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Abstract

Premises in conditional reasoning consist of an “if” statement
(e.g., “if I can catch the bus, I won’t be late”) and a fact (e.g.,
I can catch the bus). Such types of simple inference have been
studied empirically and formally for about a century. In the
past five decades, several cognitive theories have been pro-
posed to explain why humans deviate from predictions of con-
ditional logic. In this article, we (i) describe existing theo-
ries, (ii) develop multinomial processing tree (MPT) models
for these theories and systematically extend the theories with
guessing subtrees to test the predictive power of the cognitive
models. The models are evaluated with G2, Akaike’s (AIC)
and Bayesian Information Criteria (BIC), and Fisher’s Infor-
mation Approximation (FIA). Mental model theory with di-
rectionality for indicative conditionals while the independence
model for counterfactuals provide the best fits to data from psy-
chological studies.
Keywords: Human conditional reasoning; multinomial pro-
cess trees; cognitive theories

Introduction
Suppositional and hypothetical thinking are one of the ma-
jor cognitive abilities distinguishing humans from other an-
imals. This form of thinking is essential to reflect on past
events, hypothesize alternative outcomes, and partially pre-
vent future mistakes. It also facilitates us to make and test as-
sumptions about future outcomes to select actions, responses,
precautions or/and procedures. This kind of thought is usu-
ally presented as conditional statements in natural language.
A conditional statement is usually in the form of “if p then q”,
expressing a relationship between the antecedent p and a con-
sequent q. Classical studies of reasoning always use sets of
arguments consisting of a conditional and an additional cate-
gorical information (“a fact”), i.e., p, ¬p, q, ¬q. Consider the
following problem:

If I can catch the bus, I won’t be late. (conditional)
I can catch the bus. (categorical)
What, if anything, follows?

Almost all reasoners draw “I won’t be late” as a conclusion
of the two statements. This is an example of a modus ponens
(MP for short) inference, i.e., to conclude the consequent q (I
won’t be late) from the conditional and the categorical state-
ment p (I can catch the bus). Other inference schemas are
modus tollens (MT for short), i.e., to conclude ¬p (I cannot
catch the bus) from the conditional and an additional categor-
ical statement ¬q (I will be late).

Both schemas MP and MT are classically logically valid.
The other two schemas, namely denial of the antecedent (DA,

to conclude q when ¬p is given as the additional categori-
cal statement) and affirmation of the consequent (AC, to con-
clude p when q is given), are logically invalid but commonly
drawn by humans. We focus on deductive reasoning in this
article. While the classical logical interpretation is the so-
called material implication (if the antecedent is true, the con-
sequence cannot be false) and is easy to define, many psycho-
logical experiments have demonstrated that humans deviate
from this interpretation. For example, conditional statements
in subjunctive grammatical mood (i.e., counterfactual state-
ments) can trigger a different endorsement pattern of the in-
ferences (Byrne & Tasso, 1999; Thompson & Byrne, 2002),
compared to statements in indicative mood, i.e., factual state-
ments. It was found that people make inferences from coun-
terfactual conditionals that are less frequently made, for ex-
ample, when they are asked to reason from the two condition-
als: ‘If George kept his stock in Company B, then it earned
$1,200 (Byrne & McEleney, 2000)’ (factual) and ‘If George
had kept his stock in Company B, then he would have been
better off by $1,200’ (counterfactual). The two negative infer-
ences, namely Modus Tollens (MT) and Denial of Antecedent
(DA), had higher endorsement rates in the counterfactual than
in the factual condition. We analyze different psychological
theories while combining them with an idea from signal de-
tection theory (Macmillan & Creelman, 2004). In visual per-
ception (or memory recognition), the application is to test if
humans can correctly identify or not the presence or absence
of stimulus in an environment with background noise. We
apply this idea to conditional reasoning as follows:

Inference Response of Ss Response of Ss
does logically “not follow” “follow”
follow miss hit
not follow correct rejection false alarm

