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Abstract

We describe a computational model of two central aspects of
people’s probabilistic reasoning: descriptive probability es-
timation and inferential probability judgment. This model
assumes that people’s reasoning follows standard frequentist
probability theory, but is subject to random noise. This random
noise has a regressive effect in probability estimation, moving
probability estimates away from normative probabilities and
towards the center of the probability scale. This regressive
effect explains various reliable and systematic biases seen in
people’s probability estimation. This random noise has an anti-
regressive effect in inferential judgment, however. This model
predicts that these contrary effects will tend to cancel out in
tasks that involve both descriptive probability estimation and
inferential probability judgment, leading to unbiased responses
in those tasks. We test this model by applying it to one such
task, described by Gallistel et al. (2014). Participants’ median
responses in this task were unbiased, agreeing with normative
probability theory over the full range of responses. Our model
captures the pattern of unbiased responses in this task, while
simultaneously explaining systematic biases away from nor-
matively correct probabilities seen in other tasks.

We live in a world of nonstationary stochastic processes,
where events occur with some associated probability, and
this probability itself changes unpredictably over time. To
make successful predictions about event occurrence in such a
world we must use two distinct types of probabilistic reason-
ing: descriptive probability estimation (given the events we
have seen recently, what is the current underlying probability
of A?) and inferential probability judgment (given our cur-
rent estimate for the probability of A, is the current sample of
events consistent with that probability? Or should we infer
that the underlying probability of A has changed?). Our aim
in this paper is to present a computational model of these two
interacting components of probabilistic reasoning.

One revealing aspect of human probabilistic reasoning is
the reliable occurrence of a number of systematic biases;
biases such as conservatism (Erev et al., 1994), subadditiv-
ity (Tversky and Koehler, 1994) and the conjunction fallacy
(Tversky and Kahneman, 1983). The model we present here
was originally developed to explain these biases in terms
of the regressive effect of random noise in reasoning (see
Costello and Watts, 2014). Here we extend this model to in-
ferential probability judgment, and show that this model ex-
plains patterns of bias seen in such judgment. This model pre-
dicts that, in situations that involve both forms of reasoning,
these regressive effects will tend to cancel out, leaving sub-
jective probability estimates that tend to agree with the nor-

matively correct values with no systematic bias. Such agree-
ment is seen in recent studies of probability estimation for
nonstationary stochastic processes by Gallistel et al. (2014).
We demonstrate the model by applying it to Gallistel et al.’s
study in detail.

The probability theory plus noise model
Our model assumes that people’s probability judgments are
produced by a mechanism that is fundamentally rational, but
is perturbed in various ways by purely random noise or error,
which causes systematic regressive effects. We take P(A) to
represent the ‘true’ probability of event A (that is, the propor-
tion of items in memory that represent A). We take p∗(A) to
represent an individual estimate of the probability of event A,
and take 〈p∗(A)〉 to represent the expectation value or mean
of these estimates for A: this is the value we would expect to
get if we averaged an infinite number of individual estimates
for p∗(A). In standard probability theory, the probability of
some event A is estimated by drawing a random sample of
events, counting the number of those events that are instances
of A, and dividing by the sample size. The expected value of
these estimates is P(A), the probability of A. We assume that
people estimate the probability of some event A in exactly this
way: randomly sampling events from memory, counting the
number of instances of A, and dividing by the sample size.

If this counting process was error-free, people’s estimates
would have an expected value of P(A). Human memory, how-
ever, is subject to various forms of random error or noise. To
reflect this we assume events have some chance d < 0.5 of
randomly being counted incorrectly: there is a chance d that
a ¬A (not A) event will be incorrectly counted as A, and the
same chance d that an A event will be incorrectly counted as
¬A. Given this form of noise, a randomly sampled event will
be counted as A if the event truly is A and is counted cor-
rectly (with a probability (1−d)P(A), since P(A) events are
truly A and events have a 1−d chance of being counted cor-
rectly), or if the event is truly ¬A and is counted incorrectly
as A (with a probability (1−P(A))d, since 1−P(A) events
are truly ¬A, and events have a d chance of being counted
incorrectly). Summing the probabilities of these two mutu-
ally exclusive situations, we get an expected value for a noisy
probability estimate of

〈p∗(A)〉= (1−2d)P(A)+d (1)



with individual estimates varying independently around this
expected value. This average is systematically biased away
from the ‘true’ probability P(A), such that estimates will tend
to be greater than P(A) when P(A) < 0.5, and will tend to
be less than P(A) when P(A) > 0.5: a pattern of systematic
regression towards 0.5, the center of the probability scale.

