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Abstract 

This paper applies a cognitive modelling approach to model 
decision making of naïve subjects in virtual emergency 
situations. Virtual environments (VE) can be used as a virtual 
laboratory to investigate human behaviour in simulated 
emergency conditions. Cognitive modelling methodology and 
human performance data from VEs can be used to identify the 
problem solving strategies and decision making processes of 
general personnel in offshore emergency egress situations.  
This paper demonstrates the utility of decision trees as a 
cognitive tool for two main purposes: 1) assessing VE 
training curriculum and 2) predicting human behaviour. To 
show these capabilities, the results of two empirical studies 
are compared using a decision tree induction approach. The 
first experiment investigated the learning and inference 
process of participants trained using a lecture based teaching 
(LBT) approach. The second experiment used another 
pedagogical approach – simulation-based mastery learning 
(SBML). Overall, decision trees were found to be a useful 
method for evaluating the efficacy of VE training, and as a 
basis for predicting individuals’ decision-making 
performance.  
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Introduction 

Offshore oil and gas platforms operate in remote and harsh 

maritime environments. As a result, offshore emergencies 

are complex, dynamic, and high-risk situations. Personnel 

responding to these emergencies are faced with uncertainty 

in managing the situation, and major time pressure in safely 

evacuating the platform. Decision making in high-stress 

emergency situations can vary from person to person. This 

variability could be a result, in part, of conventional training 

in which people tend to employ different learning strategies 

and develop their understanding of emergency protocols 

differently (Musharraf et al., 2016). However, individual 

differences and unpredictable responses to emergency 

situations can undermine the emergency response 

operations. Therefore, effective training in emergency 

response and preparedness is critical for ensuring offshore 

safety.  

Virtual environments (VE) can address existing  training 

gaps and augment conventional offshore safety training by 

providing artificial experience that would otherwise be too 

dangerous to practice (Smith et al., 2017). VE technology 

can allow offshore operators to familiarize personnel with 

the worksite and to practice emergency exercises before 

going offshore. However, verification of the VE training 

curriculum is required to confirm it meets the intended 

training purposes.  

Cognitive modelling methodology can be used to inform 

the quality of VE training. Developing a cognitive model of 

human behaviour in these virtual emergency situations can 

provide valuable insight with regards to improving offshore 

safety systems and training programs. The VE allows 

researchers to observe how humans use information to 

accomplish specific tasks (Musharraf et al., 2016; Roth et 

al., 1992). Cognitive modelling methodology and human 

performance data from virtual environments can be used to 

identify the problem solving strategies and decision making 

process (e.g. model the knowledge base and inference 

process) of personnel in offshore emergency situations.  

This paper demonstrates the use of a cognitive modelling 

methodology – decision trees – to evaluate the efficacy of 

VE training. This approach was introduced by Musharraf et 

al. (2016) and is based on two experimental studies that 

investigated the effectiveness of VE training curriculum on 

competence. The model focuses on the decision making 

process of naïve subjects in virtual emergency situations, 

particularly the participants’ route selection strategies. The 

first experiment involved lecture-based teaching (LBT). 

Participants in the experiment showed variability in 

responding to emergency situations. The variability 

manifested itself in many different decision strategies. To 

address this variability and to improve learning outcomes, a 

second experiment was designed, which employed a 

different pedagogical approach called simulation-based 

mastery learning (SBML) (McGaghie et al., 2014). 

Subsequently, the in-simulation performance of participants 

from both studies was compared using decision trees.  

The paper describes the theoretical framework, data 

collection process, and how the knowledge bases were 

created. Further, it explains the algorithm that runs the 



 

inference engine to produce the decision trees. A process for 

testing the prediction accuracy of the decision trees is also 

described.  

Theoretical Background 

Cognitive Functions 

Four major cognitive functions are performed by personnel 

in emergency egress situations: perception, interpretation, 

decision making, and execution. For example, in an 

emergency, personnel hear an alarm and are required to 

muster at their designated muster or lifeboat stations by 

following a safe egress route. These cognitive functions are 

repeated based on the personnel’s situational awareness and 

whether they encounter hazards or obstructed routes.  

