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Abstract

The conjunction and disjunction fallacies are ex-
pressions of irrational judgments. We propose a
quantum cognition model that represents each con-
cept as a separate qubit and the measurement pro-
cess as a weak measurement. Using an on-line
questionnaire, we analyzed the relation between ir-
rational judgment and the corresponding quantum
state entanglement. The model enables us to fol-
low an individuals’ quantum cognitive representa-
tion throughout the questionnaire and shows that,
on average, participants get more entangled as they
progress in the questionnaire. Our model accounts
for multiple concepts simultaneously for rational
and irrational decisions and suggests that quantum
entanglement of mental concepts is correlated with
irrational judgments.
Keywords: Quantum cognition; Irrationality;
Quantum entanglement; Probability judgment falla-
cies.

Introduction
People tend to make irrational decisions (Tver-
sky and Kahneman, 1983). Irrational behavior is
any behavior that reflects a violation of basic laws
that stem from classical probability theory (Kol-
mogorov, 2013). In this paper, we focus on the
conjunction and disjunction fallacies, which violate
the law of total probability: The conjunction fallacy
occurs when a person judges the probability of the
conjunction of two events to be more likely than ei-
ther of the constituent events. The disjunction fal-
lacy occurs when a person judges the probability of
the disjunction of two events to be less likely than
either of the constituent events. Quantum cogni-
tion is a developing field (Busemeyer and Bruza,
2012) that takes methods and concepts from quan-
tum probability theory and uses them to explain and
model decision-making findings. The hypothesis
behind quantum cognition models is that irrational

behavior obeys the laws of quantum theory rather
than classical probability theory.

Studies of irrational behavior using classical
methods have shown that people violate the unicity
principle. This assumption is broken as soon as we
allow incompatible questions into the theory, which
causes measurements to be non-commutative. In-
compatible questions cannot be evaluated on the
same basis, so they require setting up separate sam-
ple spaces. This leads to conjunction and disjunc-
tion fallacies (Tversky and Kahneman, 1983; Tver-
sky and Shafir, 1992). Quantum probability does
not assume the principle of unicity, thus allowing
one to use a partial Boolean algebra; each set of
questions can be answered using one sample space
in a Boolean fashion. All Boolean sub-algebras are
pasted together in a coherent but non-Boolean fash-
ion.

Previous work has shown that quantum probabil-
ity (QP) can be used to model cognitive fallacies,
specifically, conjunction and disjunction (Trueblood
and Busemeyer, 2011; Pothos and Busemeyer,
2009; Franco, 2016). Two concepts analyzed in the
fallacies lie in the same Hilbert space and represent
two different reference frames. This is a framework
that can account for the irrationalities but not for the
rational behavior.

Quantum entanglement is a unique quantum phe-
nomenon wherein two systems cannot be described
as two separable systems. The only way to describe
their joint quantum state is by describing it as a
whole (Stolze and Suter, 2004; Salimi et al., 2012).
Quantum entanglement has been used in the quan-
tum interaction community to describe joint con-
cepts (Grdenfors, 2004; Nelson and McEvoy, 2007;
Bruza et al., 2009), albeit only when considering the



population and not individual participants.
The theoretical framework of quantum weak

measurements describes a quantum system by a
generalized quantum state that propagates from the
future as well as from the past (Aharonov and Vaid-
man, 1991). By ”pre-selecting” an initial quan-
tum state and “post-selecting” a final quantum state,
one can describe the full dynamics of a quantum
system, sometimes enabling a description of pecu-
liar phenomena, such as the Aharonov–Bohm effect
(Aharonov and Bohm, 1959). This type of measure-
ment is called “weak measurement” and will be ex-
ploited in our proposed quantum cognitive model.

We propose a quantum model based on entangle-
ment and weak measurements that can account for
rational and irrational behaviors as well as the dy-
namics of the mental state of the participants. Pre-
vious studies have not addressed the dynamics of
irrationality, nor have they examined entanglement–
irrationality relations. In this study, an on-line ques-
tionnaire (see Methods) containing several instan-
tiations of conjunction and disjunction fallacy sce-
narios was administered. Using our model, we first
show that it describes all participant results, i.e.,
both rational and irrational, for all the questions. We
then show that our model enables an analysis of the
multi-qubit quantum mental operations of each par-
ticipant regarding each question, namely, a quanti-
tative measure of bipartite quantum entanglement.

