
Toward a Neural-Symbolic Sigma: Introducing Neural Network Learning

Paul S. Rosenblooma,b (Rosenbloom@USC.Edu), Abram Demskia,b (ADemski@ICT.USC.Edu), Volkan
Ustuna (Ustun@ICT.USC.Edu)

aInstitute for Creative Technologies & bDepartment of Computer Science, University of Southern California
12015 Waterfront Dr., Playa Vista, CA 90094 USA

Abstract

Building on earlier work extending Sigma’s mixed (symbols
+ probabilities) graphical band to inference in feedforward
neural networks, two forms of neural network learning –
target propagation and backpropagation – are introduced,
bringing Sigma closer to a full neural-symbolic architecture.
Adapting Sigma’s reinforcement learning (RL) capability to
use neural networks in policy learning then yields a hybrid
form of neural RL with probabilistic action modeling.

Keywords: cognitive architecture; neural-symbolic; neural
networks; learning; reinforcement learning

Introduction
One of the greatest overall challenges in cognitive modeling
is developing cognitive architectures that bridge the
biological and cognitive bands – spanning, respectively, 100
µs - 10 ms and 100 ms - 10 s – from Newell’s (1990)
analysis of the time scales of human action. The boundary
between these bands sits somewhere in the region of 10-100
ms and conventionally divides symbolic from subsymbolic
behavior, although the relationship between them may be in
reality both subtler and more complex.

One approach to this challenge provides distinct
mechanisms for the two bands that can cooperate in
prescribed ways (Sun, 2016); a second seeks the emergence
of cognitive mechanisms from biological ones (Eliasmith,
2013); and a third replaces components of existing cognitive
architectures with neural models that yield similar results
(Cho, Rosenbloom & Dolan, 1991; Jilk et al., 2008).

The approach taken in Sigma (Rosenbloom, Demski, &
Ustun, 2016a) has been to generalize the notion of a
biological band to that of a graphical band – which in
Sigma is based on factor graphs, a general form of
graphical model, plus the summary product message-
passing algorithm (Kschischang, Frey & Loeliger, 2001) –
that then implements the cognitive band. Recently it was
discovered, however, that with one simple enhancement to
this graphical band it was possible to include feedforward
neural networks, without yet learning, among the graphs
supported (Rosenbloom, Demski & Ustun, 2016b). This
inspired a rethinking of Sigma’s graphical band to a broader
graphical notion within which factor graphs became just one
particularly useful specialization and neural networks
another. It also raised the possibility of a broader variation
on the third approach mentioned above.

This preliminary work is extended here to weight learning
in feedforward neural networks. A general form of
parameter learning, via gradient descent on factor functions,
was first implemented in Sigma for probability distributions

(Rosenbloom et al., 2013) and then later extended to
distributed vectors (Ustun et al., 2014). These are both
forms of generative learning that learn patterns of
coactivation across variables, much as in Hebbian learning.

Starting with this approach for distributed vectors, a
variant of target propagation (Lee et al., 2015) has been
implemented in Sigma via normal undirected (bidirectional)
factor graphs, by backward propagating target values for the
units’ outputs, and discriminatively learning weights from
differences between target and actual outputs. However,
issues with this approach led us also to implement
backpropagation, the standard discriminative approach to
neural learning (Rumelhart, Hinton & Williams, 1986), that
is based instead on a unidirectional forward-backward arc.

Both of these approaches reuse Sigma’s message passing
for backward propagation and its gradient descent for
parameter learning. Backpropagation also leverages a
variant of affective appraisal (Rosenbloom, Gratch &
Ustun, 2015) to compute the error needed to initiate the
backward pass. The net result is functionally elegant neural
learning that is largely based on new combinations of
existing mechanisms rather than on new modules cut from
whole cloth. By extending Sigma’s graphical band in this
way, neural networks are potentially usable wherever factor
graphs already were used, including in long-term memory,
perception and learning. When combined with the earlier
work on distributed vectors, a general neural-symbolic
architecture begins to emerge that may, among other things,
provide principled architectural guidance in how to combine
deep learning (Goodfellow, Bengio, & Courville, 2016)
with other critical cognitive capabilities.

