
Implicit Memory Processing in the Formation of a Shared Communication System
Junya Morita (j-morita@inf.shizuoka.ac.jp)1, Takeshi Konno (konno-tks@neptune.kanazawa-it.ac.jp)2,

Jiro Okuda (jokuda@cc.kyoto-su.ac.jp)3,Kazuyuki Samejima (samejima@tamagawa.ac.jp)4,
Guanhong li (adam.li@jaist.ac.jp)5, Masayuki Fujiwara (m-fujiw@jaist.ac.jp)5,

Takashi Hashimoto (hash@jaist.ac.jp)5

1Faculty of Informatics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka, Japan
2Information and Communication Engineering, Kanazawa Institute of Technology, 7-1 Ohgigaoka, Nonoichi, Ishikawa, Japan

3Faculty of Computer Science and Engineering, Kyoto Sangyo University, 458 Koyama, Kamigamo, Kita-Ku, Kyoto, Japan
4Graduate School of Brain Science, Tamagawa University, 6-1-1, Tamagawa-Gakuen, Machida, Tokyo, Japan

5School of Knowledge Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, Japan

Abstract

This paper presents a simulation study focusing on implicit
memory in the formation of a new communication system.
In the models presented here, two agents aim to achieve their
common goal by exchanging messages composed of two fig-
ures, whose meanings are not defined in advance. The effect
of implicit memory has been studied with two different sym-
bolic processes, implemented in ACT-R. Our results indicate
that the difference caused by symbolic processes reduces when
implicit memory is incorporated into the model. We have also
found the effect of implicit memory on the creation of an iso-
morphic communication system, shared among agents. These
findings suggest that implicit memory has some roles in the
formation of a human communication system.
Keywords: Communication; imitation; implicit process;
ACT-R

Introduction
People try to communicate with others even when they do
not share a common language. They also understand others’
intentions through repeated interactions. It has previously
been speculated that humans have the ability to develop a new
communication system, where only limited common ground
is shared, in advance. Addressing the types of cognitive func-
tions involved in such a process will contribute to understand
the origins of human communication.

Some researchers have examined this question by design-
ing communication environments in laboratories (for a review
Galantucci & Garrod, 2011; Scott-Phillips & Kirby, 2010).
For example, Galantucci (2005) conducted an experiment to
observe the formation of communication systems, wherein,
a pair of participants communicated through a medium that
restricted the use of standard communication means, such as
utterances and letters. He observed the process of forming a
new communication system, and discussed that implicit in-
formation was conveyed through routine behavior.

Related studies have also been conducted in the field of lan-
guage acquisition. Most human infants naturally acquire lan-
guages, while a few experience difficulty. From the observa-
tions of such a developmental process, some behavioral char-
acteristics that lead to language learning have been found.
For example, Tomasello (1999) argued that a type of imita-
tion, called “role-reversal”, in which the child aligns him-
self/herself with the adult speaker, is essential for produc-
ing communicative symbols. The cognitive modules behind

this behavior have also been discussed. Baron-Cohen (1997)
hypothesized the Theory of Mind Module (ToMM) used for
imitations of intentional behaviors in others. Rizzolatti and
Arbib (1998) also suggests the origins of language from a
viewpoint of the mirror neuron system.

For the cognitive modeling community, the challenging
questions are: (1) how such modules are computationally rep-
resented, and (2) how are these integrated to a cognitive archi-
tecture that holds human-level goal management, and mem-
ory systems. Concerning these questions, several researchers
have constructed a model of language evolution (Reitter &
Lebiere, 2011), and an agent including the ToMM, (Stevens,
Weerd, Cnossen, & Taatgen, 2016) in the general cognitive
architecture.

In our previous study, we also developed a model of shar-
ing communication systems (Morita, Konno, & Hashimoto,
2012). In our model, agents were implemented in the ACT-
R cognitive architecture that posses general learning mech-
anisms such as reinforcement learning, and instance-based
learning (Lebiere, Gonzalez, & Martin, 2007). By incorpo-
rating imitative learning into these mechanisms, Morita et
al. (2012) investigated the role of imitation in the process
of forming a new communication system. The results of the
study indicated the importance of imitation to simulate the
formation process of a human communication system.

