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Abstract 

We present an extension of a schema-based architecture for 
action selection, where competition between schemas is 
resolved using a variation of a neuroanatomically detailed 
model of the basal ganglia. The extended model implements 
distinct learning mechanisms for cortical schemas and for 
units within the basal ganglia. We demonstrate the 
functionality of the proposed mechanisms by applying the 
model to two classic neuropsychological tasks, the Wisconsin 
Card Sorting Task (WCST) and the Probabilistic Reversal 
Learning Task (PRLT). We discuss how the model captures 
existing behavioural data in neurologically healthy subjects 
and PD patients and how to overcome its shortcomings.  

Keywords: schema theory; basal ganglia; Wisconsin Card 
Sorting Test, Probabilistic Reversal Task 

Introduction 
Schema theory is a framework based on the idea that 
behaviour in many areas depends on abstractions over 
instances, i.e., schemas. In these abstract terms, schema 
theory is very general and has been applied to different 
domains such as memory and motor control. Norman and 
Shallice (1980) applied the theory in the domain of routine 
sequential action. Their theory proposes that action schemas 
work in a cooperative or sequential fashion, but also that 
they compete with each other for activation. 

While schema theory is helpful in representing functional 
interactions in the action-perception cycle, it is not 
committed to a specific neural implementation. However, at 
the neural level the basal ganglia have been proposed as a 
candidate for resolving competition between schemas in 
order to carry out action selection (Redgrave et al., 2001). In 
part this is because of their recurrent connections with the 
cortex. 

In the first part of the paper we present a schema-theoretic 
model of action selection where competition between motor 
and/or cognitive schemas is resolved using a variation of a 
neuroanatomically detailed model of the basal ganglia. We 
assume that schemas are cortically represented but that 
schema selection (i.e., selecting one from a set of competing 
schemas) is facilitated by the basal ganglia. The latter 
receive multiple signals from the cortex but they are 
presumably ‘content-free’. In other words, unlike their 
corresponding cortical structures, they are not directly 
related to the stimulus features. Following the description of 
the model we propose how learning may occur in the model 
subsequent to reward, introducing two parameters that drive 

separate learning mechanisms. Then, we proceed to present 
two examples of the model applied to two tasks: Wisconsin 
Card Sorting Task (WCST) and a variant of the 
Probabilistic Reversal Learning Task (PRLTv). We discuss 
computational results, the model fit with existing empirical 
data, and experiments that could further validate the model. 

The Extended Schema-Theory Model 
At a general level, the model can be understood as two 
systems or layers of computational units that feed signals to 
each other – a cortical system and a basal ganglia system. 
Each unit within the cortical system corresponds to to a 
schema, and represent a meaningful action or thought. 
Cortical units are connected with other cortical units and to 
the basal ganglia (BG) units (Fig. 1). These BG units take 
input from all cortical units at the same level of abstraction, 
generate an output signal, and feed it back to the same 
cortical units. The BG units serve to resolve competition 
between same-level schemas via the feedback loop between 
cortical and BG layers. Below, we will introduce two 
applications of the model – to the Wisconsin Card Sorting 
Test (WCST), which makes use of two distinct sets of 
schemas (cognitive and motor schemas) each with their own 
BG layer, and to a variation of the Probabilistic Reversal 
Learning task (PRLTv), which makes use of motor schemas 
only. First we describe the general model more fully. 

Computation 
Computation is carried out in both the cortical units and in 
the five nuclei which make up the basal ganglia (Fig. 2; for 
a complete description of the basal ganglia functional units 
see Alexander, 1990) according to the equations given 
below. In all cases, ui represents the entry signal to the unit, 
ai is the result of integration along the time domain, and oi 
represents the output of the unit. The function σ computes 
the sigmoid function of the input, ensuring output values are 
bounded between 0 and 1. Sigmoid functions have a fixed 
slope but variable threshold. Varying the threshold of 
cortical or striatal units alters the way competition between 
units is carried out, and can be considered a function of 
phasic dopamine present in the circuit.1  

                                                             
1 In a separate simulation it has been shown that the level of 

external dopamine from the substantia nigra pars compacta (SNpc) 
unit can be simulated by varying the threshold of the saturation 
curve in the striatum (βsma), without making use of an additional 
unit. 



