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Abstract
This paper describes an experiment and fuzzy set models in
the domain of linguistic labels for simple spatial relationships:
for example, that one object is “in front of” or “to the right
of” another. Input to the models was generated by robot sen-
sors (camera and distance sensors), from a viewer perspective
on different configurations of two objects. Performance of the
models is is qualitatively similar to human judgments; perfor-
mance is also quantitatively similar to that of a model working
from an environmental bird’s-eye view. Such models are part
of a robot’s interpretation of the context of human activity.
Keywords: spatial relationships; fuzzy sets; cognitive robotics

Introduction
As we attempt to create a new generation of automated
helpers to solve problems in the military, elder assistance,
transportation, and other areas, we increasingly find that we
need robots that can interact naturally with humans and that
can move through environments designed for humans. A crit-
ical challenge for such robots is the use of context.

Context can help a robot to impose structure on informa-
tion available to it, in a top-down manner. Some kind of con-
textual information can be provided by background knowl-
edge or experience of common human activities. For exam-
ple, “writing a paper” may be associated with scenes such as
a “computer lab” or a library, or with object clusters such as
a table and chair (Fields, Lennon, Martin, & Lebiere, 2017).

Context is also provided by information about human be-
havior and performance, which can be exploited in research
that integrates cognitive modeling and robotics. Our lab has
begun to explore the combination of language comprehension
models and information-based search; some of our current re-
search deals with spatial relationships.

Consider the diagram of two objects in Figure 1, one la-
beled L (for “landmark”) and the other T (for “trajector”).
The landmark sets the context for the relationship, while the
trajector occupies a position—a place in the relationship—
with respect to the landmark. If this diagram were a bird’s-
eye view of a room, a person in the position of observer O1
would probably say that “T is to the right of L.” Would the
person also say that “L is in front of T ” or that “T is in back
of [or behind] L”? Spatial relationships that can be easily di-
agrammed may be ambiguous when described in language.

The ways that people conceptualize space (and action)
have long been a subject of study in psychology. Applying

research findings to robot behavior is a more recent devel-
opment. There are clear advantages in human-robot inter-
action for a robot that incorporates the ability to take as in-
put, generate as output, or reason about expressions of spatial
relationships (Trafton & Harrison, 2011; Guadarrama et al.,
2013; Tellex et al., 2011). The work of Regier and Carlson
(2001) and others hints at another possibility: a model of hu-
man interpretations of spatial relationships may provide in-
formation to a robot about what is of interest to individuals
or to people in general. For a simple example, people typi-
cally attend to what is in front of them; in a classroom full of
desks and chairs, it is straightforward to infer the general area
a teacher will occupy. We even find spatial directions used
in metaphorical language concerning attention: “it’s right in
front of you” indicates that you should notice whatever it is.

To explore such issues, it will be useful to have a reliable
way for a robot to associate spatial relationships with labels
such as left, right, in front of, and in back of, in the same way
that humans do. While there are obvious, canonical examples
of such relationships, not all fall crisply into one category
or another. Further, robots must deal with noisy sensors and
motor movements, which might plausibly interfere with their
categorizations of objects in the environment.

In the remainder of this paper we give a brief overview
of work on linguistic labels for spatial relationships. We de-
scribe an experiment in which participants made judgments
about spatial relationships between two objects. We then de-
scribe three a priori models, from the fuzzy systems liter-
ature (Keller & Wang, 1995), that allow a robot to make the
same viewer-perspective judgments about the spatial relation-
ships. We compare their performance to the human data and
find qualitatively similar model predictions.
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Figure 1: Object/observer relationships



Related work
The literature related to representation, reasoning, and com-
munication concerning spatial relationships is enormous.
Mechanisms underlying spatial representation and reasoning
have been explored in some depth in the cognitive modeling
literature (Harrison & Schunn, 2003; Gunzelmann & Lyon,
2006; Trafton & Harrison, 2011); cognitive models also en-
compass the language of spatial relationships (Ball, 2015).
The research described in this paper is much narrower, how-
ever, focusing on spatial relationships that can be expressed
in linguistic terms (e.g., left, right, above, below, in front of,
and behind or in back of ) and the extent to which they can be
grounded in the perception (of a human or a robot agent).