However, in our previous work, the production rules ex-
ecuting imitative learning were coded manually. This does
not provide the answer as to how these emerge from the
human memory system. To overcome this limitation, our
present study examines the process that substitutes the manu-
ally coded imitation process. This study especially focuses on
the role of implicit memory processes in forming a commu-
nication system. Before presenting the details of our present
study, we recapitulate concepts from our previous study.

Task
This research simulates the experiment reported in Konno,
Morita, and Hashimoto (2013), where the authors modified,
and used a coordination game taken from Galantucci (2005).
As in Galantucci’s study, the game environment contained
two characters, each controlled by a player, and four inter-
communicating rooms. The game was composed of several



Figure 1: A single round of the coordination game consisted
of three steps. In step 1, to create a message, participants se-
lected figures by clicking the segments indicated by “Yours”.
In step 2, a character (blue boxes indicated by “You”) was
moved by drag-and-drop. In step 3, the result of the move-
ment was shown to participants. Blue boxes (“You-Pre” and
“You-Post”) and green boxes (“Pat-Pre” and “Pat-Post”) rep-
resent the movements made by the participant, and the part-
ner, respectively.

repeated rounds. At the beginning of each round, characters
were randomly placed in two different rooms. Players were
unaware of each others’ locations, and aimed to bring their
characters to the same room. The characters could not move
to rooms that were located diagonally. Owing to this con-
straint, players needed to communicate before moving their
characters.

Figure 1 presents the flow of each round, consisting of
three steps: step 1 for exchanging messages; step 2 for mov-
ing characters; and step 3 for confirming the result of their
movement. Among these steps, step 1 is the most crucial for
the success of this task. In this step, the two players con-
struct their own messages, composed of two figures such as
“ ”, using six available figures: , , , , , and

. The meanings and usages of the figures were not shared
with the participants in advance. Each player could send only
one message per round, but they could take turns in exchang-
ing messages. A message sent by the first sender instantly
appeared on the screen of the other player. The second sender
could compose her/his message after observing the message
of her/his partner (see participant 2 in Figure 1). Through
such turn-taking, the first sender could transmit her/his cur-
rent room location, and the second sender could transmit the
destination, while taking into account the current room loca-
tion of her/his partner. Participants were not assigned their
roles by the experimenter; instead, they were required to self-
assign their roles.

Figure 2: Schema of the model.

In the experiment reported in Konno et al. (2013), partic-
ipants (21 pairs) attempted to develop a communication sys-
tem within the stipulated one-hour time limit. When char-
acters moved to the same room, players received two points,
otherwise, they lost one point; although, the scores did not
drop below zero. The session was terminated when the score
reached 50 points. As a result, 66 percent of the participants
(14 pairs) successfully reached the points in 48.42 averaged
rounds. The models presented in the following section are
intended to simulate the behavior of such successful pairs.

Model
Architecture
The task presented in the previous section requires symbolic
learning for constructing a new symbol system. In addition,
according to Galantucci (2005)’s report, implicit learning,
which is not present in symbolic systems, possibly plays a
role in this task. Morita et. al (2012) constructed a model us-
ing ACT-R (Anderson, 2007), which integrates symbolic and
sub-symbolic learning mechanisms. This section illustrates
how our previous study constructed a model for sharing the
communication system.

ACT-R is composed of several independent modules. The
modules used in our study are presented in Figure 2. Except
for the production module, each module has a buffer to tem-
porarily store information, called a chunk (a set of slot-value
pairs). The production module integrates the other modules
using production rules, which consist of a condition-action
pair that is used in sequence with other productions to per-
form a task. The conditions and actions in the production
rules are specified, along with the buffer contents of each
module.

In the model presented in Morita et al. (2012), two inde-
pendent agents interact through a simulated task environment
developed in the ACT-R graphical user interface (AGI). AGI
provides screens that hold visual information as chunks. In
this study, the locations of the characters, and messages asso-
ciated with each agent are displayed on the screen. An agent’s
visual module searches for a character and stores its location



Figure 3: Process of the model. Circles indicate decisions
based on conflict resolution.

(room) in a visual buffer. The visual buffer also stores the
symbols that compose a message, attending to the screen lo-
cations where the figures appear. The simulated task environ-
ment also provides a virtual mouse to change the figures and
move the characters on the screen.