Our analysis of the survey data reveals that ir-
rational judgment is represented by an entangled
quantum state, whereas a separable quantum state
represents a rational judgment in both the conjunc-
tion and disjunction fallacies. Finally, our model en-
ables the analysis of dynamics throughout the ques-
tionnaire for each participant. We show that as more
information is revealed about the concepts, the more
entangled these concepts become. This formulation
enables a more generic, scalable and intuitive repre-
sentation of cognitive concepts.

Methods
Conjunction and disjunction fallacies. In our
formalism, for two concepts A and B: (i)
The conjunction fallacy occurs when p(A∩B) >
min(p(A), p(B)), i.e., when the probability of the

conjunction is greater than either of the constituent
probabilities. (ii) The disjunction fallacy occurs
when p(A∪B) < max(p(A), p(B)), i.e., when the
probability of the disjunction is smaller than either
of the constituent probabilities. We defined the irra-
tionality measure as follows:

irr = p(A∩B)−min(p(A), p(B)) conj. (1)
irr = max(p(A), p(B))− p(A∪B) disj. (2)

In the analysis, we defined an answer as irrational
only if irr > 0.1, i.e., this is a stricter condition for
irrationality.

Questionnaire. To study the conjunction and
disjunction fallacies, we used the following person-
ality sketches of two fictitious individuals, Emma
and Liz, followed by a set of occupations and av-
ocations associated with each or both of them. In
each question, the participants were asked to give
a probability for each option by using a horizon-
tal slider/bar. All the options were initialized to the
neutral probability value of 0.5.

We briefly outline the questionnaire as follows:

Q1: Emma is outgoing and lives in an apartment
within the center of the city with her two cats. She takes
yoga classes at the gym three times a week, enjoys reading
science-fiction books and volunteers in an animal shelter
at least once a week. For each statement, please move the
horizontal slider to represent how much do you think the
statement represents Emma.

Emma is a manger. (= p(A))
Emma is a pianist and a runner.
Emma is a writer.
Emma likes to paint.
Emma is vegan.
Emma likes to exercise. (= p(B))
Emma is a manger and likes to exercise. (= p(A∩B))
Emma is a blogger.

Q2: Liz lives in Oakland in a Victorian house. She is
an analytical thinker and works in a start-up. In addition,
she tries to go to a few classes at the gym every week.
She is very ambitious in her job. She enjoys cooking very
much and she is very good at it. She also likes camping.
For each statement, please move the horizontal slider to
represent your opinion about Liz.

Is Liz a programmer? (= p(C))
Does Liz like to paint? (= p(D))
Is Liz a programmer and likes to paint? (= p(C∩D))

Q3: Emma and Liz want to do an extracurricular ac-
tivity together.For each statement, please move the hori-
zontal slider to represent how likely it is they will choose
this activity and why.



Take spinning class, because Emma likes to exercise.
(= p(B))
Try out gourmet restaurants in the city.
Take realistic painting classes, because Liz like to
paint. (= p(D))
Take singing classes near Emma’s apartment.
Take photography class near Liz house.
Take spinning class or realistic painting classes. (=
p(B∪D))

Q4: Recently Emma got to the conclusion that she
doesn’t have enough time in a day. For each statement,
please move the horizontal slider to represent how likely
it is that this is the reason Emma needs more time.

For her work, as manager. (= p(A))
Volunteer.
Exercise. (= p(B))
Join Book club, because she likes to read.
To work as manager or to exercise. (= p(A∪B))
Meet with friends.

Participants were 100 Amazon Mechanical Turk
users. We asked for Amazon Mechanical Turk Mas-
ters that were native English speakers from North
America that had completed at least 100 tasks with
an approval rate > 95%. Each participant was pre-
sented with the questionnaire on Qualtrics. After
completing the questionnaire, the participants had
to pass three screening checks:

a) ”Trap” question - we inserted a question that
contained internal text telling the participant how
to answer. Participants that answered incorrectly
were excluded (15 participants). b) Response time -
participants who answered too quickly/slowly, i.e.,
more than a 3σ deviation from the mean response
time in either direction were excluded (8 partici-
pants). c) ”Focus” - Participants that answered too
many questions (3σ deviation from the mean ”fo-
cus”) with the probabilities 0,0.5,1, i.e., they did
not pay attention to the answers, were excluded (2
participants).