Regier and Carlson (2001)’s Attentional Vector-Sum
(AVS) model is widely accepted as the best model of how
a set of spatial expressions can be grounded in perception.
Informally, for the above relationship, an attentional beam
is conceptualized as extending from a trajector object to a
landmark object. Attention is strongest at the point on the
landmark directly below the trajector, and weaker at other
points on the landmark as distance from this point increases;
the drop-off is a free parameter in the model. A distribution
of vectors is identified, originating at different points on the
landmark and directed toward the trajector, the magnitude of
each determined by attention. The sum of these vectors is
compared with a vertical line, and the deviation determines
the extent to which the trajector is above the landmark.

Regier and Carlson (2001) compare the AVS model with
others, including a Bounding Box (BB) model and a Prox-
imal and Center-of-Mass (PC) model, both of which it out-
performs. For the BB model and the above relationship, “a
trajector object is above a landmark object if it is higher than
the highest point of the landmark and between its rightmost
and leftmost points” (Regier & Carlson, 2001). For the PC
model, consider a vector from the center of a landmark to the
center of a trajector. As this vector deviates from the ver-
tical (roughly, 68◦ to 72◦) ratings of the above relationship
decrease linearly; further increases cause a much faster drop
off, to zero at 90◦ or greater. Proximity comes into play with
a line segment connecting the landmark and trajector at their
minimum distance; to the extent that this segment is aligned
with the center-of-mass vector, the above relationship holds.

Judgments about above generalize to comparable relation-
ships, including left, right, in front of, and so forth (Regier
& Carlson, 2001). For example, if we interpret the bottom
of the box in Figure 1 as being a horizontal surface, then we
could ask, “Is T above L?” and use the same PC model, re-
interpreted, to answer the question.

The AVS model and others have been used in computer
vision and robotics research, though they typically require
some adaptation. In most experiments on labeling spatial re-
lationships, a scene is presented in which the relationship of
interest is visible in a plane normal to the participant’s line
of sight. For example, consider rating the relationships left,
right, in front of, and in back of for two objects on the floor

Figure 2: Object configurations (red on the right)

in a room. A bird’s-eye view, along a normal to the plane of
the floor, would be a typical presentation, as in Tellex et al.
(2011, Figure 4), which we will call an orthogonal view. An
observer—such as a robot—inside the room with the objects,
however, would face a related but slightly different problem.
This viewer perspective, in which judgments are required for
relationships that are aligned with viewer’s line of sight, are
part of the experiment described in the next section.

Experiment
This experiment was intended to benchmark performance in
answering questions about spatial relationships. Because our
eventual goal is a robot that can reproduce human judgment
of specific spatial relationships, by reference to a model, the
raw data was provided by camera images from a robot: a
LEGO Mindstorms NXT robot with customized sensors, in-
cluding a still camera.

Two stacks of blocks were used for the experiment, as
shown in Figure 2. The stack of square red blocks was 10
cm on each side. The oblong stack of blue blocks was 10 cm
wide and 30 cm long. Both stacks were about 21 cm tall.

These two stacks were placed in different configurations as
follows. The blue stack was initially placed with its narrow
side facing the robot, and the red stack was placed to the right
and a few cm behind the blue stack, comparable to a config-
uration in Gapp (1995), in Figure 1b. The red stack was then
advanced in increments of 10 cm in a straight line towards the
robot. The advances were performed six times until the red
stack was about 10 cm in front of the blue stack. After the
six advances the red stack was returned to its starting position
and the blue stack was rotated by a one-eighth turn. The pro-
cess was repeated. This continued until the blue stack was at
a right angle from its original position.

The robot, approximately 60 cm distant from the centroid
of the two stacks in the starting configuration, followed the
procedure in Figure 3 after each change in the configuration.
Thirty images were collected in total, at six different locations
of the red stack and five different rotations of the blue stack.
Figure 2 shows two images, the starting configuration on the
left and after five steps into the procedure on the right.

The images1 recorded during this procedure formed the ba-
sis of a survey. Twelve participants completed the survey,

1Images were used instead of a real environment for consistency
across experiment participants.



Record compass reading
Record camera image
For target color in {RED, BLUE}

Identify object of target color
For target in {LEFT, CENTER, RIGHT}

CALC: Calculate rotation to center on target
Rotate
If within threshold

Record compass reading
Record distance reading

else go to step CALC

Figure 3: Measurement procedure

eight men and four women, ranging in age from 28 to 71. The
participants received no compensation for participation and
were not observed during the task. The sequence of images
was randomized; all participants saw the same ordering. For
each image, four statements were evaluated by participants,
on a scale of 0 to 10; for analysis, all values were linearly
transformed to a unit scale.