The core result in this article thus concerns the relatively
abstract yet fundamental problem of building a functionally
elegant bridge from a cognitive architecture to the biological
band rather than specific matches to human data. In service
of this, after a review of Sigma and its earlier extension to
feedforward neural networks, we will introduce neural-
network learning in Sigma, followed by experiments with
classification and regression networks, and the leveraging
of such networks in neural reinforcement learning.

Sigma and Feedforward Neural Networks
Sigma is composed of two distinct architectures, one for the
cognitive band and one for the graphical band. In the
cognitive architecture, knowledge is based on predicates for
specifying relations over typed – numeric (discrete or
continuous) or symbolic – arguments; and conditionals for
specifying patterns over combinations of predicates.
Functions may be included in predicates to provide

distributions over their arguments, and in conditionals to
provide distributions over combinations of their variables.

A segment of working memory exists for each predicate,
as does also a segment of long-term memory if there is a
predicate function. An additional segment of long-term
memory is also created for each conditional. A pattern in a
conditional may be a condition, which acts like a rule
condition by matching to working memory; an action,
which acts like a rule action by changing working memory;
or a condact, which combines the effects of a condition and
an action to yield bidirectional constraints on the contents of
working memory. Procedural memory is largely based on
conditions and actions – i.e., rules – and declarative memory
on condacts. Decisions are made by selecting values from
predicate arguments based on distributions over them.

Figure 1, for example, displays two conditionals – each
effectively a (non-symbolic) rule with an associated weight
function – that together implement the two-layer neural
network in Figure 2. All argument types here are discrete
numeric, but with three elements for Input and two each
for Hidden and Output. The single argument (arg) in
each pattern is specified here by variables – i, h, and o –
with the function in each conditional being defined over its
pair of variables. The s in the conditionals’ actions denotes
that a sigmoid/logistic function is to be applied before
working memory is changed (other possibilities include r
for RELU, t for tanh, e for exponential, and x for softmax).
The one modification required to make this work in Sigma
was extending to these functions its existing ability to
include non-linear transformations in conditional patterns.

This particular way of encoding a neural network in
Sigma involves one conditional per layer, with the structure
of the layers implicit in the argument types and conditional
functions. Although it is also possible to encode such
networks via one conditional per link, with one element per
type and a single weight per function, here the focus is on
the more concise representation illustrated in Figure 1.

Sigma’s compiler converts knowledge specified in its
cognitive architecture into undirected bipartite graphs of
variable and factor nodes – essentially factor graphs – in the
graphical architecture. Functions are stored in factor
nodes. Processing occurs via message passing – essentially
the summary product algorithm – with each message
encoding a distribution over the variables in the variable
node on the link. Incoming messages are pointwise
multiplied together at nodes, along with the node function at
factor nodes, and then variables not needed in outgoing

messages are summarized out, typically via either integral
or maximum. For conditions and actions, messages are
passed in only one direction, from working memory for
conditions and towards working memory for actions,
whereas condact message passing is bidirectional. Learning
occurs by gradient descent at factor nodes, with gradients
based on messages arriving from adjacent variable nodes.

Target Propagation
With target propagation, targets – that is, desired values –
rather than errors are propagated backward over the
network, with errors then computed locally at factor nodes
based on subtracting computed outputs from desired
outputs. To support this, the unidirectional rules in Figure 1
are converted to bidirectional constraints, with conditions
and actions becoming condacts, as shown in Figure 3.

The weights in the functions are initialized randomly, and
then learned online from training examples. The Neural
attribute in the conditionals specifies that local
discriminative learning is to be used here, with the gradient
based on subtracting the output message for the specified
variable (i.e., its computed value) from its input message
(i.e., its desired/target value). Learning from this error-
based gradient then follows the simplified additive form
earlier developed for distributed vectors rather than the
more complex form originally developed for distributions.