Regression, in this model, explains a number of observed
patterns of bias in people’s probability estimates, such as
conservatism, subadditivity, and the conjunction fallacy (see
Costello and Watts, 2016a, 2014). This model also makes a
number of novel predictions about patterns of bias and agree-
ment with probability theory for various probabilistic expres-
sions; for example, this model predicts that

p∗(A)+ p∗(B)− p∗(A∧B)− p∗(A∨B) = 0

will hold, on average, in people’s probability estimates for
any events A and B (because in this expression the regressive
effects of noise on individual probability estimates p∗(A),
p∗(B) p∗(A∧B) and p∗(A∨B) will tend to cancel out). These
predictions are strongly supported by experimental results
(see Costello and Watts, 2014, 2016b).

Inferential probability judgment
Equation 1 describes the expected value for a probability es-
timate in one type of probabilistic reasoning task: one where
the reasoner sees a sample containing some instances for the
event of interest, A, and produces an estimate of the underly-
ing probability P(A). This type of task involves the estimation
of a descriptive probability: a probability that summarises the
observed sample. We now consider a probabilistic reason-
ing task where the reasoner is given an explicit probability
value p and a sample of n events containing x instances of
event A , and judges whether the number of A’s seen in the
sample is consistent with the given probability. This type
of task involves the estimation of an inferential probability
P(x,n|P(A) = p): the probability of seeing x A’s in a sam-
ple of n items, given that P(A) = p. Frequentist probability
theory provides a normative mechanism for estimating such
inferential probabilities: to estimate P(x,n|P(A) = p), draw
a series of random samples, each of size n, from a popula-
tion where P(A) = p and count the proportion of samples that
contain exactly x instances of A. This proportion gives an es-
timate of the probability of the observed sample occurring in
a population with P(A) = p: the lower this estimate, the less
likely it is that the observed sample came from such a pop-
ulation. The expected value of this estimate is given by the
binomial probability function

P(x,n|p) =
(

n
x

)
px(1− p)n−x (2)

In our model we assume that people estimate inferential prob-
abilities just as in frequentist probability theory: by drawing a
series of random samples of size n from a (simulated) popula-
tion where P(A) = p, and counting the proportion of samples
that contain exactly x instances of A. We assume that this

counting process is subject to random error; that the count of
occurrences of A in a sample is subject to random noise at
a rate d (there is d chance that an instance of A in a given
sample will be counted as ¬A, and d chance that an instance
of ¬A in a given sample will be counted as A). Given this
random error, with P(A) = p the chance of an instance in a
sample being counted as A is equal to (1− 2d)p+ d (from
Equation 1), and so the expected value for this noisy estimate
is given by the binomial probability

〈p∗(x,n|p)〉=
(

n
x

)
((1−2d)p+d)x((1−2d)(1− p)+d)n−x

(3)
Note that the probabilities given in Equation 2 and Equation
3 are both binomially distributed with common terms x and
n. If we take pe to be our current estimate of the probablity of
A in the population in question, this means that, for any given
values of x and n, the associated noisy inferential probability
〈p∗(x,n|pe)〉 is exactly equal to another normatively correct
inferential probability P(x,n|p) when

((1−2d)pe +d)x((1−2d)(1− pe)+d)n−x = px(1− p)n−x

When d ≤ p ≤ 1− d, this equality holds for all values of n
and x when

(1−2d)pe +d = p

or equivalently when

pe =
p−d

1−2d

This expression is ‘anti-regressive’, giving values for pe that
are closer to the boundaries 0 and 1 than values of p: pe is
greater than p when p > 0.5, and less than p when p < 0.5.