1. The red blocks are to the right of the blue blocks.

2. The red blocks are in front of the blue blocks.

3. The red blocks are in back of the blue blocks.

4. The blue blocks are to the left of the red blocks.

In other words, we have two independent variables in this
experiment. The variable Distance of the red stack to the
robot provides for different participant ratings concerning
whether the red stack is in front of, in back of, and even to the
right or left of the blue stack, in each location. The variable
Angle, for the rotation of the blue stack, provides a different
cross-section to the viewer as well as a different angle with
respect to the red stack.

Note that the experiment excludes the most “obvious” con-
figurations for Front and Back ratings—for example, with one
block directly in front of the other, from the position of the
camera. There is a sense in which the experiment tests “edge
cases” for spatial relationship judgments.

The three plots in Figure 4 show survey ratings for the
right, front, and back questions. Values for left are not shown,
being almost identical to right. Each group of six connected
dots shows the mean values, scaled from 0.0 to 1.0, the six
locations of the red stack, at decreasing Distance from the
robot’s camera. Five groups are shown, with a graphical icon
for each Angle value of the blue stack. Within each group,
the sequence shows the red stack moving foward in steps.

No significant effect on Right ratings or on Left ratings
was found. The mean values of Left and Right were above
0.9, over all trials, the median equal to 1.0. While a slight

Figure 4: Mean ratings of right, front, and back, with standard
error bars; gray blocks show rotation angle of blue stack

inverted U-shaped pattern is visible, we did not analyze the
data further.

An analysis of variance showed a significant overall ef-
fect of Distance and Angle on Front ratings, as expected
(F(5,4) = 25.790, p < 0.01). Distance alone had a signifi-
cant effect on Front (F(5,4) = 28.036, p < 0.01), but Angle
did not (F(5,4) = 0.034, n.s.); the interaction between Dis-
tance and Angle was significant (F(5,4) = 2.677, p < 0.01).

Similarly, ANOVA showed a significant overall effect of
Distance and Angle on Back ratings (F(5,4) = 18.973, p <
0.01). Distance alone had a significant effect on Back
(F(5,4) = 27.505, p < 0.01), but Angle did not (F(5,4) =
0.433, n.s.); the interaction between Distance and Angle was
significant (F(5,4) = 1.812, p < 0.05).

The general patterns are as expected: experiment partici-
pants were able to make plausible judgments about the spa-
tial relationships between the two stacks in different config-
urations, basing their judgments on the information provided
by the robot’s camera. There was no influence of the angle of
the blue stack, acting as a landmark in the experiment, though
the rotations acted to change the “overlap” with the trajector;
the lack of an effect is possibly due to the front view and the
limited depth information available in the images. Different
shapes are noticeable in the Front and Back ratings, with the
Front ratings showing a slightly more pronounced curvature
with change in Distance.



Modeling
Models such as AVS, PC, and BB have been adapted for
use in computer vision and robotics (Guadarrama et al.,
2013; Tellex et al., 2011), and new models have been de-
veloped Matsakis and Wendling (1999). In such work, how-
ever, the models are generally not evaluated directly or com-
pared with human performance, and the models may not take
a parameterized form with explicitly identified features, with
Gapp (1995) being an exception.2

Our work adopts vector-based methods to model the rat-
ings described in the previous section. Regier and Carlson’s
PC model is a possible candidate, but its four free parameters
make it difficult to adapt—specifically, changing to a viewer
perspective to evaluate relationships parallel to the viewer’s
line of sight. Instead, we evaluate three simpler models from
the computer vision literature due to Keller and Wang (1995).

These are fuzzy set models, which can deal with member-
ship grades in categorization. In a standard “crisp set” formu-
lation, a predicate is true or false; with a fuzzy set, a mem-
bership grade can be a value from 0 (not a member of the set)
to 1 (a member of the set). Thus, for example, in Figure 1, T
might have a membership grade of 0.8 for the categorization
“to the right of L;” it would be greater if it were closer to a
horizontal line extending through L. Fuzzy methods can do
more than assign a grade for a given label; with several la-
bels, they can be used for categorization, even in cases where
a given configuration fall into more than one category.

Keller and Wang’s Centroid method uses Equation 1 as the
membership function for the right function; analogous func-
tions are defined for left, front, and back. Let the centroid of
L be the origin in a Cartesian coordinate system; let θ be the
angle of a vector −→LT through the centroid of T . The func-
tion µright maps θ to a value between 0 and 1, representing the
degree to which T is to the right of L:

µright(θ) =


1 |θ|< a π

2

0 |θ|> π

2

π/2−|θ|
π/2(1−a) o.w.

