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Abstract 

Building on earlier work extending Sigma’s mixed (symbols 
+ probabilities) graphical band to inference in feedforward 
neural networks, two forms of neural network learning – 
target propagation and backpropagation – are introduced, 
bringing Sigma closer to a full neural-symbolic architecture.  
Adapting Sigma’s reinforcement learning (RL) capability to 
use neural networks in policy learning then yields a hybrid 
form of neural RL with probabilistic action modeling. 
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Introduction 
One of the greatest overall challenges in cognitive modeling 
is developing cognitive architectures that bridge the 
biological and cognitive bands – spanning, respectively, 100 
µs - 10 ms and 100 ms - 10 s – from Newell’s (1990) 
analysis of the time scales of human action. The boundary 
between these bands sits somewhere in the region of 10-100 
ms and conventionally divides symbolic from subsymbolic 
behavior, although the relationship between them may be in 
reality both subtler and more complex. 

One approach to this challenge provides distinct 
mechanisms for the two bands that can cooperate in 
prescribed ways (Sun, 2016); a second seeks the emergence 
of cognitive mechanisms from biological ones (Eliasmith, 
2013); and a third replaces components of existing cognitive 
architectures with neural models that yield similar results 
(Cho, Rosenbloom & Dolan, 1991; Jilk et al., 2008). 

The approach taken in Sigma (Rosenbloom, Demski, & 
Ustun, 2016a) has been to generalize the notion of a 
biological band to that of a graphical band – which in 
Sigma is based on factor graphs, a general form of 
graphical model, plus the summary product message-
passing algorithm (Kschischang, Frey & Loeliger, 2001) – 
that then implements the cognitive band.  Recently it was 
discovered, however, that with one simple enhancement to 
this graphical band it was possible to include feedforward 
neural networks, without yet learning, among the graphs 
supported (Rosenbloom, Demski & Ustun, 2016b).  This 
inspired a rethinking of Sigma’s graphical band to a broader 
graphical notion within which factor graphs became just one 
particularly useful specialization and neural networks 
another.  It also raised the possibility of a broader variation 
on the third approach mentioned above. 

This preliminary work is extended here to weight learning 
in feedforward neural networks.  A general form of 
parameter learning, via gradient descent on factor functions, 
was first implemented in Sigma for probability distributions 

(Rosenbloom et al., 2013) and then later extended to 
distributed vectors (Ustun et al., 2014).  These are both 
forms of generative learning that learn patterns of 
coactivation across variables, much as in Hebbian learning. 

Starting with this approach for distributed vectors, a 
variant of target propagation (Lee et al., 2015) has been 
implemented in Sigma via normal undirected (bidirectional) 
factor graphs, by backward propagating target values for the 
units’ outputs, and discriminatively learning weights from 
differences between target and actual outputs. However, 
issues with this approach led us also to implement 
backpropagation, the standard discriminative approach to 
neural learning (Rumelhart, Hinton & Williams, 1986), that 
is based instead on a unidirectional forward-backward arc. 

Both of these approaches reuse Sigma’s message passing 
for backward propagation and its gradient descent for 
parameter learning.  Backpropagation also leverages a 
variant of affective appraisal (Rosenbloom, Gratch & 
Ustun, 2015) to compute the error needed to initiate the 
backward pass.  The net result is functionally elegant neural 
learning that is largely based on new combinations of 
existing mechanisms rather than on new modules cut from 
whole cloth.  By extending Sigma’s graphical band in this 
way, neural networks are potentially usable wherever factor 
graphs already were used, including in long-term memory, 
perception and learning.  When combined with the earlier 
work on distributed vectors, a general neural-symbolic 
architecture begins to emerge that may, among other things, 
provide principled architectural guidance in how to combine 
deep learning (Goodfellow, Bengio, & Courville, 2016) 
with other critical cognitive capabilities. 

The core result in this article thus concerns the relatively 
abstract yet fundamental problem of building a functionally 
elegant bridge from a cognitive architecture to the biological 
band rather than specific matches to human data.  In service 
of this, after a review of Sigma and its earlier extension to 
feedforward neural networks, we will introduce neural-
network learning in Sigma, followed by experiments with 
classification and regression networks, and the leveraging 
of such networks in neural reinforcement learning. 