After screening, 78 participants were left (there
were participants who failed more than one screen-
ing test).

Results
Participant Irrationality
We first present the data from the on-line survey we
performed, Fig. 1. The survey included four ques-
tions; the first and second measured the conjunc-
tion fallacy, while the third and fourth measured the

Figure 1: Top-left: Number of irrational answers
per participant; Bottom-left: (ir)rational answers
(white=rational, black=irrational); Top-right: his-
togram of the number of irrational answers per par-
ticipant; Bottom-right: distribution of the irrational-
ity value per question.

disjunction fallacy. As can be seen, the percentage
of irrational judgments replicates previous reporting
(Charness, 2009). Furthermore, only 8 out of the 78
participants were rational in all questions.

These data suggest that a questionnaire involving
multiple questions and different types of fallacies
can reveal the ubiquity of irrational judgments.

Moreover, as detailed in the next sections, ana-
lyzing each participant individually throughout the
questionnaire enables a glimpse into the dynam-
ics of irrational decision making. For example,
comparing the first and last questions, which asked
about the same concepts, reveals that only 45 par-
ticipants (58%) maintained their “rationality”, i.e.,
answered both questions (ir)rationally. While this
can be interpreted as inconsistency, the participants
were given more information about the concepts be-
tween the two questions and thus may represent a
dynamic mental process (see below).



Weak Measurements of Concept-Qubits
In our model, we propose that each concept is rep-
resented by a single qubit: Concept A is represented
by |ψ〉A, while a different concept, B is represented
by another qubit, |ψ〉B. Thus, the complete two-
concept quantum state is represented by

|ψ〉AB =a00|0〉A|0〉B +a10|1〉A|0〉B+ (3)
a01|0〉A|1〉B +a11|1〉A|1〉B

|∑
i j

ai j|2 =1 (4)

P(A) =TrB(A〈1|ψ〉AB〈ψ|ψ0〉A) (5)

=(1/
√

2)(a10(a00 +a10)+a11(a01 +a11))

P(B) =TrA(B〈1|ψ〉AB〈ψ|ψ0〉B) (6)

=(1/
√

2)(a01(a00 +a01)+a11(a10 +a11))

P(A∩B) =A〈1|B〈1|ψ〉AB〈ψ|ψ0〉B|ψ0〉A (7)
=(1/2)a11(a00 +a10 +a01 +a11)

P(A∪B) =(A〈1|B〈0|+A 〈0|B〈1|+A 〈1|B〈1|)×
ψ〉AB〈ψ|ψ0〉B|ψ0〉A (8)

=(1/(3
√

2))(a10 +a01 +a11)×
(a00 +a10 +a01 +a11)

This representation has three free parameters
due to normalization (eq. (4)) as compared to
the two parameters of previous models (Trueblood
and Busemeyer, 2011; Pothos and Busemeyer,
2009; Franco, 2016). For each participant and
each conjunction (disjunction) question, we obtain
three reported probabilities, namely, p(A), p(B) and
p(A∩B) (or (p(A∪B)).

We introduce weak measurements as the mea-
surement process in our model (Aharonov and Vaid-
man, 1991). For new questions regarding con-
cepts about which there is no information, the pre-
selected state is given by the fully superposed state
|ψ0〉 = 1/

√
2(|0〉+ |1〉). The post-selected state is

the answer in the questionnaire, in our case, always
|1〉 of the relevant concept-qubit. The mental quan-
tum operation each participant performs in each
question transforms the initial state to the final one.
This is represented by |ψ〉AB〈ψ|. In other words, the
participants’ mental process of how they incorpo-
rate new information is represented by a projection

operator.
This model enables the calculation of the full

quantum mental state representation given the re-
ported question probabilities. Under the formal-
ism from eq. (3) we denote the constraints eqs. (4)
and (8).

For the conjunction questions, we used eqs. (4)–
(7)), and for the disjunction questions, we used
eqs. (4)–(6) and (8)). We numerically solved this
set of four non-linear equations with four variables,
which resulted in a full quantum state for each par-
ticipant and each question.