Properties of the model
In this section we apply the above model to two sets of ex-
perimental results: on conservatism in inferential probabil-
ity judgment, and on probability estimation in tasks that mix
probability estimation and inferential judgment.

Conservatism in inferential judgment
Experimental studies typically investigate inferential proba-
bility estimation indirectly, using the related concept of rela-
tive probability. These studies involve describing two pop-
ulations containing complementary proportions of two dif-
ferent types of event. Participants are told that a population
has been picked at random, and are then shown a sample of
events drawn from the selected population and asked to as-
sess the probability that the sample came from one population
rather than the other. Typically these populations are ‘book-
bags’ containing poker chips, with one bag containing, for
example, 70% red chips and 30% black (this is the ‘red bag’),
and the other bag containing the complementary proportions:
30% red chips and 70% black (this is the ‘black bag’). Par-
ticipants are told the distribution of chips in each bag. They
are then shown a sequence of n chips and asked, after seeing



each chip, to estimate the probability that the sample came
from the red bag rather than the black bag, or vice versa (the
relative probability of one bag over the other; see Peterson
and Beach, 1967, for examples).

Having seen a sample of n events containing x red chips,
the normatively correct relative probability that the sample
came from the red bag rather than the black bag is given by

R(x,n, p)=
P(x,n|p)

P(x,n|p)+P(x,n|1− p)
=

1

1+
[

1−p
p

]x [ p
1−p

]n−x

(4)
(since the proportion of red chips is p in the red bag, and 1− p
the black bag). As participants proceed through these tasks
they give relative probability estimates that follow the direc-
tion required by normative probability theory, but with values
of these estimates being ‘conservative’: less extreme than the
normatively correct values. This means that if participants
see x > n/2 red chips in their sample, they give estimates for
the probability that the sample came from the red bag that are
greater than 0.5 but less than the normatively correct value,
while if participants see x > n/2 black chips in their sample,
they give estimates for the probability that the sample came
from the black bag that are greater than 0.5 but less than the
normatively correct value. In applying our model to this task
we assume, without loss of generality, that red chips are most
frequent in the sample and take x > n/2 to be the number of
red chips in the sample of n events that have been seen, and
assume p > 0.5 to be the proportion of red chips in the red
bag (the bag that participants associate with the sample).

The estimated relative probability, in our model, of a seeing
a sample of size n with x red chips coming from the red bag
rather than the black bag is given by

RE(x,n, p) =
p∗(x,n|p)

p∗(x,n|p)+ p∗(x,n|1− p)

Note that, since by assumption p > 0.5 and x > n/2, from
Equation 3 we see that p∗(x,n|p) > p∗(x,n|1− p) will tend
to hold (subject, of course, to random error: more specifi-
cally, the higher the values of x and p the more likely it is
that this inequality will hold). This means that RE(x,n, p)
will be greater than 0.5, and these noisy relative probabil-
ity estimates will follow the direction required by normative
probability theory, just as seen in experiments.

For p > .5 this function RE(x,n, p) will be concave for
all x > n/2 (since as x increases from n/2 the probability
that the sample came from the red bag increases while the
probability that the sample came from the black bag simul-
taneously falls). Since from Jensen’s Inequality we have
〈 f (x)〉 ≤ f (〈x〉) for concave functions (the expected value of
a concave function is less than that function of the expected
value of its argument), we get〈

p∗(x,n|p)
p∗(x,n|p)+ p∗(x,n|1− p)

〉
≤ 〈p∗(x,n|p)〉
〈p∗(x,n|p)〉+ 〈p∗(x,n|1− p)〉

and so, rearranging and substituting, we get

〈RE(x,n, p)〉 ≤ 1

1+
[
(1−2d)(1−p)+d

(1−2d)p+d

]x [ (1−2d)p+d
(1−2d)(1−p)+d

]n−x

(5)
Comparing Equations 4 and 5 we see that 〈RE(x,n)〉 <

R(x,n, p) when 1+d
(

1
p −2

)
1+d

(
1

1−p −2
)
x

<

 1+d
(

1
p −2

)
1+d

(
1

1−p −2
)
n−x

(6)