Both inference rules MP and MT are in the category of log-
ically follows. Hence if they are applied, we have a hit (oth-
erwise, we have a miss). If the inference rules AC and DA are
not applied, we have a correct rejection (but a false alarm if
applied). Oberauer (2006) has already formalized some the-
ories with multinomial process trees (MPTs) for all the 16
possible answer patterns that are subsets of the four infer-
ences. Hence, his tree included all cognitive processes alto-
gether that led from an input to the 16 leaves which represent
the responses. A single fixed guessing tree was inserted to
each tree. The models were evaluated by G2 (see later section



for details).
Inspired by the aforementioned idea, we have systemati-

cally developed trees for each of the four inference patterns
combined with parametrized guessing trees, determining dif-
ferent modes of guessing. That means instead of one tree for
all the four inferences, 4 separate trees were constructed for
each of MP MT AC and DA according to different cognitive
theories. The remainder of this paper is structured as follows:
In the next section, we will briefly review current existing
theories for conditional reasoning. Then, we will represent
these theories as multinomial process trees and systemati-
cally vary the amount of guessing for different theories. Then,
we will review and report the model fitting results of 45 be-
havioral experiments (total number of participants N = 2530,
datasets with the endorsement percentages and N provided
for all the four inference rules) on conditional reasoning for
simple/classical/indicative conditionals and 12 experimental
datasets for counterfactual reasoning, N = 577. The cogni-
tive theories formulated as multinomial process theories are
then evaluated based on model selection criteria measures –
the information criteria AIC and BIC which take additionally
the model size into account. A discussion of the best cogni-
tive theory in terms of predictive power concludes the paper.

Cognitive Models of Conditional Reasoning
We introduce some formal notations that we will use in the
following sections. A conditional (“if p then q”) is written as
p→ q or (q | p). Negating a fact p is represented as ¬p, the
same applies for q. Theories of conditional reasoning can be
vastly classified into model-based, e.g., the theory of mental
models (Johnson-Laird & Byrne, 1991), rule-based, e.g., the
theory of mental logic (Rips, 1994), and theories that build on
the idea of Bayesian modeling (Oaksford et al., 2000).

Theory of mental models
The mental model theory (MMT) of conditional reasoning
(Byrne & Johnson-Laird, 2009) assumes that for a conditional
p→ q, the semantic information of each premise is repre-
sented in an initial mental model akin to:

p q
. . .

Hence both the antecedent and consequent are true in the
initial mental model. If p is given, a modus ponens infer-
ence, can be drawn and q is derived. In cases where other
information is given, e.g., ¬q, the model needs to be fleshed
out, i.e., other true interpretations of the conditional need to
be generated. This leads to the construction of three models
eventually:

p q (initial mental model)
¬p q (alternative mental model 1)
¬p ¬q (alternative mental model 2)

Hence, an MP-inference is easy, while MT requires more
cognitive effort to generate alternative models. MMT ex-
plains deviation of human reasoners from the normative logi-
cally correct performance by inaction or failure in the search

of counterexamples and fleshing out of the initial mental
model. The mental model theory does not make any assump-
tion about the directionality of the antecedent and consequent.
However, several studies have shown that the directionality
of conditionals plays a role in the reasoning process (Evans
& Beck, 1981; Barrouillet et al., 2000). We thus include both
the classical and extended mental model theory by introduc-
ing the assumption about directionality (Oberauer, 2006).

The theory of mental logic
The mental logic theory suggests that humans translate the
premises into logical form and use formal rules to draw or
prove the conclusion (Rips, 1994; Braine & O’Brien, 1998).
However, only MP and MT can be proved by formal rules.
MP can be drawn directly with the formal rule of inference
but the proof of MT requires several more steps, with reduc-
tio ad absurdum (finding a contradiction to the supposition
of p). That means, reasoners firstly suppose p after reading
the two premises and then find that the conclusion q (by ap-
plying the MP inference rule on the supposition) and ¬q (the
second/minor premise) are incompatible and thus reject the
supposition of p using reductio ad absurdum and finally con-
clude ¬p. Errors in reasoning performance are due to misun-
derstanding of the conditional statements or the application of
a wrong rule. As the endorsement of AC and DA rules cannot
be explained by mental logic, we use guessing trees for these
two inferences. It follows that implementing the mental logic
as an MPT is not possible without any guessing trees.