Entanglement and Irrationality
While the calculation of the full quantum state from
the probabilities does not generate any prediction, it
does enable us to calculate entanglement. We cal-
culated the two-qubit pure-state entanglement us-
ing the concurrence measurement (Stolze and Suter,
2004):

C(|ψ〉) = 2 · |a00 ·a11−a01 ·a10| (9)

where C ∈ [0,1], so that if C = 0, the state is fac-
torized, whereas if C > 0, the state is entangled.
In the data analysis, we defined a stricter thresh-
old for entanglement, namely, a state representing
a participant’s answer is considered entangled only
if C > 0.2.

This quantum entanglement calculation enables
us to analyze its relation to the amount of irrational-
ity of the reported probabilities, eq. (1). Hence, we
can compute both entanglement and irrationality for
each participant and each question , as shown in
fig. 1.

As can be seen in Fig. 2, with our strict defini-
tions of irrationality and the entangled state, only
two out of the 78 participants were both irrational
and non-entangled in this question. Fig. 3 shows
that this “quadrant” was sparse in all questions, i.e.,
out of all the participants/questions (312 in total),
only 5.8% (18 answers) were irrational and separa-
ble. More quantitatively, we can compute the fol-
lowing conditional probabilities:

P(rational|low entanglement) = 75% (10)
P(high entanglement|irrational) = 81% (11)



Figure 2: Irrationality as a function of Entangle-
ment (concurrence calculation).

Finally, the questionnaire enables us to follow the
dynamics of irrational judgments and the ensuing
entanglement. As can be seen in Fig. 3, entangle-
ment is monotonically non-decreasing as the ques-
tionnaire progresses. This is expected as more in-
formation regarding the concepts is revealed, i.e.,
as the story of Emma and Liz unfolds. The intri-
cate connections between the storylines generate a
quantum entanglement of the representative quan-
tum states.

Discussion and Future Work
We have presented a quantum model with respect to
the conjunction and disjunction fallacies that repre-
sents each concept as a separate qubit and treats the
questions as quantum weak measurements.

While previous quantum cognitive models have
treated concepts as qubits, (Busemeyer and Bruza,
2012), they have done so on overall data, i.e., by
aggregating answers from many participants, thus
representing the “concepts” as a whole. In contrast,
our model attempts to represent individual men-
tal states of participants by fitting their answers to
a specific quantum projection operator within the
weak-measurement framework. This framework as-
sumes that participants start with an ignorant repre-

Figure 3: Distribution of rational/irrational and
entangled/non-entangled participants for all the
questions.

sentation of the concept, represented as a full super-
position of all possible representations as the “pre-
selected” quantum state. The framing of the ques-
tion “post-selects” the end quantum state, which en-
ables us to fit the quantum operator, represented as a
projection of a full quantum state of both concepts,
from the data.

This representation gives new insights into the
connection between the quantum mental represen-
tation of concepts and irrational judgments. More
specifically, the data suggest that irrational judg-
ments mostly occur for entangled quantum states,
whereas separable states occur mostly when ratio-
nal behavior is observed.

Cognitively, one can speculate that rational judg-
ment regarding two concepts implies that they are
separable and do not relate to or influence each
other. This separability thus conveys no “cognitive
interference” that can cause irrational judgments.
On the other hand, highly entangled concepts, i.e.,
concepts that relate to and influence each other in
a tight manner, will result in more irrational judg-
ments.

Our participant–question-specific model enables
us to analyze the dynamics of entanglement
throughout the questionnaire. As hypothesized by
the connection between concepts and entanglement,
the more information is revealed throughout the



questionnaire regarding the concepts, the more en-
tangled they become. We have shown that entangle-
ment indeed rises on average, and more specifically,
that for the same question, for answers at the begin-
ning and the end of the questionnaire, entanglement
increased.

The proposed model holds promise in the form of
scalability. The previous concept-as-basis models
did not scale well when introducing more than two
concepts, since introducing even a single new con-
cept immediately imposes two relations between the
previous two concepts. This occurs since all con-
cepts lie in the same Hilbert space. Our concept-as-
qubit model enables the introduction of more con-
cepts, as they expand the Hilbert space and enable
arbitrary relations between the concepts. While the
increase in free parameters is exponential in the
number of concepts in our model, measures can be
computed from the inferred quantum state; the most
promising are multipartite entanglement measures.
Future work will explore this direction with a more
detailed questionnaire that involves more than two
qubits and their interaction.
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