Sigma and Feedforward Neural Networks 
Sigma is composed of two distinct architectures, one for the 
cognitive band and one for the graphical band. In the 
cognitive architecture, knowledge is based on predicates for 
specifying relations over typed – numeric (discrete or 
continuous) or symbolic – arguments; and conditionals for 
specifying patterns over combinations of predicates. 
Functions may be included in predicates to provide 



distributions over their arguments, and in conditionals to 
provide distributions over combinations of their variables. 

A segment of working memory exists for each predicate, 
as does also a segment of long-term memory if there is a 
predicate function.  An additional segment of long-term 
memory is also created for each conditional.  A pattern in a 
conditional may be a condition, which acts like a rule 
condition by matching to working memory; an action, 
which acts like a rule action by changing working memory; 
or a condact, which combines the effects of a condition and 
an action to yield bidirectional constraints on the contents of 
working memory.  Procedural memory is largely based on 
conditions and actions – i.e., rules – and declarative memory 
on condacts.  Decisions are made by selecting values from 
predicate arguments based on distributions over them. 

Figure 1, for example, displays two conditionals – each 
effectively a (non-symbolic) rule with an associated weight 
function – that together implement the two-layer neural 
network in Figure 2.  All argument types here are discrete 
numeric, but with three elements for Input and two each 
for Hidden and Output. The single argument (arg) in 
each pattern is specified here by variables – i, h, and o – 
with the function in each conditional being defined over its 
pair of variables.  The s in the conditionals’ actions denotes 
that a sigmoid/logistic function is to be applied before 
working memory is changed (other possibilities include r 
for RELU, t for tanh, e for exponential, and x for softmax).  
The one modification required to make this work in Sigma 
was extending to these functions its existing ability to 
include non-linear transformations in conditional patterns. 

This particular way of encoding a neural network in 
Sigma involves one conditional per layer, with the structure 
of the layers implicit in the argument types and conditional 
functions.  Although it is also possible to encode such 
networks via one conditional per link, with one element per 
type and a single weight per function, here the focus is on 
the more concise representation illustrated in Figure 1. 

Sigma’s compiler converts knowledge specified in its 
cognitive architecture into undirected bipartite graphs of 
variable and factor nodes – essentially factor graphs – in the 
graphical architecture.  Functions are stored in factor 
nodes.  Processing occurs via message passing – essentially 
the summary product algorithm – with each message 
encoding a distribution over the variables in the variable 
node on the link. Incoming messages are pointwise 
multiplied together at nodes, along with the node function at 
factor nodes, and then variables not needed in outgoing 

messages are summarized out, typically via either integral 
or maximum.  For conditions and actions, messages are 
passed in only one direction, from working memory for 
conditions and towards working memory for actions, 
whereas condact message passing is bidirectional.  Learning 
occurs by gradient descent at factor nodes, with gradients 
based on messages arriving from adjacent variable nodes. 

Target Propagation 
With target propagation, targets – that is, desired values – 
rather than errors are propagated backward over the 
network, with errors then computed locally at factor nodes 
based on subtracting computed outputs from desired 
outputs.  To support this, the unidirectional rules in Figure 1 
are converted to bidirectional constraints, with conditions 
and actions becoming condacts, as shown in Figure 3. 

The weights in the functions are initialized randomly, and 
then learned online from training examples.  The Neural 
attribute in the conditionals specifies that local 
discriminative learning is to be used here, with the gradient 
based on subtracting the output message for the specified 
variable (i.e., its computed value) from its input message 
(i.e., its desired/target value).  Learning from this error-
based gradient then follows the simplified additive form 
earlier developed for distributed vectors rather than the 
more complex form originally developed for distributions. 

Starting with the targets for the network’s output units, 
computing the targets and gradients for interior units 

CONDITIONAL C-Layer1-TP 
Condacts: (Input arg:i) 
          (Hidden s arg:h) 
Neural:h 
Function<i,h>: <Random in [-.1,.1]> 
 

CONDITIONAL C-Layer2-TP 
Condacts: (Hidden arg:h) 
          (Output s arg:o) 
Neural:o 
Function<h,o>: <Random in [-.1,.1]> 

 
Figure 3: Target propagation conditionals for two-layer 

weight learning. 