Since by assumption we have p > 0.5 and x > n/2 we
see that the inequality in equation 6 always holds, and so
0.5 < 〈RE(x,n, p)〉 < R(x,n, p): estimated relative probabil-
ity follows the direction required by probability theory, but
is conservative, just as observed in people’s relative proba-
bility judgments. In other words, even though the expected
values for the individual inferential probability judgments
〈p∗(x,n|p)〉 and 〈p∗(x,n|1− p)〉 are each anti-regressive rel-
ative to their corresponding normative values in this model,
when combined to produce an overall estimate of relative
probability, this estimate is regressive and so reproduces the
pattern of conservatism seen in inferential judgment.

Combined estimation and judgment tasks
We finally describe how this model applies to tasks that in-
volve both descriptive and inferential probability estimation.
We consider an iterative task that involves the repeated updat-
ing of an estimate for the hidden probablity parameter (which
may itself randomly change), given a sample of events pre-
sented outcome by outcome. People’s performance in such
tasks were investigated in an experiment by Gallistel et al.
(2014), where participants gave repeated estimates of the hid-
den parameter, p, of a stepwise non-stationary Bernoulli pro-
cess that controlled the colour of a circle being drawn from a
concealed box. On each trial participants clicked a button to
draw a new circle from the box. After being drawn, the circle
evaporated, and participants could update their estimate for
the hidden probability p. Participants were told that the box
would sometimes be silently replaced by another box with a
different value of p. Participants could update their estimates
by either clicking a ”The box has changed!” button (and then
picking a new probability estimate), or by adjusting their cur-
rent probability estimate, or by making no change.

There were two main results from this experiment. First,
people’s probability estimates were characterised by rapid
changes in the estimated value in response to changes in the
underlying hidden probability, separated by periods of small
adjustments in the estimate (see Figure 1, left side). The
speed of detection of a change in the underlying probability
p depended on the degree of change: large changes in the un-
derlying probability were detected more rapidly than smaller
changes. The median latency for detection of a change in
probability estimate in response to a change in the underlying
probability was around 12 events in Gallistel et al. (2014).



Mapping is the identity function. Like Robinson and in
accord with the Peterson and Beach summary of the relevant
literature up to 1967, we find that the mapping from true proba-
bility to median reported probability is the identity. The median
trial-by-trial slider settings track closely the hidden true probabil-
ities (see Figure 6). This is consistent with Robinson’s finding that
there was no significant mean error at any value of the probability.

Precision. The precision with which subjects estimate the
probability is the measure of their average trial-by-trial error.
However, the appropriate measure of error requires some discus-
sion, because, as noted in our introduction, in measuring precision,
one should use the “observed” probability, not the hidden, unob-
served true probability. To anticipate, when appropriately mea-
sured, subjects’ precision of estimation is the same at all values of
the observed probability, except the most extreme (see Figure 18).

Rapid detection of changes. Like Robinson’s subjects, our
subjects detected changes quickly (see Figure 7). Our measure of
the change-detection latency in slider setting is the number of trials
between a true change and the first appropriately signed step in the
slider setting thereafter. This is the same as Robinson’s measure.
Our measure of the expressed change latency is the number of
trials between a true change and the first click on the “I think the
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Figure 4. A: The cumulative distribution of pg across subjects and
sessions. B: The cumulative distribution of the signed magnitude of the
step changes in pg across subjects and sessions.
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Figure 1. (Left) Trial-by-trial true probability (dashed line) and trial-by-trial probability estimate (solid line) for Subject 4,
Session 8 in Gallistel et al.’s task (From Fig. 5 in Gallistel et al., 2014, page 102; pg and p̂g represent true and estimated prob-
abilities respectively). (Right) Trial-by-trial probability estimates produced by our model for the same set of true probabilities.
These graphs illustrate the step-hold pattern seen in Gallistel et al.’s task, and show that the model reproduces this pattern.

The second main result was that the relationship between the
true probability p and participants estimated probability was
essentially that of identity: the median trial-by-trial probabil-
ity estimates closely tracked the true hidden probability with
no systematic bias.