Visual information stored in the visual buffer is transferred
to the goal buffer through the production module. The goal
buffer holds the goal of the current task, and other task-
related information. Specifically, our model has nine slots for
the goal buffer: four slots for storing room locations (initial
(from)-destination (to) × self-partner), four slots for storing
symbols (left-right × self-partner), and a slot for encoding the
order for the exchanged messages.

The declarative module stores past states of the goal buffer,
as instances. It also stores chunks representing task con-
straints such as path information indicating a room that
the characters can move to (e.g., f rom to isa path),
or figures the agent can use to construct a message (e.g.,

isa f igure). An agent uses these chunks (i.e., declarative
knowledge) to choose its destination and construct a message.

The productions of the model construct the process pre-
sented in Figure 3. This process is divided into three steps,
just as in the original experiment (Figure 1). There are two
paths in this process. The left path is for the first sender,
and the right path is for the second sender. The choice of
path is made by conflict resolution, which is a comparison
of two conflicting productions, with noise added utilities. In
each phase of the path of the first sender, there is a conflict
(indicated by circles) between keeping the path of the first
sender, and changing to the path of the second sender. If in
any of these the agent selects the path of the second sender,
the agent tries to perceive the message of her/his partner from
the screen. When the agent obtains the message from her/his
partner, s/he realizes that s/he is the second sender (fills the
order slot with “2nd”). Otherwise, s/he resolves a conflict by
waiting for the message of her/his partner and changing to the

Figure 4: Three types of decision strategies.

path of the first sender. This conflict loop continues until one
of the agents sends a message.

Explicit decision process
In step 1, regardless of the contents of the order slot, both
agents make decisions about their destinations, and their mes-
sages. Concurrently, the first sender predicts the message that
s/he will receive from her/his partner. The predicted message
is checked against the message received in step 2. When the
received message is inconsistent with the predicted message,
the agent makes a new decision about her/his destination.

In summary, there are three situations where agents make
decisions: the first sender in step 1, the first sender in step 2,
and the second sender in step 2. In these situations, agents
apply one of the three decision strategies shown in Figure 4.
Every decision strategy begins by retrieving chunks from the
declarative module, by using the current goal buffer as a cue.
In the trial-error strategy, chunks concerning task constraints
(chunks representing a path and symbols) are retrieved, and
are used to fill in the blank goal slots. In the instance-based
strategy, the agent retrieves an instance that is consistent with
the current goal buffer. The retrieved instance is used to fill
slots concerning the destination, and symbols. The imitation
strategy also uses an instance, but the roles of an agent, and
her/his partner are reversed when retrieving and filling slots.



Figure 5: The implicit process of the use of instance.

The implicit decision process
The decision strategies presented above follow a purely sym-
bolic process. Each production rule explicitly holds the map-
ping of slots from the goal buffer to memorized chunks. Such
a process needs different rules, which correspond specifically
to each decision situation. Figure 4 only shows an example of
the first sender in step 1, where the location-self-from slot is
used as a retrieval cue. In addition to this slot, a partner’s mes-
sage, (the symbols-partner-left slot, and the symbols-partner-
right slot) can be used as retrieval cues by the second sender
in step 1. In the case of the first sender in step 2, where the
goal buffer contains the message sent by the agent, more com-
plex retrieval cues are available.

In order to maximize information sent through the ex-
changed message, it would be better to use instances wherein
the slots are either perfectly, or partially matched to the cur-
rent goal buffer. In the model constructed by Morita et al.
(2012), there are rules concerning each combination of buffer
slots and matching states for the two decision strategies in
all the situations. However, this approach will face difficulty
when the model is applied to open communication tasks,
where the number of signals, or the number of turns are not
decided in advance. Apparently, the model needs to have ab-
stract mechanisms that permit the acquisition of such sym-
bolic processes.

We have not yet solved this problem perfectly. However,
in this paper, we propose another process possibly involved
in forming a shared communication system, and show the be-
havior of this for future model development. The proposed
mechanism tries to represent unintentional processes in im-
itation. People sometimes copy others’ ideas even when it
is not their intention to do so. Those phenomena have been
studied in the context of source monitoring error (Johnson,

Hashtroudi, & Lindsay, 1993) or deficits in self-other diffren-
ciations (Baron-Cohen, 1985).