Figure 2: Two-layer neural network (adapted from 
http://www.doc.ic.ac.uk/~sgc/teaching/pre2012/v231/lecture13.html). 

CONDITIONAL C-Layer1 
Conditions: (Input arg:i) 
Actions: (Hidden s arg:h) 
Function<i,h>: .2:<0,0>, .7:<0,1>, … 
 

CONDITIONAL C-Layer2 
Conditions: (Hidden arg:h) 
Actions: (Output s arg:o) 
Function<h,o>: 1.1:<0,0>, 3.1:<0,1>, … 

 
Figure 1: Conditionals for the network in Figure 2. 



leverages the bidirectionality of condacts to send messages 
backward in the graph.  However, in contrast to backward 
messages in normal factor graphs, proper processing of 
these messages requires that the functions be inverted at 
factor nodes.  This is straightforward for the logistic 
function, as its inverse is simply the logit function: log(x/[1-
x]).  However, this does raise a deeper problem, in that the 
domain of this function is (0,1), whereas there is no 
guarantee that a target – particularly one generated inside 
the network – will fall in this range.  To work around this, 
backward messages at these nodes are truncated to [ε,1-ε]. 

A second problem arises at the factor nodes where the 
learned weight functions must be inverted. Rather than 
attempting to do this analytically, inversion is approximated 
empirically by gradient descent over the node’s backward 
output.  In particular, the product of the output error and the 
weight function is multiplied by a pseudo-learning rate (.05) 
and then added to the forward input message to yield the 
backward output message. 

Aside from the nonstandard approach to computing 
backward messages, the result is a form of target 
propagation that otherwise fits cleanly into normal factor 
graphs, including respecting the constraint that all messages 
over a link are distributions over the link’s variables. 

Backpropagation 
With backpropagation, a difference is computed only once, 
for the network’s output units, and propagated backward 
successively from there.  Sigma already supports an 
architectural desirability appraisal that calculates differences 
between distributions over goals and their associated states, 
and which is used in both guiding problem solving and 
directing attention.  What is needed for backpropagation is 
an analogous correctness appraisal that operates over point 
values rather than distributions. The error is then simply the 
difference between the output predicate’s specified 
target/goal and its computed value/state. 

Unlike with target propagation, however, the error cannot 
just be propagated backward over a bidirectional network, 
as that would violate the constraint that all of the messages 
on a link should be distributions over the values of the link’s 
variables.  In the forward direction the messages are 
(unnormalized) distributions – effectively activations – over 
variables, each of which corresponds to the set of units at 
one layer of the network.  Sending errors backward over 
these same links would be invalidly inhomogeneous. 

Instead, what has been done is to complement each 
unidirectional forward network with a unidirectional 
backward network over which errors are sent, with the 
appraisal at the end of the forward network serving as the 
nexus connecting it to the backward network.  Figure 4 
shows an abstract graph for how this all works. 

The left (green) path is the forward one, stretching from 
the perceptual buffer for the Input predicate up through 
two layers of weights to the Output predicate.  The 
squares are factor nodes, where the weight functions are 
stored, whereas the circles are variable nodes.  The two 

sigmoid transformations occur at additional factor nodes 
that are abstracted away in this figure.  The output of the 
forward path joins with the target values for the outputs at 
the appraisal of correctness. 

Figure 5 shows the 
forward conditionals 
for this.  They are like 
those in Figure 1 in 
having conditions and 
actions, and like those 
in Figure 3 in using 
random initial 
weights, but they 
replace the Neural 
attribute with the 
Vector attribute to 
signal that distributed-
vector gradients 
should be used in 
learning without target 
propagation’s 
gradient-based 
approach to backward 
message passing. 

The right (red) path 
in Figure 4 is the 
backward one.  It 
includes its own factor and variable nodes, but with crucial 
linkages added to the forward path.  The sigmoid nodes are 
also abstracted away here, but in the network compute the 
derivative of the logistic – x(1-x) – rather than its inverse. 