(1)

In words, T is maximally to the right of L when θ is within
a small range above or below 0 radians (a π

2 , where a is a
free parameter, which we set to 0.05 as a default), along the
implicit x-axis in the landmark-based coordinate system. µright

decreases linearly as θ increases or decreases, reaching zero
when the center of L falls on or below zero on the x-axis.

Computing the centroids of objects is straightforward with
an orthogonal view, but this is more difficult for some re-
lationships from a viewer perspective. As described in the
measurement procedure in Figure 3, the robot identified three
points on each object in the scene, its left edge, center, and

2Indirect evaluation is carried out, however. Guadarrama et al.
(2013) evaluate overall measures of success for experiments with
a robot that incorporates a combined PC and BB model to interact
with configurations of multiple objects; Tellex et al. (2011) similarly
with an AVS model.

Figure 5: Distance and compass readings, bird’s-eye view

right edge; distances were measured to these points and a
centroid computed from the values. This gives the centroid
estimation for both objects a strong forward bias, though this
is partly alleviated for higher Angle values in cases where the
blue stack has been rotated.

The angle θ between the two stacks must be provided as
input to µright but cannot be measured directly; θ is computed,
based on the triangle in Figure 5. θ3, r1, and r2 are measured
directly by the robot, while θ1, θ2, and r3 are computed:

θ1 = cos−1
(

r2
2 + r3

2− r1
2

2r2r3

)
;θ2 = π−θ3−θ1, (2)

r3 =
√

r12 + r22−2r1r2 cosθ3. (3)

With measured or computed values for the triangle’s sides
and angles, plus the assumption that the robot’s camera is
midway between the two stacks, computing θ for different
directions is straightforward trigonometry.

Keller and Wang’s second method is Angle Aggregation,
which samples points from the landmark and trajector ob-
jects, computes angles for each pair of points, and aggre-
gates the angles (by a generalized mean operator) into a single
value for θ. With three sampled points on each object in the
experiment, a total of nine pairs of angles are considered.

The third method is the compatibility method, which we
implemented in variant form as a Histogram/Composition
method. Angles between the two objects are computed as
with Angle Aggregation, but instead of computing the mean
of the samples, the samples are binned into a histogram, with
normalized frequencies for the bins being treated as fuzzy set.
This set is composed with the fuzzy sets for right, left, front,
and back, to compute the membership grade in each category.
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Figure 6: Model predictions for right, front, and back

Model predictions are shown in Figure 6 for the survey data
for right, front, and back; as before, left is elided, being al-
most identical to right. The parameters of the models were
not tuned to fit the data.3 In these plots, Distance values re-
flect the ordering in which they were considered by the robot,
an inversion of the actual distance from the camera: 0 corre-
sponds to the red stack being farthest away from the robot’s
camera, i.e., behind the blue stack, with a Distance value 1
being closest to the camera and in front of the blue stack.
Predictions are aggregated by Distance value, in that Angle
had no effect on the spatial judgments.

The black lines show mean ratings from the survey, with

3For Keller and Wang’s models, a = 0.05. The AVS model used
parameters given by Regier and Carlson (2001, Table 1): λ = 1.0
(attentional field width); y-intercept = 1.007 and slope = −0.006
(alignment function); gain = 0.131 (top sigmoid).

Right Front Back
AVS 0.891, 0.068 0.046, 0.880 0.285, 0.925

R2 = 0.056 R2 = 0.813 R2 = 0.629

Angle 0.888, 0.083 0.139, 1.449 0.194, 0.946
R2 = 0.202 R2 = 0.812 R2 = 0.835

Centroid 0.887, 0.085 0.164, 1.453 0.193, 0.900
R2 = 0.282 R2 = 0.792 R2 = 0.850

Histogram 0.902, 0.051 0.151, 0.867 0.208, 0.797
R2 = 0.138 R2 = 0.698 R2 = 0.817

Table 1: Model fit statistics

error bars showing the standard error with respect to all par-
ticipant ratings per Distance value. The other colored lines
represent predictions of the Centroid, Angle Aggregation, and
Histogram/Composition fuzzy models. The fuzzy models are
not separately labeled in the Back plot; their values are al-
most indistinguishable. For reference, predictions of the AVS
model are shown as well. The AVS predictions were based
on a virtually constructed orthogonal diagram of each config-
uration and are given for comparison to a method with access
to a perspective not available to the other models.

Qualitatively, the fuzzy models are consistent with human
ratings, though they are more “conservative” in the sense of
assigning lower membership grades than the human partic-
ipants. This is in part due to the forward bias in the front
predictions—recall that reference points were identified with
the robot’s distance sensors, which detect the distance to the
front of each object.

