CD/DC”). 
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Strategic sensitivity 
Figures 2 and Figure 3 present simulation results of IBL 
models paired with non-IBL strategies. As with the IBL 
models paired with other IBL models, the models received 
no information about the other player’s actions or outcomes, 
but the IBL models outcomes were influenced by the other 
player’s choices. The first set of non-IBL strategies look at 
unconditional strategies, i.e., strategies that are not 
influenced by the IBL model’s decision; whereas the latter 
set of non-IBL strategies look at conditional strategies, i.e., 
strategies which are influenced by the IBL model’s 
decisions either directly (TFT) or indirectly (WSLS). They 
include panels for different simulations with varying P and 
R. However, they focus on a subset of P and R (with values 
of 0, 1, 8, 9 and 10) to allow for a more detailed view of the 
panels themselves. 
 
All-C/All-D. Figure 2 shows that IBL models paired with 
strategies that always cooperate or always defect learn to 
defect quickly. Defection yields the best payoff with no risk 
 

 
Figure 2: Development of cooperation and alternation for 
IBL models paired with All-C (top) and All-D (bottom) 

with select levels of R and P (T = 10, S = 0) across rounds; 
boundary conditions shaded in gray  

 
of retaliation from these strategies. In contrast, TFT and 
WSLS would only defect when playing with All-D, but 
would cooperate with a partner who played All-C. 

Exceptions occur only at certain boundary conditions. 
When paired with All-C, this occurs at 𝑇 = 𝑅 = 10; that is, 
when there is no temptation to defect. Cooperating or 
defecting in such an environment yields the same utility 
(𝑇 = 𝑅), making indifference reasonable. When paired with 
All-D, this occurs at 𝑃 = 𝑆 = 0. Again, cooperating or 
defecting yields the same utility (𝑃 = 𝑆), and indifference is 
reasonable. This indifference is reflected in the alternation 
rate which approaches 50% towards round 100 and is 
consistent with cooperating and defecting at random. 

These findings are consistent with the behavior of 
individualist human players -- who also defect more against 
unconditional strategies (Kuhlman & Marshello, 1975), and 
contrast with strategies, such as TFT or WSLS which would 
not naturally learn to be opportunistic in these cases.  
 

 

 
Figure 3: Development of cooperation and alternation for 

IBL models paired with Tit-for-tat (top) and Win-stay-lose- 
shift (bottom) with select levels of R and P (T = 10, S = 0) 

across rounds; boundary conditions shaded in gray 
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TFT/WSLS Figure 3 highlights the different response of 
the IBL model when paired with two popular strategies from 
evolutionary game theory, TFT and WSLS. 

Surprisingly, TFT tends towards defection. High 
defection may be associated with research suggesting that 
TFT does not do well when their partner behaves 
inconsistently (Imhof, Fudenberg, & Nowak, 2007), as 
might be expected when IBL models explore their options. 
The exception at 𝑃 = 𝑆 = 0 suggests that the sucker payoff 
makes cooperation more prohibitive when learning to play 
with TFT. Not being penalized for moving away from 
mutual defection, provides an opportunity for the players to 
arrive at mutual cooperation. 

Results for WSLS are similar to those observed in paired 
IBL models, which may be explained by WSLS having been 
developed as a simple learning model. When paired with a 
WSLS strategy, cooperation is more greatly affected by 
reducing the difference in the temptation and reward payoffs 
(with highest cooperation appearing at the boundary 
condition of 𝑇 = 𝑅 = 10) compared to reducing the 
difference in the punishment and sucker payoffs. 

A comparison of Figures 1 and 3 suggest that alternation 
is higher when an IBL model is paired with WSLS than 
with other strategies. This is clearer in Figure 4, which 
shows the relationship between alternation and cooperation 
in the last round for the different simulations of IBL models 
partnered with TFT, WSLS, and a second IBL strategy. The 
relationship shows an upside-down U-shaped curve with all 
partners, consistent with earlier observations that high and 
low cooperation rates decrease maximum possible 
alternation. However, models partnered with a WSLS 
strategy shows higher alternation at almost all levels of 
cooperation relative to the TFT and IBL strategies. 

 

 
Figure 4: Relationship between cooperation and alternation 
of the IBL model in final round, when partnered with TFT 

(circles/solid), WSLS (triangles/short dash), and second IBL 
(plus/long dash) 

Conclusion 
Applying simulated cognitive models to social dilemmas 

helps us to understand how features of a social dilemma 

specifically impact the learning processes in the absence of 
other factors, such as other regarding preferences and 
expectations.  The focus on learning differs from classical, 
behavioral, and evolutionary game theory which do not treat 
individual learning as a mechanism.  The focus on 
simulation allows us to concentrate on learning more 
cleanly. For example, previous research finds that 
cooperation weakly decreases over time when people are 
paired with a strategy that always cooperates (Lave, 1965; 
Oskamp, 1971). As this decrease is slight, understanding the 
nature of this change, or if it is simply noise, can be 
challenging. By focusing on learning, the results in this 
paper provides clearer evidence that cooperation may 
decrease as a result of learning. 

Simulations also provide some clearer insight into not 
only cooperation but the stability of cooperation as 
highlighted by alternation rates. Our findings suggest that 
the impact of the strategic environment can influence 
cooperation and alternation differently. In the case of 
WSLS, more alternation might draw players out of the 
‘basin of attraction’ represented by mutual defection. Future 
work might investigate whether high alternation can help 
players adapt to a changing payoff or strategic environment, 
given that higher alternation suggests consistent exploration. 

The present application of basic cognitive models, such as 
IBL, to the PD is not intended as a substitute for research 
using human data or for more complex models that try to fit 
this data. Indeed, the current research can serve as valuable 
baseline for such models to better highlight the contribution 
of specific mechanisms, such as information (Gonzalez et 
al., 2015), surprise and meta-cognition (C. Camerer & Ho, 
1999; Gonzalez & Ben-Asher, 2014; Stevens et al., 2016), 
and initial beliefs (Lebiere et al., 2000). Altogether, the 
current research suggests additional areas of investigation 
and potential boundary conditions under which those 
models might be tested.  

The present work can also be seen as an application of the 
methods from evolutionary game theory into cognitive 
modelling, in which we study how varying environments 
can impact learning rather than population dynamics. 
Similar to some of that research in that work, we can use 
simulations across multiple levels of variables to develop a 
map of sorts in terms of understanding potential areas of 
investigative interest and guiding our expectations of what 
results may be likely.  The use of basic cognitive models to 
social dilemmas can help us better understand how we learn 
and how our approach to games develops over time. 
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