Action selection is not the product of higher order 
schemas alone. Environmental features directly excite lower 
order schemas and can lead to selection of those schemas in 
the absence of higher order control. An excessive ratio or 
difference between bottom-up and top-down excitation of 
the lower-level schemas produces behaviours akin to those 
seen in some frontal patients (Cooper & Shallice, 2000).  
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Cortical and Basal Learning Mechanisms 
The general model includes weighted connections from 
cortical schema units to basal ganglia units, and weighted 
connections from basal ganglia units back to cortical units. 
We assume that the weights are learned by separate reward-
based mechanisms (for reasons given below). When the 
system is provided with positive (ri = +1) or negative (ri = 
−1) feedback after a response, two separate mechanisms 
control how the system adapts to new stimuli. We assume 
the following teaching signals are produced by rewards and 
activations: 
 

𝑅! = 𝑟! − 𝑎!  (1) 

𝑆!  =  𝑟! − 2!!!!! ∙ 𝑟!

!!!

! ! !

 
(2) 

In Eq. 1 𝑟! represents the reward assigned to the ith schema 
and 𝑎!  represents the activation of the ith schema, t 
represents the trial and T is the total number of trials. Eq. 2 
encodes the ‘surprise’ of the reward and assigns a greater 
value to the most recent trials, effectively implementing a 
form of ‘memory’. 

The teaching signals produce a variation in the threshold 
of the schema and basal ganglia unit saturation curves, βctx 
and βstr, respectively, as given by Eq. 4 and 5. Uniformly 
distributed noise ζ in the range [-0.1,0.1] is also added to 
prevent deadlock.  

        
Figure 1: Schematic of the basal ganglia. Legend: Cortex-
Thalamic complex (CTX-THAL), Striatum (STR), 
Subthalamic nucleus (STN), Globus Pallidus 
Internal/External Segment (GPi and GPe) 
 
 

 
Figure 2: Schematic of the subunits that compose the basal 
ganglia. Legend: Cortex-Thalamic complex (CTX-THAL), 
Striatum (STR), Subthalamic nucleus (STN), Globus 
Pallidus Internal/External Segment (GPi and GPe) 

 



𝛽!"#,! ⟻  𝜂!(𝛽!"#,! − 𝜖!"#𝑅!  +  𝜁) (4) 

𝛽!"#,! ⟻  𝜂!(𝛽!"#,! − 𝜖!"#𝑆!  +  𝜁) (5) 
 
 

𝜂! 𝑥 =
 1, 𝑥 >  1
𝑥, 0 < 𝑥 < 1
0, 𝑥 <  0

 
(6) 

  
The left arrow indicates assignment2. Eq. 4 describes the 
change of threshold of the saturation curve of BG units 
following reward. Decreasing 𝛽!"# augments the probability 
of the ith schema being selected. Eq. 5 describes the change 
of threshold of the saturation curve of cortical units 
following reward. Unlike Eq. 4, the value of the 𝛽!"# is 
centred around 𝛽!"#,! (set to 0.5 in all simulations). Eq. 6 is 
a limiting function which ensures that the thresholds remain 
within range.  

Overall, this set of equations attempts to capture the 
division of labour between cortical structures and the basal 
ganglia. The two distinct learning signals that drive the 
overall model behaviour represent the direct (mesocortical, 
through the ventral tegmental area) and indirect 
(nigrostriatal, from the substantia nigra pars compacta) 
influence of dopamine to the task representation in the 
frontal circuits. Both equations are a function of reward, but 
while Eq. 4 slowly alters the probability of a channel to 
being selected, Eq. 5 energises schemas when surprise (the 
difference between expected and given reward) is high and 
therefore promotes fast dishabituation. Cognitive control 
emerges from the interaction between the two mechanisms 

Theoretical Commitments 
The core theoretical commitments of the model are the 
presence of cortical schemas, the presence of the basal 
ganglia that act as a content-free action selection device, and 
two different learning mechanisms for cortical schemas and 
the basal ganglia. Provided that the learning functions are 
both based on reward, the analytical form of the functions 
constitute peripheral hypotheses. Other peripheral 
hypotheses include the value of the threshold above which a 
schema is considered selected and the task-dependent 
number of schemas. The model can also be extended to 
accommodate other kinds of computation, such as that 
carried out in the cerebellum.  