Probabilistic approach: The independence model
Oaksford & Chater (1994) proposed a Bayesian understand-
ing and modeling about how people interpret a conditional
and reason about it. Instead of interpreting p→ q in the clas-
sical logical sense – as material implication – human reason-
ers and their reasoning processes can be modeled as the con-
ditional probability of q given p, i.e., P(q | p). In their clas-
sical work, they proposed a dependence and an independence
model. We focus on the later: the classical independence
model (Oaksford & Chater, 1994) consists of two parame-
ters a for P(p) and b for P(q | ¬p). To fit experiments, the
best parameter values were determined by iterating through
the values 0.1, 0.3, 0.5, 0.7, and 0.9 for both a and b as in
Table 1 of Oaksford & Chater (1994). The model accepts a
specific conditional probability only if the computed value is
above a given threshold. We present here an updated version
(Oaksford et al., 2000; Singmann et al., 2016). The model
assumes that reasoning is done through assessing the prob-
ability values of conclusions based on the reasoner’s back-
ground knowledge. More precisely, when asked to evaluate
an inference such as MP, “Given ‘If p then q’ and ‘p’, how
likely is q?”, individuals consult their background knowledge
regarding p and q and assess the conditional probability of the
conclusion q given the minor premise p. Thus, endorsement
E is modeled as E(MP) = P(q | p). The joint probability dis-
tribution of p and q, and their negations ¬p and ¬q can be pa-
rameterized in terms of three parameters, a = P(p); b = P(q),



Table 1: Oaksford et al. (2000) model of probabilistic
conditional reasoning (see, Singmann et al., 2016).

q ¬q
p a · (1− e) a · e
¬p b−a(1− e) (1−b)−ae

Note. The table represents the joint probability distribu-
tion for a conditional, “if p then q” by three parameters:
a = P(p), b = P(q), and e = P(¬q | p).

and e = P(¬q | p) as shown in Table 1, which leads to the fol-
lowing model predictions (cp. Singmann et al., 2016):

E(MP) = P(q | p) = (1− e) (1)

E(MT) = P(¬p | ¬q) =
1−b−ae

1−b
(2)

E(AC) = P(p | q) =
a(1− e)

b
(3)

E(DA) = P(¬q | ¬p) =
1−b−ae

1−a
(4)

Many experiments, however, provided reasoners with
premise information that they were asked to consider as
true. These formulae can thus be reduced for our prob-
lems – the probability of the given fact in the experiments
can be assigned as 1. Hence, it holds for the example
P(“I catch the bus”) = 1. We can then represent the simpli-
fied independence model and transform it into an MPT. Con-
sider modus ponens, with P(p) = 1. As a = P(p), we have
a = 1. Hence, the formula is reduced to 1− e. For MT,
P(¬q) = 1, it follows P(q) = 0, and hence b = 0. Thus,
(2) above is reduced to (1− ae). For E(AC) for AC with
b = P(q) = 1, Equation (3) is reduced to a(1−e). For E(DA)
holds, a = P(p) = 0, and (4) above is reduced to (1−b).

The suppositional theory
The suppositional theory proposed by Evans & Over (2004)
is a hybrid theory with the application of probability assump-
tion akin to the independence theory and dual process theory,
together with some rules in the field of pragmatics. Simi-
lar to the independence theory, it emphasizes the cases where
we have a high probability of the consequent given the prob-
ability of the antecedent. Contextual effect found in a vast
amount of studies in conditional reasoning can be explained
by pragmatic inferences. Finally, the theory has a dual sys-
tem incorporated: While immediate inferences (System 1) are
solely drawn by the probability account, System 2 inferences
are possible and lead to deductively valid answers (cp. Ober-
auer, 2006).

Theories of Conditional Reasoning as MPTs
Our main goal is to assess the empirical adequacy of the
aforementioned cognitive theories. Towards this goal, we
need to represent the theories formally. Following a sim-
ilar approach by Oberauer (2006), we formalize the theo-

Figure 1: Two examples for MPTs for the mental model
theory (without directionality). The left tree represents the
model for the modus ponens; while the right represents the
model for the modus tollens, where an additional flesh-out
process from the initial mental model is necessary.

ries as multinomial processing tree (MPT) models (Riefer &
Batchelder, 1988).

MPT models are a class of cognitive models for categori-
cal data that describe observed response frequencies resulting
from latent cognitive states. The probabilities that are repre-
sented at the edges in the graph for transitioning a cognitive
states are estimated from data. At the same time, the afore-
mentioned cognitive theories must explain why the answers
of the participants often deviate from the logically correct so-
lution as well. There are two ways of how responses are gen-
erated by a reasoner: a reasoning process, the process is de-
scribed and/or predicted by a cognitive theory and a guessing
process, a process that is not explained in a cognitive theory
and, in principle, any possible response can be given.