We consider that spreading activation and partial match-
ing are useful to realize such unintentional imitation. These
are part of ACT-R sub-symbolic computation, which controls
the activation of chunks. The spreading activation represents
contextual effects caused by chunks, held by the goal buffer.
The same chunks stored in the declarative module receive ac-
tivation from the goal buffer. The ACT-R memory process
usually retrieves chunks having the highest activation within
the constraint of the retrieval cues, made by the production
rule. When the partial matching process is enabled, it is pos-
sible for a chunk that is not a perfect match to the retrieval
cues to be the one that is retrieved (Bothell, n.d.).

The combination of the two mechanisms characterizes the
process presented in Figure 5, which presents an application
of the implicit process to the two strategies by using an ex-
ample of the second sender in step 1. The solid one-directed
arrows connecting the goal buffer with the declarative mod-
ule indicate the symbolic process noted in the production rule
(retrieval cues / fill slots). The dotted two-directed arrows in-
dicate the association connected by the spreading activation.

Importantly, in this figure, the instance-based strategy and
the imitation strategy reach the same conclusion. Although
the retrieval cues made by the instance-based strategy do
not match the instance in the declarative module, the values
stored in the slots other than the requested ones accidentally
match to the state of the goal buffer. Consequently, this in-
stance receives the high activation, and is retrieved from the
declarative module. The retrieved instance is applied with a
filling rule used in the imitation strategy.

The benefit of such an implicit imitative process involves
reducing the complexity of symbolic processes. However,
it is unknown whether the ACT-R sub-symbolic computa-
tion actually generates such imitative effects. To explore the
role in the formation of human communication systems, it is
needed to examine the behavior of this mechanism in a con-
trolled simulation experiment.

Simulation
Simulation conditions
We first set up the following two models controlling the deci-
sion strategies presented in Figure 4.
• Instance model: In this model, the agent first tries the

instance-based strategy. If the instance-based strategy fails,
the agent chooses her/his destination and message based on
the trial-error strategy.

• Imitation model: This model extends the instance model
by adding the imitation strategy. The agent first tries to
choose her/his destination and message using the instance-
based strategy. If the agent fails to retrieve an instance,
the imitation strategy is applied. When all other decision
strategies fail, the agent uses the trial-error strategy.
In our previous study, the imitation model indicated better

performance and better fitting to the human data. The imita-
tion strategy gives the model the benefit of using instances in



Table 1: The performance indices. The numbers in parenthe-
ses indicate standard deviation.

Data ExIns ExImi ImpIns ImpImi
Success rates 0.66 1.00 1.00 0.97 0.98
Round 48.42 70.74 60.21 115.48 117.33

(13.36) (17.63) (13.14) (35.51) (37.13)

different ways. Therefore, the success rates of the imitation
model are higher than the instance model in the early round.

With respect to the implicit process, we also set up the fol-
lowing two conditions.
• Explicit process: This model does not have the spread-

ing activation, and partial matching mechanisms. As sub-
symbolic parameters, only the activation noises, and the
expected gains are set (blc = 2,ans = 0.5,egs = 1) to make
the behaviors of the two agents differ. Except for this pa-
rameter setting, this model is same with the model pre-
sented in Morita et al. (2012)

• Implicit process: This model includes the implicit process
presented in Figure 5. In addition to the sub-symbolic
parameters noted in the explicit process, the matching
penalty, and the maximized associative strength are set
(mp = 2, mas = 10, blc = 2). This model also has several
supplemental production rules to deal with memory errors,
caused by partial matching.
Combining the symbolic, and sub-symbolic conditions, we

prepared four models: ExpImi (the imitation model with the
explicit process), ImpImi (the imitation model with the im-
plicit process), ExpIns (the instance model with the explicit
process), and ImpIns (the instance model with the implicit
process). By comparing these, we try to identify the role of
implicit processes in forming a shared communication sys-
tem.

In this simulation, each model runs 100 times. In each run,
the model continues the trial session for 3,600 sec1, or until
the scores reach 50 points. Following the trial session, the
model is engaged in three test sessions similar to the experi-
ment presented in section 2.