 Perception – perceive audio-visual cues from the 

environment. 

 Interpretation – analyze the perceived cues and 

infer what the alarm and public address (PA) mean 

(i.e. which route is obstructed, where to muster). 

 Decision Making – assess different potential egress 

routes and choose the safest path.  

 Execution – follow egress route until designated 

muster or lifeboat station is reached. 
 

Learning and Inference 

This paper investigates how people develop and use 

different problem solving strategies, specifically route 

choices, given their VE training. This is modeled by a 

knowledge base and an inference engine. In the model, all 

the knowledge gained from training and experience in the 

VE is stored in a knowledge base. The content of the 

knowledge base is then used by the inference engine to 

develop a human reasoning structure. Figure 1 shows the 

inference process.  
 

 
 

Figure 1: Knowledge Base and Inference Engine 

 

Knowledge in the knowledge base is represented using a 

matrix of training examples. Scenarios are represented by 

S1, S2,…, Sn. Attributes of the scenario are represented by 

A1, A2,…, An.  Actions taken are represented by E1, E2,…, 

En. The values of the attributes are represented by Vij, where 

the value represents the j
th

 value of the i
th

 attribute. The 

knowledge matrix is used by the inference engine to 

construct a reasoning algorithm. An inductive reasoning 

approach – decision tree – was used in this paper. Decision 

trees were selected based on their visual simplicity and 

diagnostic capabilities. Decision trees can be constructed 

relatively quickly compared to other methods, such as 

artificial neural networks, or support vector machines 

(Duffy, 2009). Another benefit is that they do not require 

any prior assumptions about the data.  

Decision Tree Induction 

The goal of the decision tree induction is to classify the 

content in the knowledge base into groups such that the data 

set in each group belongs to the same class (Badino, 2004). 

The classification is performed based on the value of 

selected attributes. Several attribute selection measures are 

available, including information gain, gain ratio, and Gini 

index. This paper uses the ID3 decision tree algorithm, 

which uses information gain as an attribute selection 

measure (Han et al., 2011). Information gain is calculated 

using the idea of entropy. Given the entropy of a data set S, 

information gain of an attribute A can be calculated using 

equation 1. 
 

Gain (A) = Entropy (S) – Entropy (A)      (1) 
 

Here, Entropy(A) presents the weighted average 

uncertainty of the groups created by classifying the data set 

using attributes (Ai). Details of entropy calculation can be 

found in Han et al. (2011). The decision tree algorithm takes 

two basic inputs: the data set in the knowledge base and the 

list of scenario attributes. During the decision tree induction, 

data are iteratively classified using the attribute that has the 

highest information gain, as highest gain refers to lowest 

uncertainty. The following steps are repeated until no 

attributes are left for classification, or the data set is empty, 

or data in each group belong to the same class and no 

further classification is needed. 

Step 1: For each attribute Ai, compute the value of 

information gain Gain(Ai). 

Step 2: Choose the attribute with the highest gain 

Gain(Ai) and classify remaining data set based on Ai.  
 

More details on the decision tree algorithm can be found 

in Musharraf et al. (2016). 

Experimental Methodology 

Two experiments were conducted: the first focused on 

conventional LBT methodology and the second focused on 

SBML. Both studies used a VE called the All-hands Virtual 

Emergency Response Trainer (AVERT). This section will 

describe the training, data collection in AVERT, formation 

of the knowledge base, and resulting decision trees.  

AVERT Simulator 

AVERT is a first person perspective VE that was developed 

to train basic offshore safety practices to general personnel – 



 

individuals whose responsibility in an emergency is to 

muster at their designated muster stations (House et al., 

2014). AVERT scenarios involve basic wayfinding, alarm 

drills, and emergency response exercises. AVERT delivers 

training scenarios, tracks in-simulation performance metrics, 

and provides corrective feedback.  