This pattern of agreement with the true probability arises,
in our model, due to the cancellation of regressive effects in
probability estimation against those in inferential judgment.
Suppose we see a series of random samples drawn from a
population with a parameter p = P(A), and take pe to repre-
sent our estimate of p (which we repeatedly update as out-
comes are presented in the task). This estimate pe will be
subject to random noise, and so will have a regressive av-
erage value as in Equation 1. Individual estimates pe will
be adjusted (in a quasi-random walk) in response to infer-
ential probability judgment of the chance of obtaining the
currently-seen sequence of outcomes, given our current esti-
mate. This inferential probability judgment will also be sub-
ject to random noise, and so will be anti-regressive. This esti-
mate pe will be least likely to be adjusted when it reaches
a value maximally consistent with the average number of
counted occurrences of A in the presented sample, and so will
tend to fix at that value. Due to random noise, the average
number of counted occurrences of A in a sample is equal to
[(1−2d)p+d]n, and so pe will fix at the value for which the
inferential probability 〈p∗([(1−2d)p+d]n,n|pe)〉 is max-
imised. Since from Equation 3 this inferential probability has
a binomial distribution with probability (1−2d)pe +d, it has
its maximum value when

(1−2d)pe +d = (1−2d)p+d

or equivalently, when pe = p; when our estimate pe for the
underlying population probability equals the true value. In
other words, even though descriptive probability estimates are
regressive in this model (due to random noise), and inferen-
tial probability estimates are anti-regressive (also due to ran-
dom noise), when these two types of probability judgment are
combined these regressive and anti-regressive effects should
on average cancel out, leaving estimates that on average agree
with the hidden probability parameter p; just as seen in mixed
estimation and inferential judgment tasks such as Gallistel et
al.’s.

Computational simulation
We apply the model to Gallistel et al.’s continuous probability
perception task by assuming that a continuous probability es-
timate pe is assessed by counting the frequency of A in n just-
observed events (subject to random noise). The parameter
n here represents the size of short-term memory available to
store just-seen events: we assume n is small, but beyond that
make no assumptions about the value n (in our simulations,
below, we chose n randomly for each simulated participant,
uniformly in the range 5 . . .20).

We take x to represent the number of occurrences of A in
the n most recently observed events and take xe to represent
the noisy count of that number (the count of occurrences ob-
tained with a chance d of randomly miscounting). The ex-
pected value of xe equals (1− 2d)x+ nd, and so the imme-
diately observed probability of A in that sample has the ex-
pected value

q = (1−2d)
x
n
+d (7)

On each event occurrence the model makes one of three
choices, corresponding to the 3 choices available to partici-
pants in Gallistel et al.’s experiment. First, the model may
reject the current value of pe as inconsistent with the number
of A’s just observed, and update to a new estimate by set-
ting pe = q (this choice corresponds to clicking ”The box has
changed!” in Gallistel et al.’s experiment). Second, the model
may decide that the underlying distribution has not changed
but that q is more consistent with the observed number of A’s
than pe. In this case the model again updates to a new esti-
mate by setting pe = q: this choice corresponds to a small ad-
justment of the current probability estimate. Third, the model
may decide not to modify pe.

To decide whether the current estimate pe needs to be re-
jected, the model considers the chance of seeing xe occur-
rences of A in n samples where the probability of seeing A in
those samples is actually pe. If this chance is too low pe is
rejected. The model assesses this chance in a simple way: by
generating 100 random samples (each of size n, with A occur-
ring randomly with probability pe) and counting the number
of A’s in each sample. This counting process is subject to
random error, with some probability d < 0.5 that an occur-
rence of A will be counted as ¬A, or an occurrence of ¬A
will be counted as A. The proportion of these samples that



contain exactly xe occurrences of A represents an estimate
of the inferential probability PE(xe,n|pe). If this inferential
probability is less than some decision criterion T1 the model
concludes that pe should be rejected because the underlying
distribution has changed. The model then changes the new
estimate to q.1.