Starting with the targets for the network’s output units,
computing the targets and gradients for interior units

CONDITIONAL C-Layer1-TP
Condacts: (Input arg:i)
 (Hidden s arg:h)
Neural:h
Function<i,h>: <Random in [-.1,.1]>

CONDITIONAL C-Layer2-TP
Condacts: (Hidden arg:h)
 (Output s arg:o)
Neural:o
Function<h,o>: <Random in [-.1,.1]>

Figure 3: Target propagation conditionals for two-layer

weight learning.

Figure 2: Two-layer neural network (adapted from
http://www.doc.ic.ac.uk/~sgc/teaching/pre2012/v231/lecture13.html).

CONDITIONAL C-Layer1
Conditions: (Input arg:i)
Actions: (Hidden s arg:h)
Function<i,h>: .2:<0,0>, .7:<0,1>, …

CONDITIONAL C-Layer2
Conditions: (Hidden arg:h)
Actions: (Output s arg:o)
Function<h,o>: 1.1:<0,0>, 3.1:<0,1>, …

Figure 1: Conditionals for the network in Figure 2.

leverages the bidirectionality of condacts to send messages
backward in the graph. However, in contrast to backward
messages in normal factor graphs, proper processing of
these messages requires that the functions be inverted at
factor nodes. This is straightforward for the logistic
function, as its inverse is simply the logit function: log(x/[1-
x]). However, this does raise a deeper problem, in that the
domain of this function is (0,1), whereas there is no
guarantee that a target – particularly one generated inside
the network – will fall in this range. To work around this,
backward messages at these nodes are truncated to [ε,1-ε].

A second problem arises at the factor nodes where the
learned weight functions must be inverted. Rather than
attempting to do this analytically, inversion is approximated
empirically by gradient descent over the node’s backward
output. In particular, the product of the output error and the
weight function is multiplied by a pseudo-learning rate (.05)
and then added to the forward input message to yield the
backward output message.

Aside from the nonstandard approach to computing
backward messages, the result is a form of target
propagation that otherwise fits cleanly into normal factor
graphs, including respecting the constraint that all messages
over a link are distributions over the link’s variables.

Backpropagation
With backpropagation, a difference is computed only once,
for the network’s output units, and propagated backward
successively from there. Sigma already supports an
architectural desirability appraisal that calculates differences
between distributions over goals and their associated states,
and which is used in both guiding problem solving and
directing attention. What is needed for backpropagation is
an analogous correctness appraisal that operates over point
values rather than distributions. The error is then simply the
difference between the output predicate’s specified
target/goal and its computed value/state.

Unlike with target propagation, however, the error cannot
just be propagated backward over a bidirectional network,
as that would violate the constraint that all of the messages
on a link should be distributions over the values of the link’s
variables. In the forward direction the messages are
(unnormalized) distributions – effectively activations – over
variables, each of which corresponds to the set of units at
one layer of the network. Sending errors backward over
these same links would be invalidly inhomogeneous.

Instead, what has been done is to complement each
unidirectional forward network with a unidirectional
backward network over which errors are sent, with the
appraisal at the end of the forward network serving as the
nexus connecting it to the backward network. Figure 4
shows an abstract graph for how this all works.

The left (green) path is the forward one, stretching from
the perceptual buffer for the Input predicate up through
two layers of weights to the Output predicate. The
squares are factor nodes, where the weight functions are
stored, whereas the circles are variable nodes. The two

sigmoid transformations occur at additional factor nodes
that are abstracted away in this figure. The output of the
forward path joins with the target values for the outputs at
the appraisal of correctness.

Figure 5 shows the
forward conditionals
for this. They are like
those in Figure 1 in
having conditions and
actions, and like those
in Figure 3 in using
random initial
weights, but they
replace the Neural
attribute with the
Vector attribute to
signal that distributed-
vector gradients
should be used in
learning without target
propagation’s
gradient-based
approach to backward
message passing.