 

LBT was used to train 36 participants in how to 

successfully muster during offshore emergency situations in 

the VE. Participants attended three separate sessions. Each 

session involved a computer based training tutorial, 

followed by four training scenarios, and four testing 

scenarios in AVERT. The content of the tutorials included 

basic offshore emergency preparedness, alarm recognition 

and assessing the emergency situation, and hazard 

avoidance. Participants only received one exposure to each 

scenario and were provided minimal feedback on their 

performance. Details of the study can be found in (Smith et 

al., 2015). Data from 17 of the participants (13 male and 4 

female, with a mean age of 26.8 years, standard deviation of 

5.0 years) were used in this paper for comparison to the 

SBML approach. 

 

SBML was used to train 55 participants in offshore 

emergency egress using the VE. This pedagogical approach 

was used to ensure that participants acquired and 

demonstrated the knowledge and skills necessary before 

advancing to more complex emergency situations. SBML 

involved a series of four training modules. Each module was 

designed to train specific learning objectives and gradually 

taught participants the platform layout, how to recognize 

alarms, what to do in the event of blocked routes, as well as 

how to assess the situation and avoid hazards while 

evacuating the platform. As part of the SBML training, 

participants were required to achieve demonstrated 

competence in all training and testing scenarios. The 

participants were tested repeatedly on their competence over 

the course of the training modules. They received detailed 

feedback on their performance after each attempt of a 

scenario. To achieve demonstrated competence, some 

participants required multiple attempts at the scenarios. 

Details of the study can be found in (Smith et al., 2017). 

Data from 15 randomly selected participants (12 male and 3 

female, with a mean age of 25.6 years, standard deviation of 

8.0 years) were used for comparison. 

Data Collection and Modelling 

Two training modules were the focus of the decision tree 

analysis: the ‘Alarm Recognition’ and ‘Assessing Situation’ 

modules. In both the LBT and SBML approaches, 

participants had to perform in twelve scenarios. The training 

scenarios differed between the training approaches as the 

SBML training provided more in-simulation instruction and 

feedback. However, the testing scenarios were the same for 

both training approaches. A subset of scenarios was used to 

populate the knowledge base (8 and 9 scenarios for the LBT 

and SBML training, respectively). Half of the scenarios 

were used to generate the knowledge base for the ‘Alarm 

Recognition’ module (denoted KB1) and the remaining 

scenarios were added to the knowledge base for the ‘Assess 

Situation’ module (denoted KB2). Two test scenarios were 

used to test the prediction capabilities of the decision trees 

(scenarios T1 and T2). 

 

Knowledge Matrix Following rule based methodology, a 

knowledge matrix was created using the data from the 

participant’s performance in the training scenarios. Data to 

populate the knowledge matrix was collected from the 

AVERT report files generated for each scenario and from 

observations logged in-situ. Table 1 lists the attributes 

varied for each scenario and their possible values.  
 

Table 1: Possible values for each attribute. 
 

Attribute Possible Values 

Final destination Muster, Lifeboat 

Alarm type None, GPA, PAPA 

Hazard presence No, Yes 

Route directed by PA None, 1st, 2nd 

Obstructed route None, 1st, 2nd 

Previous route selected 1st, 2nd 

 

Scenario Frames Participants were required to complete a 

series of scenarios of varying complexity. Basic scenarios 

involved participants practicing their egress routes and 

muster procedures. More complex emergency scenarios 

were dynamic in the sense that the value of some attributes 

changed during the scenarios. To capture the dynamic 

aspect, these scenarios were split into two or more frames. 

Figure 2 shows an example of two frames for a training 

scenario (S9) and how the knowledge matrix is updated 

based on the change in attributes of the scenario.  
 

 
 

Figure 2: Example of scenario frames F1 and F2 for S9. 

 

Table 2 shows the state of the knowledge base for a sample 

participant in the SBML program after finishing all training 

modules. Each row in the knowledge base contains the 

values of different attributes for the scenario and the 

corresponding action. For both studies, the participants’ 

perceived scenario attributes and corresponding actions for 



 

Table 2: Knowledge matrix for alarm recognition (KB1) and assessment emergency (KB1 and KB2) training modules. 
 