If the current estimate is not rejected, the model next con-
siders making an estimate adjustment. To decide whether the
current estimate pe needs to be adjusted, the model consid-
ers the inferential probability PE(xe,n|q): the chance of see-
ing xe occurrences of A in n samples drawn from a popu-
lation where P(A) = q. As above, the model assesses this
chance by generating 100 random samples (each of size n,
with A occurring randomly with probability q) and counting
the number of A’s in each sample (subject to a rate d of ran-
dom error in counting). The proportion of these samples that
contain exactly xe occurrences of A represents an estimate of
the inferential probability PE(xe,n|q). If the difference be-
tween this inferential probability and the previous inferential
probability is greater than some decision criterion T2 (that is,
if PE(xe,n|q)−PE(xe,n|pe) > T2) the model decides that q
is a better estimate and changes to a new estimate by setting
pe = q. Otherwise the current estimate pe is left unchanged.

Results
We wrote a computer program implementing this model and
tested it by simulating Gallistel et al.’s experiment. On each
run of this simulation the model was shown a consecutive
sequence of 1000 randomly generated A or ¬A events. Af-
ter seeing each event, the model either rejected its current
probability estimate and changed to the new estimate q; or
adjusted its estimate to the new estimate q; or else left its es-
timate unchanged. Events were generated randomly, with a
hidden probability p. The value of p itself changed randomly
over the sequence of 1000 events, with the probability that
p would change after a given event being set at a constant
value of 0.005 (just as in Gallistel et al.’s experiment). The
size and direction of a change in the hidden probability were
determined by a random choice of the next value from a uni-
form distribution between 0 and 1, subject to the restriction
that p/(1− p), the resulting change in the odds, was no less
than fourfold, just as in Gallistel et al. (2014).

To investigate the role of error in descriptive probability
estimation and in inferential judgment, we designed the pro-
gram so that we could set one error rate d for descriptive es-
timation, and another rate ds for inferential judgment. We
simulated Gallistel et al.’s experiment for 4 different pairs of
values for these parameters: Sim A (d = 0.0,ds = 0.0), Sim
B (d = 0.1,ds = 0.0), Sim C (d = 0.0,ds = 0.1), and Sim D
(d = 0.1,ds = 0.1). We set the criterion parameters T1 and

1Note that our decision to use 100 random samples when estimat-
ing inferential probabilities here is essentially arbitrary: this number
was chosen to allow us to use values for the decision criteria T1 and
T2 that correspond to standard significance level values such as 0.01
and 0.05. Versions of the simulation that make use of much smaller
numbers of samples give essentially the same results as seen here.

T2 to 0.01 and 0.1 respectively in all simulations, since initial
tests suggested that these values produced a reasonable rate of
adjustment in the model’s probability estimates. Each simu-
lation involved 500 ‘participants’ (runs of the model), all with
the same values for parameters d and ds, and each with a value
of n (the size of short-term memory) selected randomly from
the range 5 . . .20. Each ‘participant’ saw a different randomly
generated sequence of 1000 events, produced according to a
different randomly generated sequence of values of p (as in
Gallistel et al., 2014).
Rapid detection of changes The median latency between a
change in the hidden probability p and the recognition of that
change by the model (via rejection of the current probability
estimate) was 10 in simulations A and B, 13 in simulation C
and 12 in simulation D. These values agree with the median
latency of reported change detection of 12 seen in Gallistel
et al. (2014).
High hit rates and low false alarm rates Gallistel et al.
(2014) describe a method for computing hit rates and false-
alarm rates in participant’s responses in their experiment:
they found that nine out of ten participants had hit rates
in the range 0.77 . . .1 and false-alarm rates in the range
0.004 . . .0.02. We used the same method to compute hit rates
and false alarm rates across all ‘participants’ in our simula-
tions. Average hit rates were 0.87,0.79,0.81,0.76 and false-
alarm rates were 0.006,0.005,0.005,0.005 in simulations A,
B, C and D respectively. These agree with the rates seen by
Gallistel et al. (2014).
Precision We assess the precision of the model’s probabil-
ity estimates by computing the RMSD between the model’s
estimate at a given event against the true probability p at that
event. These RMSD’s between estimated and true probabil-
ities were 0.15,0.17,0.17,0.17 for simulations A, B, C and
D respectively. These were consistent with the correspond-
ing RMSD’s for participants in Gallistel et al.’s experiment,
which ranged between 0.15 and 0.21.