The under-predictions of the AVS model for the mean Back
rating surprised us; we initially suspected design or imple-
mentation errors in the modeling code. Exploration of the
participants’ data led us to a different conclusion, however.

Leaving out Distance values of 5, the remaining conditions
are approximately symmetrical, front-to-back, in geometrical
terms. For example, at Distance 0, the front edge of the red
stack is aligned with the back edge of the blue stack, while
at Distance 4, the back of the red is aligned with the front of
the blue, as if reflected in a mirror (though rotation introduces
minor asymmetry). The AVS model produces consistent pre-
dictions for such symmetrical configurations.

Participant ratings did not show the same consistency be-
tween Front and Back ratings. For the symmetrical con-
figurations, Back ratings were higher than Front ratings by
about 0.2 on the unit scale. Further experimentation would
be needed to verify this bias. It is generally held that models
of spatial relationships such as these generalize across orien-
tations; our results suggest that the viewer’s perspective may
be a factor in the magnitude of ratings.

Table 1 shows how well the models fit the survey ratings,
following the approach of Regier and Carlson. Each entry is
the y-intercept and slope of a regression that uses the model’s
output to predict ratings; an R2 value is below each such entry.



For example, we see that AVS gives the best fit for Front:
a regression line with a y-intercept of 0.046 and a slope of
0.880 gives the best prediction of survey ratings, with R2 =
0.813. The better the model, the closer the intercept is to zero
and the closer the slope is to 1.

Table 1 shows that of the fuzzy models, the Histogram
model has the best balance of intercept and slope for the front
relationship, though a lower R2. Angle Aggregation is the
best for the back relationship, though all the fuzzy models
are similar. All models perform poorly for right and left rela-
tionships, which is inevitable—Distance and Angle have no
predictive value on the participants’ ratings.

We tested the sensitivity of the modeling predictions by vir-
tually reconstructing each configuration and running the mod-
els on the “theoretical” values for θ1 . . .θ3 and r1 . . .r3. We
found no marked difference between the predictions based on
the sensor data and the theoretical data; data is not presented
for reasons of space.

To summarize, the fuzzy models’ predictions tend to un-
derestimate ratings in all categories of spatial relationships
that we tested. The predictions for front and back are of the
same shape as the human ratings with respect to relative dis-
tance from the viewer, however, which suggests that an ad-
ditional constant or linear factor could improve their perfor-
mance. Poor performance on right and left is partly due to this
underestimate; this does not account for the models’ system-
atic dependence on Distance, however. The AVS model was
used for comparison, based on a virtual bird’s-eye view. With
access to depth information about the stacks, the AVS model
outperformed the fuzzy models for the front relationship but
was considerably worse than the fuzzy models for the back
relationship, due to asymmetrical ratings by the experiment
participants. We leave these issues for future work.

Conclusion
The long-term thrust of this area of research is to give robots
a language of spatial relationships that are consistent with hu-
man understanding. This can facilitate human-robot interac-
tion and potentially improve a robot’s ability to interpret hu-
man activity or designed environments. Some of the work
cited in this paper goes much farther toward this goal than we
have here, and another direction for future work is to deter-
mine how best to integrate our results with theirs.

Our results are nevertheless informative. One of the chal-
lenges in determining spatial relationships is the uncertainty
of data in dealing with an egocentric view; another is in noisy
sensor data. A step toward this goal is to identify a technique
that gives results in line with human understanding. This pa-
per compared three fuzzy methods with human survey data to
find if any of the techniques performed acceptably against hu-
man perception. These techniques were developed for judg-
ments about orthogonal presentations and performed approx-
imately as expected from a viewer perspective.

Only four primitive spatial relationships were used in this
work; many more would need to be addressed in an effec-

tive vocabulary: near, far, surrounding, inside, outside, and so
forth. Another direction for future research is to determine the
minimum amount of information the robot must sense in the
environment before being able to make accurate predictions
about the spatial relationships. Our work used three points on
each object. With more points some of our models described
might have produced better predictions. The work presented
here compares relatively straightforward methods of deter-
mining spatial relationships given the current scene available.
But if the robot moves a new scene is presented and any in-
formation from previous scenes is not incorporated into the
current calculations of spatial relationships. This could play
a part in determining spatial relationships with human robot
interaction. A final interesting question is whether people use
only available information in the picture to determine the spa-
tial relationships between objects or whether they incorporate
background knowledge or previous experience.
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