Category Scenario 
Attributes Actions 

End Point Alarm Route by PA Hazard Blocked Route Previous Route  

 

 

 

KB1 

S1 Muster None 1st No None N/A Primary 

S2 (F1) Lifeboat None 1st No None 1st Primary 

S2 (F2) Muster None 2nd No None 1st Secondary 

S3 Lifeboat None None No None 2nd Primary 

S4 Muster GPA None No None 1st Primary 

S5 Muster GPA None No None 1st Primary 

Test 1 T1 Muster GPA 1st No None 1st Primary 

 S6 Lifeboat PAPA 1st No 2nd 1st Primary 

 S7 Lifeboat PAPA 2nd Yes 1st 1st Secondary 

KB2 S8 Lifeboat GPA 2nd Yes 1st 2nd Secondary 

 S9 (F1) Muster GPA 1st Yes 2nd 2nd Primary 

 S9 (F2) Lifeboat PAPA 1st Yes 2nd 2nd Primary 
 
 

each scenario were included as entries in the knowledge 

base. Because the SBML training required participants to 

reattempt scenarios until they correctly completed the task, 

only successful route strategies were stored as entries in the 

knowledge matrix. 

 

Decision Trees Decision trees visualize how participants 

formed decisions based on the knowledge matrix. Decision 

trees also provide insights on what attributes had the biggest 

impact on participants’ decision making. Figure 3 shows a 

decision tree based on the knowledge matrix in Table 2.  
 

 
 

Figure 3: Decision tree developed after KB1. 
 

In this case, the participant’s route selection was decided 

based on their understanding of the information from the PA 

announcement. If the PA directed them to a safe route, then 

the participant took that route. If the PA did not provide any 

information regarding the safety of the route options, then 

the participant’s choice defaulted to their primary egress 

route. The tree can subsequently be used to predict 

participants’ choice of route (i.e. primary or secondary) for a 

given future scenario. 
 

Results 

For presentation purposes, the participants’ decision trees 

after module 2 and 4 (‘Alarm Recognition’ and ‘Assess the 

Situation’) of the SBML experiment were developed to see 

how the trees evolved as more training content was added to 

the knowledge base. The different decision trees are 

summarized in Table 3. The detailed decision trees for the 

LBT experiment can be found in Musharraf et al. (2016). 

 

Comparing the Alarm Recognition Decision Tree  

In an emergency situation, the alarm type dictates the final 

muster location. The main learning objective for this module 

was for participants to listen to the alarm and the PA 

announcement and take the safest route available in 

response to the situation. A decision tree for this situation is 

depicted in Figure 3. Eighty percent of participants in the 

SBML study developed the decision tree depicted in Figure 

3 before the test scenario (T1). Forty one percent of 

participants in the LBT study had the same decision tree. 

Twenty percent of SBML and 24% of LBT participants 

based their route decision on alarm type or end point when 

the PA did not provide any route information. In this case, 

the participants interpreted that the general platform alarm 

(GPA) meant taking the primary route, and that the prepare 

to abandon platform alarm (PAPA) meant taking the 

secondary route.  

Comparing the Assess Emergency Situation Tree  

In an emergency situation, it is critical that personnel listen 

to the PA announcement, continually assess their 

surroundings, and follow the safest egress route available. If 

personnel encounter an obstructed route, they must re-route 

in response to the hazardous situation. Building on earlier 

learning objectives, the ‘Assess the Situation’ module 

trained participants how to assess the emergency situation, 

avoid hazards, and follow the safest egress path to the 

designated muster or lifeboat station. 

It was expected that most participants would select the 

safest route based on the information in the PA 

announcement. In the SBML study, 67% of participants 

continued to use the same decision tree, selecting their 

egress route based on PA information (as shown in Table 3).  

In the LBT study, only 24% of participants had the same 



 

Table 3 – Resulting decision trees for 15 SBML participants after finishing training module 2 (S5) and module 4 (S9). 
 

Subject Decision rules until test scenario T1 Decision rules until test scenario T2(F1-F3) 
A02, A06 

A10, A19 

A22, A38 
A44, A45 

A53, A60 

 

 

 

 
Remains the same. 

 

A27 
A33 

A62 

 

 
 

 

 
Remains the same. 