These three aspects of the model are illustrated in the right
of Figure 1. This figure shows trial-by-trial probability esti-
mates produced by the model for one run, with parameter val-
ues d = 0.1,ds = 0.1,n = 20. Values of the true probability p
were controlled match those in Gallistel et al.’s example. In-
dividual event occurrences in this run, however, were random,
and did not follow the precise sequence of event occurrences
in Gallistel et al. (2014). This figure shows that the model
produces the step-hold pattern seen in Gallistel et al.’s task,
with large changes in the estimate when the hidden probabil-
ity changes, and small adjustments, or no changes, otherwise.

Identity between true probability and median estimates
Recall that the noisy frequentist model predicts that noise
will have different effects in different probability judgment
tasks: when estimating a probability from a sample (descrip-
tive probability estimation), noise will produce regressive ef-
fects; when estimating the likelihood of a sample given a
probabilty (inferential probability judgment), noise will pro-
duce anti-regressive effects; and in tasks that involve both
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Figure 2. Median (squares) and interquartile intervals (verti-
cal lines) of model’s probability estimates plotted against cor-
responding true probabilities, for different values of the noise
parameters: d = 0.0,ds = 0.0(graph A), d = 0.1,ds = 0.0
(graph B) d = 0.0,ds = 0.1 (graph C) and d = 0.1,ds = 0.1
(graph D). The dashed line represents identity.

forms of estimation, these contrasting effects of noise can-
cel out, producing agreement with the true probability. To
test these predictions, for each simulation we calculated the
median estimate produced by the model for a given hidden
probability value p. The results are shown in the 4 graphs in
Figure 2. Graph A gives the results obtained when there is
no noise in either descriptive estimation or inferential judg-
ment (d = 0.0,ds = 0.0); the relationship between median es-
timates and the true probability is one of identity here. Graph
B gives the results with noise in descriptive estimation but not
inferential judgment (d = 0.1,ds = 0.0), and shows a clear
pattern of regression. Graph C gives the results with no noise
in descriptive estimation but noise in inferential judgment
(d = 0.0,ds = 0.1), and shows a clear anti-regressive pattern.
Finally, graph D shows the results obtained when there is the
same rate of noise in both components (d = 0.1,ds = 0.1).
The relationship between median estimates and the true prob-
ability in graph D is one of identity: the effects of noise in the
two components have cancelled each other out.

These results show that, if we assume a constant rate of
error d = 0.1 in both descriptive probability estimation and
inferential probability judgment, the probability theory plus
noise model produces results that agree closely with those
seen in Gallistel et al. (2014). Similar agreement holds for a
range of other values of d. These same values of d, however,
also produce regressive effects; in our model these regressive
effects produce patterns of bias such as conservatism, sub-
additivity and the conjunction fallacy. In other words, this
model may provide a single unified account for systematic

bias away from the true probabilies (in some tasks) and for
agreement with the true probabilities (in other tasks): an ac-
count that depends on a single factor - noise in reasoning.

Conclusions
Our aim in this paper is to present a general model of descrip-
tive probability estimation, of inferential probability judg-
ment, and of the interation between these two processes. This
model assumes that people estimate (descriptive and inferen-
tial) probabilities using a mechanism that follows standard
frequentist probability theory, but is subject to the biasing
effects of random noise in the reasoning process. In other
work we’ve shown that this model makes a number of novel
predictions about patterns of bias and agreement with prob-
ability theory for various probabilistic expressions: predic-
tions which are strongly supported by experimental results
(see Costello and Watts, 2016a, 2014, 2016b). Here we show
that this model can simultaneously explain the observed pat-
terns of bias seen in people’s descriptive probability estima-
tion and inferential probability judgment (which arise in the
model due to the regressive effects of random noise), and the
observed agreement with the underlying true probability in
tasks such as that of Gallistel et al.’s (where the regressive
effect of noise in descriptive probability estimation is coun-
teracted by the anti-regressive effect of noise in inferential
probability judgment).
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