Figure 6 shows the corresponding backward conditionals.  
In general, backward predicates – such as Hidden*Back – 
are introduced that correspond to the forward ones, and 
conditions are swapped with actions.  However, there are 
slight variations for the first and last layers.  In the first 
layer, the backward propagation of information can stop at 
the weight function, rather than going all of the way back to 
the input units, so there is no action in C-Layer1-B.  In 
the last layer, backward propagation starts with the appraisal 
for the Output predicate – Output*Error – so the error 
is used directly rather than a new backward predicate. 

Learning occurs based on messages arriving at the factor 
nodes in the backward path, but the functions in these nodes 
are tied to those in the forward path – shown by the yellow 

CONDITIONAL C-Layer1 
Conditions: (Input arg:i) 
Actions: (Hidden s arg:h) 
Function<i,h>: <Random in [-.1,.1]> 
Vector: T 
 

CONDITIONAL C-Layer2 
Conditions: (Hidden arg:h) 
Actions: (Output s arg:o) 
Function<h,o>: <Random in [-.1,.1]> 
Vector: T 

 
Figure 5: Forward conditionals for two-layer 

backpropagation network. 

Figure 4: Structure of 
backpropagation for a two-layer 

network. 



ellipses in Figure 4 – so that any changes made to the 
former are directly reflected in the latter.  This is enabled by 
the Forward-Conditional attributes in Figure 6, 
which specify the corresponding forward conditionals. 

In its simplest form, the gradient in backpropagation is 
the product of: (1) the learning rate; (2) the forward message 
at the weight function; (3) the output difference; and (4) the 
derivative of the sigmoid function. The forward message, as 
shown by the upward slanting (purple) unidirectional links 
from the forward path, is added automatically to the graph 
by the conditional compiler given the Forward-
Conditional attribute.  The output difference comes 
from above in the figure, as derived from the first condition 
in a backward conditional.  The computation of the 
derivative of the sigmoid, although abstracted away in the 
graph, arrives at the backward factor node via the downward 
slanting (blue) links from the forward path, based on the 
second condition in a backward conditional.  As with target 
propagation, the resulting gradient is handled in the simple 
additive manner developed earlier for distributed vectors. 

In contrast to target propagation, here the backward 
message out of the factor node – that is, the propagated 
output difference – is computed simply by message/function 
multiplication and summarization, as is standard in factor 
graphs.  There is one important caveat though.  As specified 
by the Exclude-Forward-Backward attribute, the 
purple message from the forward path is not included in this 
product, so the backward output is just the product of the 
output difference, the derivative of the sigmoid function and 
the weight function in the node.  This exception to the 
normal rule is motivated by backpropagation, but justified 
independently in factor graph terms by the fact that a 
message coming into a node on a bidirectional link should 
not be used in computing the reverse message on the same 
link.  Here there are two unidirectional links, but they 
effectively comprise a single logical bidirectional path. 

Basic Experiments 
Regression and classification problems provide two forms 
of standard benchmarks for learning with neural networks.  
The network in Figure 2, for example, defines a regression 
problem, where two functions are to be learned from the 

inputs, one for each output.  Small experiments with this 
network, starting with uniform weights, do show that both 
forms of propagation can learn weights in Sigma that yield 
outputs like those generated by the network in the figure.   
But what is really needed for verification is an investigation 
into how Sigma compares with standard packages. 

For this, we have compared Sigma with PyBrain, a 
Python machine learning library (Schaul et al., 2010), via 
three standard machine learning datasets: (1) Iris – 
https://archive.ics.uci.edu/ml/datasets/Iris – a classification 
problem with 3 classes; (2) Robot Arm – 
http://mldata.org/repository/data/viewslug/uci-20070111-
kin8nm/ – a regression problem that learns to predict the 
end effector position for an 8 link robot arm; and (3) MNIST 
– http://yann.lecun.com/exdb/mnist/ – a classification 
problem over the digits 0-9, based on 28x28 pixel images.  
Table 1 shows the static information for these datasets. 

Table 1: Input, hidden and output units; training and test 
instances; learning rate; and training epochs. 