We represent the reasoning and guessing parts of the theo-
ries by multinomial process trees as we outline in the follow-
ing. For each of the four inference schemas (MP, MT, DA, AC)
we develop separate MPT trees. As the theories assume dif-
ferent cognitive processes for the four inferences, we model
them as four MPTs. An additional advantage is that this en-
ables us to investigate the differences in processing of the four
inferences, see Fig. 1 for an example for MP and MT for the
mental model theory. Each root node contains a reasoning pa-
rameter r that is responsible for estimating responses that are
generated by the reasoning subtree and consequently (1− r)
as generated by the guessing subtree. The guessing tree is
identical for all theories, with a parameter g to guess a yes-
answer and (1− g) a no-answer. In the reasoning tree, we
have theory specific nodes that provide specific answers by
transitioning through them. In the case of modus ponens (the
most simple case), the correct answer can be read out via go-
ing along the reasoning branch, where an initial model is built
(the model p q). In the case of modus tollens, a full explicit
model needs to be built (parameter f ) for a correct answer and
if it is not built (1− f ), the decision is solely made by the ini-
tial mental model. Hence, these process models do reflect as-
sumed cognitive processes and they are similar enough to for-
malizations as proposed for syllogistic reasoning (cp. Klauer
et al., 2000). In the following sections, we will investigate
all previously mentioned theories: The mental model theory
with and without directionality, the mental logic theory, the
probabilistic theory and the suppositional theory – formalized



as MPTs and the respective extended models with a reasoning
part and a guessing tree (as described above). we systemat-
ically replace the reasoning parts by pure guessing trees (we
will describe in detail later in the section “MPT analysis for
model comparison”). We can assume that some reasoning
subtrees may even have a negative impact, so we systemat-
ically eliminate for each theory the reasoning subtree in the
extended models.

The Experimental Data
Selection of the experimental studies
We searched the literature and the internet for articles on
classic conditional reasoning and non-monotonic conditional
reasoning and reporting at least the number of participants
as well as absolute number of reasoners or percentages for
all four inference types (MP, MT, DA, AC). Extensive search
of studies in Pubmed, Science Direct, Google and Google
Scholar with the keywords “(conditional reasoning) or (con-
ditionals) or (prepositional reasoning) or (counterfactual) or
(alternatives) or (enabler) or (disabler)” was performed. Most
of the articles are not suitable for this analysis as the endorse-
ment percentages/frequencies of the four inference rules were
not provided. We have included all experiments reporting the
four inference types as within subject factor and the questions
presented to participants was in the form of “what (if any-
thing) follows (necessarily)?” or “think about what conclu-
sion you can draw from the information” or “assess whether
these conclusions follow logically from the information” or
“Therefore, ”; with two to four answer options provided to
participants. For MP and DA, the answer options were “q”,
“¬q“ (and “may or may not q” and “not sure” or “nothing
can be concluded”); and “p”, “¬p“ (and “may or may not
p”, and “not sure” or “not nothing can be concluded”) for MT
and AC. We have excluded 3 experiments with special ma-
nipulation of the content of the conditional statements. This
selection eliminates as possible the factors due to experimen-
tal design. Finally, 16 studies of indicative conditionals (first
premise being in the form of “If p then q”; 45 experiments
in total) and 6 studies of counterfactual conditional reasoning
(12 experiments in total) of adult data were included1. We
need the frequencies of participants endorsing each inference
for our later analysis. For studies providing the endorsement
percentages, we computed the frequencies by the percentages
and the number of participants.

Reliability of data
We assessed the overall homogeneity for each inference by
examining the respective rank orders of the endorsed infer-
ences using Kendall’s coefficient of concordance (W), which
ranges from 0, no consensus, to 1, perfect consensus. The
datasets are rather homogeneous for both indicative condi-
tionals and counterfactuals, W = .617, p < .001 and W =
.767, p < .001, respectively.

1For studies and MPTs, see: www.cc.uni-freiburg.de/data

Conditional reasoning with counterfactuals
Most of the studies on counterfactual reasoning were car-
ried out by Byrne and colleagues (Byrne & Tasso, 1999;
Thompson & Byrne, 2002). Usually, conditional statement in
subjunctive mood (for native alphabetic languages speakers)
were presented to participants to indicate the counterfactual
(unreal) property of the situation described in the statement.
In these studies, the two negative inferences, DA and MT, usu-
ally had a much higher endorsement percentages in the coun-
terfactual than factual condition (but the endorsement per-
centages of the two positive inferences remained statistically
the same). The results support the hypothesis of Byrne and
colleagues that reasoners consider two alternatives when they
encounter such counterfactual arguments, namely the fact and
supposed “fact” (also known as the “presupposed factual real-
ity” and “counterfactual conjecture”). Reasoners constructed
already the following two models as the initial mental model
and thus the two negative inferences are more likely to be
drawn:

p q (counterfactual conjecture)
¬p ¬q (presupposed factual reality)