The right (red) path
in Figure 4 is the
backward one. It
includes its own factor and variable nodes, but with crucial
linkages added to the forward path. The sigmoid nodes are
also abstracted away here, but in the network compute the
derivative of the logistic – x(1-x) – rather than its inverse.

Figure 6 shows the corresponding backward conditionals.
In general, backward predicates – such as Hidden*Back –
are introduced that correspond to the forward ones, and
conditions are swapped with actions. However, there are
slight variations for the first and last layers. In the first
layer, the backward propagation of information can stop at
the weight function, rather than going all of the way back to
the input units, so there is no action in C-Layer1-B. In
the last layer, backward propagation starts with the appraisal
for the Output predicate – Output*Error – so the error
is used directly rather than a new backward predicate.

Learning occurs based on messages arriving at the factor
nodes in the backward path, but the functions in these nodes
are tied to those in the forward path – shown by the yellow

CONDITIONAL C-Layer1
Conditions: (Input arg:i)
Actions: (Hidden s arg:h)
Function<i,h>: <Random in [-.1,.1]>
Vector: T

CONDITIONAL C-Layer2
Conditions: (Hidden arg:h)
Actions: (Output s arg:o)
Function<h,o>: <Random in [-.1,.1]>
Vector: T

Figure 5: Forward conditionals for two-layer

backpropagation network.

Figure 4: Structure of
backpropagation for a two-layer

network.

ellipses in Figure 4 – so that any changes made to the
former are directly reflected in the latter. This is enabled by
the Forward-Conditional attributes in Figure 6,
which specify the corresponding forward conditionals.

In its simplest form, the gradient in backpropagation is
the product of: (1) the learning rate; (2) the forward message
at the weight function; (3) the output difference; and (4) the
derivative of the sigmoid function. The forward message, as
shown by the upward slanting (purple) unidirectional links
from the forward path, is added automatically to the graph
by the conditional compiler given the Forward-
Conditional attribute. The output difference comes
from above in the figure, as derived from the first condition
in a backward conditional. The computation of the
derivative of the sigmoid, although abstracted away in the
graph, arrives at the backward factor node via the downward
slanting (blue) links from the forward path, based on the
second condition in a backward conditional. As with target
propagation, the resulting gradient is handled in the simple
additive manner developed earlier for distributed vectors.

In contrast to target propagation, here the backward
message out of the factor node – that is, the propagated
output difference – is computed simply by message/function
multiplication and summarization, as is standard in factor
graphs. There is one important caveat though. As specified
by the Exclude-Forward-Backward attribute, the
purple message from the forward path is not included in this
product, so the backward output is just the product of the
output difference, the derivative of the sigmoid function and
the weight function in the node. This exception to the
normal rule is motivated by backpropagation, but justified
independently in factor graph terms by the fact that a
message coming into a node on a bidirectional link should
not be used in computing the reverse message on the same
link. Here there are two unidirectional links, but they
effectively comprise a single logical bidirectional path.

Basic Experiments
Regression and classification problems provide two forms
of standard benchmarks for learning with neural networks.
The network in Figure 2, for example, defines a regression
problem, where two functions are to be learned from the

inputs, one for each output. Small experiments with this
network, starting with uniform weights, do show that both
forms of propagation can learn weights in Sigma that yield
outputs like those generated by the network in the figure.
But what is really needed for verification is an investigation
into how Sigma compares with standard packages.

For this, we have compared Sigma with PyBrain, a
Python machine learning library (Schaul et al., 2010), via
three standard machine learning datasets: (1) Iris –
https://archive.ics.uci.edu/ml/datasets/Iris – a classification
problem with 3 classes; (2) Robot Arm –
http://mldata.org/repository/data/viewslug/uci-20070111-
kin8nm/ – a regression problem that learns to predict the
end effector position for an 8 link robot arm; and (3) MNIST
– http://yann.lecun.com/exdb/mnist/ – a classification
problem over the digits 0-9, based on 28x28 pixel images.
Table 1 shows the static information for these datasets.