 I H O Train Test λ Ep. 
Iris 4 10 3 138 12 .1 100 
Robot 8 100 1 6530 838 .01 100 
MNIST 784 30 10 10K1 10K .01 50 

Our experiments so far with target propagation have not 
yet yielded reasonable results on these datasets, most likely 
because of the truncation required for the logit.  So Table 2 
only shows backpropagation results.  The first and most 
critical result is that Sigma’s accuracy is indistinguishable 
from that produced by PyBrain with the same settings.  
Second, Sigma is slower, by up to a factor of ~100.  
Although a slowdown with a general architecture is not 
surprising, it should actually be possible to close this gap 
with a more efficient message representation plus SIMD (as 
in PyBrain) and GPU hardware.  It is also worth note though 
that these results are at most a factor of 2 slower than the 
human cognitive cycle time of ~50 ms, a factor that can be 
relevant when concerned with real-time cognitive models. 

Table 2: Accuracy (% correct for Iris and MNIST, RMSE 
for Robot Arm); seconds per epoch; and ms per decision. 
 Py A. Σ A. Py s/Ep. Σ s/Ep Σ ms/D 
Iris .917 .917 .082 .215 2 
Robot .173 .173 3.51 54.33 8 
MNIST .867 .867 9.8 1029.2 103 

Neural Reinforcement Learning 
Figure 7 shows a simple 1D grid in which reinforcement 
learning (RL) was initially explored in Sigma (Rosenbloom, 
2012).  The agent can move left or right in locations 1 
through 6, with locations 0 and 7 being forbidden boundary 

                                                             
1 Only the first 10K training examples are used for MNIST. 

CONDITIONAL C-Layer1-B 
Conditions: (Hidden*Back arg:h) 
            (Hidden s arg:h) 
Forward-Conditional: C-Layer1 
Exclude-Forward-Backward T 
Vector: T 
 

CONDITIONAL C-Layer2-B 
Conditions: (Output*Error arg:o) 
            (Output s arg:o) 
Actions: (Hidden*Back arg:h) 
Forward-Conditional: C-Layer2 
Exclude-Forward-Backward T 
Vector: T 

 
Figure 6: Backward conditionals for two-layer 

backpropagation network. 

Figure 7: 1D grid with agent, goal location and rewards. 



regions.  When the goal (location 4, with a reward of 9) is 
reached the trial halts.  This has since been extended to 
larger 2D grids and to other tasks, but its simplicity provides 
a good starting point for exploring neural RL. 

Like neural learning, Sigma’s RL capability is not a 
distinct architectural module.  Instead it is deconstructed in 
terms of a set of conditionals plus learning of distributions 
over rewards, state utilities and action policies.  Neural RL 
in Sigma is much like this – Figure 8 – with similar 
conditionals and learning of the same quantities.  For 
example, the rightward arrow at the bottom of the figure 
indicates a conditional with a transition function (i.e., an 
action model) that predicts the location resulting from 
applying an operator, while the leftward arrow(s) at the top 
of the figure show the discounted backward propagation of 
the sum of the projected future utility and the reward for the 
predicted next state to the projected future utility of the 
current state and the policy for the current state and reward. 

Still, there are several key differences implied by the top-
level shift from distributional to neural learning that go 
beyond simply which form of learning is used.  First, 
because backpropagation is used, there is a forward-
backward arc of unidirectional conditionals (with functions) 
– as in Figure 4 – for each quantity to be learned, rather than 
a functional predicate or bidirectional conditional.  In Figure 
8, the forward paths are the upward black arrows from the 
location (L) to the reward (R), the projected future utility (P) 
and the policy (Q), whereas the backward paths are the 
downward red arrows back to L from correctness 
calculations (such as R*G	-	R).  The tied functions are shown 
as path-spanning squares.  A single-layer network – i.e., 
logistic regression – is used here due to the simplicity of the 
problem, but this can easily be extended to multiple layers.  

Second, because neural learning structurally distinguishes 
input from output in the network, implying an asymmetry 
that need not exist in distributional learning, the arguments 
for these quantities must appear in different predicates.  
Semantically, distributions may be symmetric, as when they 
are joint, or they may be asymmetric, as when conditional; 
but both can appear identically in a graphical model.  In 
distributional RL, conditional distributions are learned, but 
single symmetric predicates – such as Reward(x:x, 
value:r) – are used.  For neural RL this must be split in 
two, to yield Location(x:x) and Reward(value:r),	
as	shown	by	L	and	R	in	the	figure.   