Besides, there are three other proposals applicable to coun-
terfactual reasoning. For example, Lewis and Stalnaker’s
possible world semantics of modal logic (Lewis, 2013; Stal-
naker, 1968). They proposed that reasoners assume another
world which is most similar to the real world. They perform
counterfactual reasoning through reasoning about this most-
similar world. However, many researchers criticized the as-
sumption that ordinary people do not judge the closeness of
the world/possibility. We have only fitted the models of the
adapted mental model theory for counterfactuals (both with
and without directionality) as this theory explicitly makes as-
sumptions about cognitive processes in human reasoning.

MPT Analysis for Model Comparison
We fitted each model to the aggregated data via the maximum
likelihood method using MPTinR (Singmann & Kellen, 2013).
The package uses four measures, and the smaller their val-
ues, the better the fit between a model and the data: First, G2

measures the goodness of fit using the maximum-likelihood
method, which maximizes the likelihood of the frequencies
of observations given the parameter values. It underlies the
remaining three measures. Second, the Akaike information
criterion (AIC) indicates how much information is lost when
a model represents the process that generates the data, taking
into account both its goodness of fit and number of param-
eters. Third, the Bayesian information criterion (BIC) is a
Bayesian analog of AIC that selects the best model from a fi-
nite set of them, penalizing models according to the number
of their parameters. Fourth, the Fisher information approxi-
mation (FIA) measures the amount of information that an ob-
served frequency carries about a parameter which models the
observation. It provides a good measure of the flexibility of a
cognitive model. We evaluated the five cognitive theories and
some adaptation of the theories systemically. Firstly, we com-



pared the MPT implementations of different cognitive theo-
ries (the original version) with only one guessing trees exten-
sion at the root node, see the (1−r)-paths in Fig. 1. Secondly,
we systematically eliminated the reasoning subtree, the r-path
in 1, 2, or 3 of the inference schemas MT, DA, and AC and kept
the guessing tree only. If we replaced the reasoning subtree
for the MT we denote it as Guess2. If we replace the DA and
AC reasoning subtree, we denote it as Guess34. The reason is
to investigate the positive or negative impact of the reasoning
tree. The MP reasoning tree is never replaced by a guessing
tree as most humans do not have difficulty in drawing MP
inference and the sole use of guessing would thus be unnec-
essary and redundant. We use a PureGuess model which ex-
clusively consists of guessing trees (no reasoning part in any
of the four inference schemas) as the base line. The impact of
the inference part and how it may disguise the processes can
then be evaluated – by comparing if the reasoning part of the
theories may add something substantially or not in the infor-
mation criteria. We repeat the two analysis steps with datasets
from counterfactual reasoning to check if the best models for
indicative conditionals apply to counterfactual reasoning too.

Theory evaluation
Our first analysis deals with testing the predictive power of
the aforementioned cognitive theories for human conditional
reasoning. Table 2 reports the results of the four theories (ex-
cluding the mental logic as it only makes predictions for MP
and MT) and additionally the pure guessing model PureGuess.
The lower the G2, AIC, BIC, and FIA the better the models
are. Table 2 shows that the theory (extended with a guessing
subtree) which fits best the data is the mental model theory
with directionality, which differs from the suppositional the-
ory in a better FIA. The PureGuess model performs worst,
i.e., this shows that the reasoning parts of the theories con-
tribute in explaining the data considerably.

Table 2: Results of MPT fits to the aggregated data set of
classical conditionals, original version

No. of
Model parameters G2 FIA AIC BIC
MMTd 4 16.6 3 25 53
SUP 4 16.6 21 25 53
MMT 3 139.5 81 146 167
IND 3 492.5 * 499 520
PureGuess 1 653.1 331 655 662

Note. SUP = suppositional theory; MMTd = mental model
theory with directionality; MMT = mental model theory;
IND = independence model. PureGuess = pure guessing
trees for MP, MT, AC, and DA. * The independence model
is not a binary MPT so FIA cannot be computed.