Table 1: Input, hidden and output units; training and test
instances; learning rate; and training epochs.

 I H O Train Test λ Ep.
Iris 4 10 3 138 12 .1 100
Robot 8 100 1 6530 838 .01 100
MNIST 784 30 10 10K1 10K .01 50

Our experiments so far with target propagation have not
yet yielded reasonable results on these datasets, most likely
because of the truncation required for the logit. So Table 2
only shows backpropagation results. The first and most
critical result is that Sigma’s accuracy is indistinguishable
from that produced by PyBrain with the same settings.
Second, Sigma is slower, by up to a factor of ~100.
Although a slowdown with a general architecture is not
surprising, it should actually be possible to close this gap
with a more efficient message representation plus SIMD (as
in PyBrain) and GPU hardware. It is also worth note though
that these results are at most a factor of 2 slower than the
human cognitive cycle time of ~50 ms, a factor that can be
relevant when concerned with real-time cognitive models.

Table 2: Accuracy (% correct for Iris and MNIST, RMSE
for Robot Arm); seconds per epoch; and ms per decision.
 Py A. Σ A. Py s/Ep. Σ s/Ep Σ ms/D
Iris .917 .917 .082 .215 2
Robot .173 .173 3.51 54.33 8
MNIST .867 .867 9.8 1029.2 103

Neural Reinforcement Learning
Figure 7 shows a simple 1D grid in which reinforcement
learning (RL) was initially explored in Sigma (Rosenbloom,
2012). The agent can move left or right in locations 1
through 6, with locations 0 and 7 being forbidden boundary

1 Only the first 10K training examples are used for MNIST.

CONDITIONAL C-Layer1-B
Conditions: (Hidden*Back arg:h)
 (Hidden s arg:h)
Forward-Conditional: C-Layer1
Exclude-Forward-Backward T
Vector: T

CONDITIONAL C-Layer2-B
Conditions: (Output*Error arg:o)
 (Output s arg:o)
Actions: (Hidden*Back arg:h)
Forward-Conditional: C-Layer2
Exclude-Forward-Backward T
Vector: T

Figure 6: Backward conditionals for two-layer

backpropagation network.

Figure 7: 1D grid with agent, goal location and rewards.

regions. When the goal (location 4, with a reward of 9) is
reached the trial halts. This has since been extended to
larger 2D grids and to other tasks, but its simplicity provides
a good starting point for exploring neural RL.

Like neural learning, Sigma’s RL capability is not a
distinct architectural module. Instead it is deconstructed in
terms of a set of conditionals plus learning of distributions
over rewards, state utilities and action policies. Neural RL
in Sigma is much like this – Figure 8 – with similar
conditionals and learning of the same quantities. For
example, the rightward arrow at the bottom of the figure
indicates a conditional with a transition function (i.e., an
action model) that predicts the location resulting from
applying an operator, while the leftward arrow(s) at the top
of the figure show the discounted backward propagation of
the sum of the projected future utility and the reward for the
predicted next state to the projected future utility of the
current state and the policy for the current state and reward.

Still, there are several key differences implied by the top-
level shift from distributional to neural learning that go
beyond simply which form of learning is used. First,
because backpropagation is used, there is a forward-
backward arc of unidirectional conditionals (with functions)
– as in Figure 4 – for each quantity to be learned, rather than
a functional predicate or bidirectional conditional. In Figure
8, the forward paths are the upward black arrows from the
location (L) to the reward (R), the projected future utility (P)
and the policy (Q), whereas the backward paths are the
downward red arrows back to L from correctness
calculations (such as R*G	-	R). The tied functions are shown
as path-spanning squares. A single-layer network – i.e.,
logistic regression – is used here due to the simplicity of the
problem, but this can easily be extended to multiple layers.