Third, instead of learning a distribution over all possible 
output values, with sums (of rewards and projected future 
utilities) and products (by discount factors) computed by 
affine transforms, in neural learning a single value is 
learned, with sums resulting from adding the effects of 
multiple actions (top-right of Figure 8) and products from 
multiplying the effects of multiple conditions (d at top of the 
figure).  For example, in the distributional case the domain 
of the value argument for Reward includes all possible 
rewards, and the function over this and x is the conditional 
distribution over the value given the location.  Summing 
two such values occurs by translating the distribution, and 
discounting by scaling it.  In the neural case, there is instead 
only one domain element in the value argument, with the 
function over this element simply the learned reward, and 
computations on this occurring during pattern combination.  
Thus, not only is just a point value learned in the neural 
case, that value is implicit in the range of the learned 
function rather than explicit in the domain of the function, 
and computation with it occurs in a rather different manner. 

Fourth, because with distributional learning the arguments 
all exist within one predicate, potentially providing a full 
cross-product among their elements, a table is effectively 
acquired from which multiple answers can be extracted 
simultaneously via conditions with appropriate constants 
and variables.  With neural learning, extracting each answer 
requires either running the network once for each input, or 
including a distinct forward network for each possible input 
(but with tied functions across them).  This latter approach 
has been used in neural RL to access in parallel the rewards 
and projected utilities of the current state and the predicted 
next state.  In Figure 8, the separate paths for the next state 
are shown to the right, with function coloring indicating 
tying to the corresponding functions in the current path. 

Despite these differences, Figure 9 shows that the point 
values learned for the neural policy are still appropriate, 
with rightward movement preferred when to the left of the 
goal location and leftward movement when to its right.  This 
policy is averaged over ten runs of 500 trials each, with each 
trial starting at location 1 or 6, and all ending at location 4. 

Two other things are also worth noting from this simple 
neural RL experiment, which included an equivalent trial 

Figure 8: Diagram of neural RL in Sigma. 

Figure 9: Policy (Q) function learned via neural RL. 



sequence for the distributional version.  First, The neural 
version was approximately five times faster than the 
distributional one in terms of time per decision – 12 versus 
62 ms/D – largely due to the smaller functions and messages 
possible when not using full distributions.  Second, both 
versions learn models of their actions distributionally – in 
terms of a conditional probability distribution over the next 
location given the current location and action – while 
engaged in RL.  The neural case thus illustrates the ease 
with which neural and distributional learning can combine 
in Sigma across subproblems in the same overall problem. 

Conclusion 
Building upon Sigma’s feedforward neural-network 
inference capability and its distributed vector learning 
capability, two forms of neural network learning – target 
propagation and backpropagation – have been implemented 
via a combination of extensions to existing architectural 
mechanisms and knowledge expressed as predicates and 
conditionals.  In both variations, the backward propagation 
of information occurs through message passing in Sigma’s 
graphical architecture rather than via special purpose 
mechanisms; and in backpropagation, the initial error 
computation occurs via a form of appraisal. 

For backpropagation we get results of comparable quality 
to, but slower than, a standard package; and we see the 
possibility of combining it with other capabilities, such as 
reinforcement learning and probabilistic action modeling. 
Neural network inference and learning are thus now 
becoming pervasively available within Sigma’s central 
cognitive cycle, a major step toward a full neural-symbolic 
architecture that is based on a functionally elegant bridge to 
the biological band.  In addition, although somewhat of a 
side point here, these extensions enable Sigma to perform 
discriminative learning over point values in general, 
whether for use in neural learning or not, to complement the 
existing ability of generative learning over full distributions. 

Future work includes extension to the full power of deep 
learning and the handling of temporal sequences via 
techniques such as LSTMs (Hochreiter & Schmidhuber, 
1997).  Also planned is further optimization and integrations 
of neural networks with other critical cognitive capabilities. 
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