Impact of guessing
In the next analysis, we investigated what happens if we sys-
tematically eliminate inference parts according to the theo-

ries. Table 3 reports the 5 best fitting theories out of 34 the-
ories. Except the mental logic (with only 2 variants: ML-
Guess34 and ML-Guess234), all the other 4 theories have 8
variants (total = 4*8 + 2 = 34). The models are ordered re-
garding the best values for the information criteria BIC, AIC,
and FIA, as the G2 does not take the number of parameters or
the model size into account. Table 3 shows that three models
have the best performance regarding the information criteria:
The mental model theory with directionality and exclusive
guessing at MT (MMTd-Guess2), the mental model theory
with exclusive guessing at DA and AC (MMTd-Guess34) and
the mental logic with exclusive guessing at DA and AC(as in
the original theory by Rips, ML-Guess34). The selection val-
ues with these pure guessing trees are much better compared
to the original versions. This indicates that theoretical ac-
counts on DA and AC may have to be revised.

Table 3: Results of the MPT fits to the aggregated data set of
indicative conditionals by replacing reasoning by guessing.

No. of
Model parameters G2 FIA AIC BIC
MMTd-Guess2 3 1.6 12 8 29
MMT-Guess34 3 1.6 12 8 29
ML-Guess34 3 1.6 12 8 29
IND-Guess2 4 0 * 8 37
SUP-Guess2 4 0 15 8 37

Note. SUP = suppositional theory; MMTd = mental model
theory with directionality; MMT = mental model theory;
IND = independence model. Guess2 = MT replaced by the
guessing tree; Guess34 = AC and DA with guessing tree
only. * FIA cannot be computed for non-binary MPTs.

Counterfactual conditional reasoning
For the third analysis, we tested the performance of the MPT
trees of the original theories for conditional reasoning on
the counterfactual data. We constructed other sets of MPT
models for the mental model theory (cMMT: without direc-
tionality and cMMTd: with directionality) according to the
aforementioned account of Byrne, which assumes that peo-
ple build two initial mental models for counterfactuals. But
both versions of mental model theories show similar perfor-
mance. For the counterfactual data, however, the best models
are now the independence model with exclusively guessing at
the modus tollens (cf. Table 4).

General discussion
While almost all cognitive theories of reasoning aim at ex-
plaining human reasoning with conditionals, systematic com-
parisons are rare. We implemented different theories as multi-
nomial process trees and systematically extended each of the
theories with guessing trees and evaluated the goodness-of-fit
of (i) the original theories, (ii) the extended models by sys-
tematically replacing reasoning subtrees by guessing trees for
one to three of the MT, DA, AC-patterns, and (iii) models on



Table 4: Results of the multinomial model fit to the aggre-
gated counterfactual data

No. of
Model parameters G2 FIA AIC BIC
IND-Guess2 4 0 * 8 31
SUP-Guess2 4 0 12 8 31
MMTd-Guess2 3 6.5 12 13 30
cMMTd-Guess2 3 6.5 12 13 30
ML-Guess34 3 6.5 12 13 30

Note. Models are ordered for the information criteria AIC,
BIC, and FIA. Guess2 = MT with guessing tree only; Guess34
= AC and DA with guessing tree only.

counterfactual theories. We performed additionally a litera-
ture search and found a high homogeneity of the data. Most
of the reported studies asked the reasoner to hold the condi-
tional and the categorical fact as true. The best fitting theory
regarding the information criteria AIC, BIC, and FIA (that
penalize additional parameters) in case (i) and (ii) is the men-
tal model theory with directionality. For counterfactuals, the
best model is the independence model with the modus tollens
replaced by pure guessing. Such a difference can be expected
as models that perform well in one domain do not necessar-
ily perform well in another. Secondly, the strength of the
Bayesian accounts is to represent the difference in strength
between antecedent and consequent, which is rarely reflected
in most experiments. Another interesting finding is that when
comparing models with reasoning and guessing versus guess-
ing alone, some theories are in fact better to assume that some
patterns are in fact guessed. In line with the finding of Ober-
auer (2006), guessing is a very important part in conditional
reasoning. The goodness of fit (wrt. AIC and BIC) improves
by replacing parts of the theories by guessing in one or more
of the three inference rules, especially for MMT. One phe-
nomenon is that reasoner either guess for both AC and DA
or MT alone. This might suggest that the processing of MT
inference might not be the same as that of the two invalid
inferences, AC and DA. Current reasoning theories underes-
timate the influence of guessing on participant’s responses –
especially in reasoning with conditionals.
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