Second, because neural learning structurally distinguishes
input from output in the network, implying an asymmetry
that need not exist in distributional learning, the arguments
for these quantities must appear in different predicates.
Semantically, distributions may be symmetric, as when they
are joint, or they may be asymmetric, as when conditional;
but both can appear identically in a graphical model. In
distributional RL, conditional distributions are learned, but
single symmetric predicates – such as Reward(x:x,
value:r) – are used. For neural RL this must be split in
two, to yield Location(x:x) and Reward(value:r),	
as	shown	by	L	and	R	in	the	figure.

Third, instead of learning a distribution over all possible
output values, with sums (of rewards and projected future
utilities) and products (by discount factors) computed by
affine transforms, in neural learning a single value is
learned, with sums resulting from adding the effects of
multiple actions (top-right of Figure 8) and products from
multiplying the effects of multiple conditions (d at top of the
figure). For example, in the distributional case the domain
of the value argument for Reward includes all possible
rewards, and the function over this and x is the conditional
distribution over the value given the location. Summing
two such values occurs by translating the distribution, and
discounting by scaling it. In the neural case, there is instead
only one domain element in the value argument, with the
function over this element simply the learned reward, and
computations on this occurring during pattern combination.
Thus, not only is just a point value learned in the neural
case, that value is implicit in the range of the learned
function rather than explicit in the domain of the function,
and computation with it occurs in a rather different manner.

Fourth, because with distributional learning the arguments
all exist within one predicate, potentially providing a full
cross-product among their elements, a table is effectively
acquired from which multiple answers can be extracted
simultaneously via conditions with appropriate constants
and variables. With neural learning, extracting each answer
requires either running the network once for each input, or
including a distinct forward network for each possible input
(but with tied functions across them). This latter approach
has been used in neural RL to access in parallel the rewards
and projected utilities of the current state and the predicted
next state. In Figure 8, the separate paths for the next state
are shown to the right, with function coloring indicating
tying to the corresponding functions in the current path.

Despite these differences, Figure 9 shows that the point
values learned for the neural policy are still appropriate,
with rightward movement preferred when to the left of the
goal location and leftward movement when to its right. This
policy is averaged over ten runs of 500 trials each, with each
trial starting at location 1 or 6, and all ending at location 4.

Two other things are also worth noting from this simple
neural RL experiment, which included an equivalent trial

Figure 8: Diagram of neural RL in Sigma.

Figure 9: Policy (Q) function learned via neural RL.

sequence for the distributional version. First, The neural
version was approximately five times faster than the
distributional one in terms of time per decision – 12 versus
62 ms/D – largely due to the smaller functions and messages
possible when not using full distributions. Second, both
versions learn models of their actions distributionally – in
terms of a conditional probability distribution over the next
location given the current location and action – while
engaged in RL. The neural case thus illustrates the ease
with which neural and distributional learning can combine
in Sigma across subproblems in the same overall problem.

Conclusion
Building upon Sigma’s feedforward neural-network
inference capability and its distributed vector learning
capability, two forms of neural network learning – target
propagation and backpropagation – have been implemented
via a combination of extensions to existing architectural
mechanisms and knowledge expressed as predicates and
conditionals. In both variations, the backward propagation
of information occurs through message passing in Sigma’s
graphical architecture rather than via special purpose
mechanisms; and in backpropagation, the initial error
computation occurs via a form of appraisal.

For backpropagation we get results of comparable quality
to, but slower than, a standard package; and we see the
possibility of combining it with other capabilities, such as
reinforcement learning and probabilistic action modeling.
Neural network inference and learning are thus now
becoming pervasively available within Sigma’s central
cognitive cycle, a major step toward a full neural-symbolic
architecture that is based on a functionally elegant bridge to
the biological band. In addition, although somewhat of a
side point here, these extensions enable Sigma to perform
discriminative learning over point values in general,
whether for use in neural learning or not, to complement the
existing ability of generative learning over full distributions.