Model Applied to the WCST 

Task and model description 
In the Wisconsin Card Sorting Task (WCST), participants 
are required to sort a series of cards into four categories 
based on binary (i.e., correct/incorrect) feedback (Heaton, 
1981). Each card shows one, two, three or four shapes, 

                                                             
2 In assignment the value at the current trial is equal to a   

function of the same variable in the previous trial. Initial values are 
0.5 plus a minimal amount of noise to randomise the first response. 

printed in one of four colours, and there are four shapes 
(triangle, star, cross, circle). It is therefore possible to sort 
cards according to colour, number or shape. To succeed, 
participants must match each successive card with one of 
four target cards (which show One Red Triangle, Two 
Green Stars, Three Yellow Crosses, Four Blue Circles), and 
use the subsequent feedback to discover the appropriate 
rule. However, once they have discovered the rule (as 
indicated by a succession of 10 correct sorts), the 
experimenter changes the rule without notice. The task 
yields a number of dependent measures, including the 
number of rules obtained (with a deck of fixed size – 
typically 64 or 128 cards), the number of cards correctly 
sorted, the number of perseverative errors (i.e., errors where 
the participant persists in using a rule despite having 
received negative feedback) and the number of Set Loss 
errors (i.e., errors where the participant fails to stick with a 
rule despite positive feedback). 

The model comprises three cognitive schemas and four 
motor schemas (see Fig. 3).3 Cognitive schemas represent 
the selection rules (Sort by Colour, Sort by Number, Sort by 
Shape) while the four motor schemas represent the acts of 
putting the stimulus card below each of the four target cards. 
All schemas send signals to the basal ganglia units at the 
same level of hierarchy (Fig. 4), but only cognitive schemas 
implement the learning mechanisms outlined in Eq.4-6. 
Each schema has an activation level that varies over time as 
a function of input from various sources. Motor schemas are 
fed by cognitive schemas, and the signal from the cognitive 
layer to motor layer is rule-dependent. If, for instance, the 
stimulus card displays three red circles, the shape schema 

                                                             
3 Source code for the simulation, including a complete list of 

parameters and their values, is available from the first author on 
request. 

 
Figure 3: Schematic of the model, not showing competition 
between schemas. Cognitive schemas (top row) send 
signals to the motor schemas (bottom row). 
 
 

 
Figure 4: Schematic of the competition between schemas. 
The basal ganglia units compute the amount of inhibition 
that each schema receives given the activation of the 
others. Only cognitive schemas are shown here. 

 



will excite the fourth motor schema (Four Blue Circles), the 
number schema will excite the third motor schema (Three 
Yellow Crosses), and the colour schema will excite the first 
motor schema (One Red Triangle). 

Motor schemas are also fed by environmental cues which 
depend on the stimulus card features. Thus, when cognitive 
schemas are not strong enough to influence motor schemas, 
stimulus features alone may drive action selection. 
Feedback is given after each trial, and it drives learning 
within the cognitive schemas and their BG units as outlined 
in the previous section (Eq. 4 and 5). Learning in the motor 
schemas and their associated BG units is unnecessary in the 
WCST because randomisation of stimuli prevents a 
preference for a card position from being formed. A typical 
run of the task is shown in Fig. 5. 