Results
Performance Table 1 shows the proportion of runs/pairs
whose scores reached 50 points, which is a termination con-
dition for the session. It also presents the numbers of rounds
required to reach the termination condition. Some runs uti-
lizing the implicit model failed to form a communication sys-
tem; whereas, all runs utilizing the explicit model succeeded
in completing the session. Even though there were pairs that
did not reach the termination condition, the number of rounds
required to complete the session in the experiment (data) was
smaller than that in all other models. Compared to the im-
plicit models, the explicit models finished the session in fewer
rounds. The effect of the decision strategy is only observed in

1We used the simulation time estimated by ACT-R.

Table 2: Fitting of the model performance to the human data.
ExIns ExImi ImpIns ImpImi

RMSE 0.11 0.10 0.20 0.20
R2 0.71 0.78 0.74 0.74
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Figure 6: The ratio of sucess at each round.

the explicit models, where the imitation model finished faster
than when using the instance-only strategy.

The detailed processes are presented in Figure 6, which
indicates the proportion of runs/pairs who met in the same
room for each round. Table 2 also shows fitting indices cal-
culated from the figure. Although the explicit models have
a smaller absolute distance to the human data (RMSE) than
the implicit models, there are no remarkable differences of an
overall trend (R2) between the four models.

Messages People usually try to share the same communi-
cation system even when their first languages are different.
To model such characteristics of human communication, we
examine the similarity of the constructed message system, as
indicated by the following index.

Sim = M⃗player1 · M⃗player2 (1)

where M⃗ indicates a vector whose element corresponds to the
use frequency of the 36 combination of figures. A dot product
of the two vectors represents the degree of symbol sharing
among agents.

Figure 7 indicates the moving scores of similarity with the
window size of 20 rounds. Table 3 summarizes the fitting to
human data, which is calculated from Figure 7. Among the
four models, ExImi shows the best fit to human Data, consis-
tent with the finding in Morita et al. (2012). It is noteworthy
that models with the implicit process replicate the temporal
trend of the similarity score, even without the explicit imi-
tation strategy. The difference between the instance and the
imitation models is also quite small in the implicit process.

Table 3: Fitting of the similarity score.
ExIns ExImi ImpIns ImpImi

RMSE 0.38 0.16 0.29 0.29
R2 0.06 0.72 0.57 0.64
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Figure 7: Similarity of messages at each round

Discussion and Conclusions
This study constructed a model that forms a new commu-
nication system through interactive coordination. To date,
many models for language evolution have been developed
(for a review Steels, 2011). In addition, there exists a re-
search that uses ACT-R to simulate experiments of forming a
communication system (Reitter & Lebiere, 2011). However,
such studies have not dealt with a situation with spontaneous
turn-taking, or role-setting operations. Most of the previous
models assign roles to agents, including being a director, or
matcher, using simulation parameters.

Setting such an interactive situation, this paper examined
the effect of implicit processes in forming a shared commu-
nication system. The results indicate a clear influence of
the process on both the performance, and the similarity of
messages. Importantly, adding the implicit process into the
model, the difference caused by the explicit process almost
disappeared. Although these findings alone are not enough to
draw a concrete conclusion, this study shows that an isomor-
phic symbol system can be made without hand-coded imita-
tions.

However, compared to human data, the implicit process re-
sults in a slower forming process, as presented in Table 1.
Several explanations can be considered for this difference.
The first explanation is about heuristics, utilized by human
participants. Some participants in the experiment used to
indicate the upper-rooms based on the shape similarity to the
upper arrows. If such a pre-existing common ground is used
in the model, the performance will undoubtedly increase. The
other possible explanation relates to individual differences.
As suggested by the failure pairs in the experiment, there are
large variations in the formation process of the symbol com-
munication system, in the collected human data. The litera-
tures in the field of developmental psychology also indicate
that children on the autism spectrum exhibit a unique lan-
guage acquisition process (Baron-Cohen, 1985, 1997). Con-
sidering these factors, we can hypothesize that cognitive func-
tions involved in forming a communication system are not
determined uniquely, and the variations of the ACT-R model
presented here might represent such individual differences.

To examine this hypothesis, our future study will analyze the
detailed behavior characteristics involved in this task. Espe-
cially, we will improve the similarity score used in this study
to include characteristics of the syntax (combination rules of
symbols), and symbol-meanings mappings.
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