Future work includes extension to the full power of deep
learning and the handling of temporal sequences via
techniques such as LSTMs (Hochreiter & Schmidhuber,
1997). Also planned is further optimization and integrations
of neural networks with other critical cognitive capabilities.

Acknowledgments
The work described in this article was sponsored by the U.S.
Army. Statements and opinions expressed may not reflect
the position or policy of the United States Government, and
no official endorsement should be inferred. We would also
like to thank Sruthi Madapoosi Ravi for significant help
with the regression and classification experiments.

References
Cho, B., Rosenbloom, P. S. & Dolan, C. P. (1991). Neuro-

Soar: A neural-network architecture for goal-oriented
behavior. Proceedings of the 13th Annual Conference of
the Cognitive Science Society (pp. 673-677).

Eliasmith, C. (2013). How to Build a Brain. Oxford: Oxford
University Press.

Goodfellow, I., Bengio, Y. & Courville, A. (2016). Deep
Learning. Cambridge, MA: MIT Press.

Hochreiter, S. & Schmidhuber, J. (1997). Long short-term
memory. Neural Computation, 9, 1735–1780.

Jilk, D. J., Lebiere, C., O'Reilly, R. C. and Anderson, J. R.
(2008). SAL: an explicitly pluralistic cognitive
architecture. Journal of Experimental & Theoretical
Artificial Intelligence, 20, 197-218

Kschischang, F. R., Frey, B. J. & Loeliger, H.-A. (2001).
Factor graphs and the sum-product algorithm. IEEE
Transactions on Information Theory. 47, 498-519.

Lee, D.-H., Zhang, S., Fischer, A., & Bengio, Y. (2015).
Difference target propagation. In A. Appice, P. P.
Rodrigues, V. S. Costa, C. Soares, J. Gama & A. Jorge
(Eds.), Machine Learning and Knowledge Discovery in
Databases: European Conference, ECML PKDD 2015.
Switzerland: Springer International Publishing.

Newell, A. (1990). Unified Theories of Cognition.
Cambridge, MA: Harvard University Press.

Rosenbloom, P. S. (2012). Deconstructing reinforcement
learning in Sigma. Proceedings of the 5th Conference on
Artificial General Intelligence (pp. 262-271).

Rosenbloom, P. S., Demski, A., Han, T., & Ustun, V.
(2013). Learning via gradient descent in Sigma.
Proceedings of the 12th International Conference on
Cognitive Modeling (pp. 35-40).

Rosenbloom, P. S., Demski, A. & Ustun, V. (2016a). The
Sigma cognitive architecture and system: Towards
functionally elegant grand unification. Journal of
Artificial General Intelligence, 7, 1-103.

Rosenbloom, P. S., Demski, A. & Ustun, V. (2016b).
Rethinking Sigma’s graphical architecture: An extension
to neural networks. Proceedings of the 9th Conference on
Artificial General Intelligence (pp. 84-94).

Rosenbloom, P. S., Gratch, J. & Ustun, V. (2015). Towards
emotion in Sigma: From appraisal to attention.
Proceedings of the 8th Conference on Artificial General
Intelligence (pp. 142-151).

Rumelhart, D. E., Hinton, G. E. & Williams, R. J. (1986).
Learning representations by back-propagating errors.
Nature, 323, 533-536.

Schaul, T., Bayer, J., Wierstra, D., Yi, S., Felder, M.,
Sehnke, F., Rückstieß, T. & Schmidhuber, J. (2010).
PyBrain. Journal of Machine Learning Research, 11, 743-
746.

Sun, R. (2016). Anatomy of the Mind: Exploring
Psychological Mechanisms and Processes with the
Clarion Cognitive Architecture. New York, NY: Oxford
University Press.

Ustun, V., Rosenbloom, P. S., Sagae, K., & Demski, A.
(2014). Distributed vector representations of words in the
Sigma cognitive architecture. Proceedings of the 7th
Annual Conference on Artificial General Intelligence (pp.
196-207).