Simulation and results 
We simulated 20 subjects for each value of the learning 
rates εctx and εstr, for a total of 560 subjects and recorded the 
relevant dependant variables (Fig. 6). Total Errors (TE), 
Perseverative Errors (PE) and Non Perseverative Errors 
(NPE) are all monotonic functions of εstr and εctx while Set 
Loss (SL) errors show a more erratic pattern. The value of 
the analysed dependent variables is a function of both εstr 
and εctx, but also of external activation of cognitive and 
motor schemas.  These signals act as modulators between 
internal and external attentional process. An excessively 
low/high value of cognitive/motor external activation 
signals produces a general increase in all kind of errors. 
Varying these parameters produces performance more 
similar to behaviour exhibited by some frontal patients, 
where environmental cues drive action selection (Cooper & 
Shallice, 2000). Once baseline values for external 
excitations are set, we observe how the values of dependent 
variables fit data from young, older adults, and Parkinson’s 
Disease (PD) patients. PD results from reduced 
dopaminergic input to the striatum (Siegelbaum et al., 2000) 
and it is therefore appropriately modelled by lower values of 
εstr. 
Total and Perseverative Errors Empirical data from PD 
patients (Paolo et al., 1996) performing the WCST show 
that perseverative errors are significantly greater in non-
demented PD patients than in older controls, while the 
difference between older controls and younger subjects is 
not significant. The model successfully simulates this 
pattern of Total Errors and Perseverative Errors in healthy 
and PD patients with a set of values for (εstr , εctx) of (0.15, 
0.08) and (0.05, 0.01), respectively. Thus, consistent with 
the neurophysiological hypothesis, PD patient performance 
may be accounted for by lower values of εstr.  
Set Loss and Non-Perseverative Errors Set loss errors 
have a different profile from all the other errors, suggesting 
the presence of distinct cognitive mechanisms underlying 
these and other errors. Empirical data from young, older 
controls and PD patients (Paolo et al., 1996) show that SL 
errors are not significantly greater in non-demented PD 
patients than in older controls. Paolo et al. (1996) also report 

that older controls tend to produce more SL errors than 
younger participants but the difference does not reach 
significance (t(89)=1.89, p  =.062). 

The model does not adequately capture the prevalence of 
set loss errors, but this limitation might be overcome by 
choosing parameters more carefully. In addition, it is 
necessary to further analyse how these errors arise in both 
the model and in experimental data. SL errors are relatively 
rare, and do not occur in all attempts at the task (either in 
human participants or in the model). Further work is 
required to see whether a more sensitive measurement of SL 
errors is needed. 

Discussion 
Simulating the WCST yields an adequate fit with empirical 
data from healthy young controls and PD patients and it 
explains how perseveration errors might arise from an 

 
Figure 5: Cognitive schema activation in a typical run of 
the WCST. The red, green and blue lines represent the 
colour shape and number schemas, respectively. Black 
vertical lines have been plotted every 4 trials.  

 

 
Figure 6: Plot of WSCT simulation results. Dependent 
variables shown are Total Errors (TE), Perseverative 
Errors (PE), Set Loss Errors (SL) and Non-Perseverative 
Errors (NPE). The dashed horizontal black lines, the red 
lines, and the blue lines represent the mean values of the 
dependent variables for young participants, older 
participants, and PD patients, respectively. 

 



impaired selection mechanism, in which rewards do not 
update quickly enough, or from an impaired schema 
activation mechanism, where surprising results are not 
powerful enough to trigger quick selection of a new rule. 
The dissociation between Set Loss and Perseverative Errors, 
which reflects the dissociation between distractibility and 
perseveration (Kaplan et al., 2006), is also replicated. 
Nevertheless, the model fails to fully explain the difference 
in Set Loss and Non-Perseverative Errors in healthy and PD 
populations. It is also unclear whether the difference 
between young and older control can be modeled with the 
two learning parameters alone (on the assumption that the 
trend reported by Paolo et al., 1996, indicates a real effect).  

 
Model Applied to the PRLTv 

Task and model description 
Here, we apply the general model to a variant of the 
Probabilistic Reversal Learning Task (PRLTv; Cools et al., 
2002). In this task, two stimuli are presented on each trial, 
but only one is the correct one. However, feedback is 
unreliable – the subject receives feedback that is correct 
only 80% of the time. After 40 trials the stimulus that 
receives the reward (i.e., positive feedback) is reversed. 
Again, feedback is correct 80% of the time. In the version of 
the task modelled here (unlike the standard experimental 
task), we assume that the subject is not told that feedback 
will be probabilistic. This allows us to test only stimulus-
reward contingencies in absence of any super-ordinate rule. 