 

A29 

 

 

 
A42 

 

 
 
 

decision tree. Similarly, 20% of the SBML participants 

continued to use the strategy in which the alarm type or end 

point indicated the route choice in the absence of a PA.  

When participants failed to perceive the PA instructions, 

some individuals put emphasis on different attributes to 

make their decision. Some participants followed the alarm 

type and PA, whereas others considered the presence of 

hazards, or route obstructions. Thirteen percent of 

participants in the SBML study demonstrated more complex 

decision trees to manage the emergency conditions. 

Conversely, the remaining participants in the LBT study 

(76%) had more varied behaviours. The following 

summarizes the strategies observed for LBT participants: 

 41% developed complex decision trees that 

incorporated special conditions for the PA 

announcements, alarm type or end points, obstructed 

routes, and hazards. 

 12% selected the same route regardless of the 

emergency conditions. 

 23% appeared lost. Decision trees were not 

developed for these participants as they were unable 

to form a generalization from the knowledge base. 
 

Prediction Accuracy of the Decision Trees 

To determine the accuracy of the decision trees, they were 

used to predict decision making in subsequent scenarios. 

Specially, they were used to predict the participants’ route 

selection in test scenarios (T1 and T2). The predictions were 

compared to the actual routes the participants took in those 

scenarios. The prediction accuracy was calculated based on 

the average number of successful matches between the 

decision tree predicted outcomes and the observed outcomes 

of the participant. Table 4 shows the results for the SBML 



 

study. The decision trees were able to predict the route 

selection of participants with 94% accuracy. 
 

Table 4: Percentage Prediction Accuracy. 
 

Participant No. % Prediction Accuracy 

A02 100 

A06 80 

A10 100 

A19 100 

A22 80 

A27 100 

A29 100 

A33 75 

A38 100 

A42 100 

A44 100 

A45 100 

A53 100 

A60 75 

A62 100 

Average 94 

 

Efficacy of LBT and SBML Training 

Overall, the SBML participants’ behaviours in responding 

to emergencies over the course of their exposure to several 

scenarios gradually converged to a few expected decision 

trees. Conversely, the LBT participants’ behaviours in 

responding to emergencies diverged. At the alarms 

recognition phase, the participants in the SBML study had 2 

different strategies and the participants in the LBT study had 

6 different strategies.  In the advanced emergency phase, the 

SBML participants had 4 different strategies and LBT 

participants had 10 different strategies for assessing the 

emergency conditions and safely evacuating the platform. 

All of the observed route strategies for the SBML 

participants led to the successful completion of the test 

emergency scenario. 

Many of the LBT participants had a poor understanding 

of the egress procedures and were overall less compliant 

with rules. In general, participants in the LBT study put 

more weight on attributes that were not necessarily useful in 

making egress decisions. The variability and incorrect 

behaviours modeled in the decision trees by the LBT 

training show that this form of training was inadequate for 

preparing participants for emergency conditions. The SBML 

training resulted in higher safety compliance and more 

concise decision trees. This suggests that participants from 

SBML training were better equipped for managing the 

emergency scenarios. It is likely that these positive results 

are because the SBML study placed more emphasis on 

training participants to pay attention to the PA and act 

according to the directions of the PA. It may also be due to 

the fact that the SBML participants were required to practice 

the task until competence was demonstrated. The results of 

this study show that SBML training resulted in decision 

trees that better reflect competence and reduced variance in 

safety compliance in comparison to the LBT training. 

Conclusion 

Modelling human behaviour in emergency conditions can be 

difficult. The paper outlined a cognitive modeling approach 

that is suitable for modeling decision making and predicting 

human response in virtual emergency scenarios. The 

decision tree modeling approach was shown to be 

appropriate for assessing the training efficacy of two 

different training programs: lecture based training (LBT) 

and simulation based mastery learning training (SBML). 

The visual representation of the participants’ strategies in 

emergency situations was useful in identifying the strengths 

and weaknesses of the training methods. Decision tree 

modelling could help inform the design and assessment of 

future VE training curriculum and predict the performance 

of general personnel in emergency situations.  
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