To succeed at the task, subjects have to be able to stick to 
the first rewarded stimulus despite spurious feedback, but 
they also have to be able to reverse the choice and not 
perseverate when the contingency changes. The task is 
modelled as a simple stimulus-reward association, without 
higher order rules controlling the selection of lower 
schemas. The structure of the PRLTv thus is simpler than 
the one used for the WCST, and consists of only two 
cortical schemas with their associated basal ganglia units 
(Fig. 7). A typical run of the model is shown in Fig 8.  

Simulation and results 
We simulated 25 subjects for two values each of εctx and εstr 
for a total of 100 subjects and display the percentage error 
across the 80 trials (Fig. 9). Two performance measures are 
calculated: Errors to Criterion (ETC) are evaluated by 
counting the number of trials the subject takes to score 8 
consecutive correct responses (ignoring spurious feedback). 
Consecutive-Perseverative (CP) errors are evaluated by 
counting how many trials from the reversal trial (41st trial) 
the subject takes to select the correct new response. Both 
variables are non-normally distributed, and therefore the 
Kruskal-Wallis H statistic has been used to test differences 
among the groups. 
Errors To Criterion In the acquisition stage, ETCs are not 
significantly different, irrespective of the parameters (Fig. 
10.). On the reversal stage, increasing εstr from 0.4 to 0.6 
inverts the ETC trend in the function of εctx. The difference 
in ECT is significant in both the low εstr value (H(1) = 4.10, 
p = 0.043) and the high εstr value (H(1) = 5.56, p = 0.018). 
Consecutive Perseverative A low value of εstr generally 
impairs the model by increasing perseveration (CP = 2), but 
only for lower values of εstr (H(1) = 11.68, p < 0.001) 
(Fig.11). 

Discussion 
In the standard version of the Probabilistic Reversal 
Learning Task (e.g., Swainston et al., 2000), for which data 
from PD and age-matched controls is available, subjects are 
encouraged to stick with a rule even if it is occasionally 

 
Figure 7: Model diagram for the PRLTv. Unlike the 
WCST, there are no higher order schemas that control the 
two lower order schemas. 

 

 
Figure 8: Typical run of the PRLTv. The blue line 
represents the schema activation while the red line and the 
dashed black line represent βctx and βstr, respectively.  

 

 
Figure 9: Plots of the model performance in PRLTv for 
different values of εstr and εctx across all trials. Points 
represent the error percentage for each stage of the task 
(acquisition and reversal) 

 



wrong. This effectively creates a high-level schema. The 
variant of the task considered here deliberately avoids this 
and constitutes the lower-level version of the WCST, where 
only low-level schemas (those schemas that receive direct 
excitation from the environment) are activated and acted 
upon by the learning mechanisms. However, because of this 
difference in task instructions the model cannot be evaluated  
against the available data. The above results are therefore 
predictions that remain to be evaluated by contrasting the 
performance of PD patients and age-matched controls). Our 
model aims to capture computationally how a simple 
stimulus-reward association changes in terms of learning 
mechanisms that act directly on lower level schemas. 
Therefore the model needs to be experimentally validated 
with the adjusted behavioural task.  

General Discussion 
The general model is successful in replicating several 
empirical results and in reflecting the dissociation between 
distractibility (exemplified by SL errors in the WSCT and 
ETC in the PRLTv) and perseveration (exemplified by PE 
in the WSCT and ETC in the PRLTv). Limitations in 
accounting for experimental data in the WCST may be 

overcome by studying how subjects produce NPE and SL 
errors and whether the model accurately reflects this. 
Conversely, matching experimental data in the PRLTv 
requires running new experiments where instructions are 
reduced to a minimum. Ultimately, the model’s purpose is 
to bridge the concept of neurotransmission, that acts as a 
medium to increase computational power, and the 
meaningful unit of action or thought. Thus, while the 
theoretical core assumptions seem to be capable of 
reproducing at least two tasks adequately, peripheral 
hypotheses on the learning mechanisms may require 
revision to achieve a better fit and to strengthen the link 
with the neurobiology.  
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Figure 10: Errors to Criterion (ETCs) are shown here. 
Points and error bars represent medians and median 
absolute deviations. 
 

 
Figure 11: Consecutive Perseverative errors with four 
different settings (εctx ,εstr). Points and error bars represent 
medians and median absolute deviations. 


