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Abstract 
How do affective processes interact with cognitive processes 
to modulate our behavior? Understanding the processes that 
influence the interactions between affective stimuli and human 
decision-making behavior is important for predicting typical 
behavior under a variety of circumstances, from purchasing 
behavior to deciding when to enact certain rules of engagement 
in battle scenarios. Though some computational process 
models have been proposed in the past, they typically focus on 
higher-level phenomena and are less focused on the particular 
architectural mechanisms related to the behavior explored. 
This, in turn, can make it very difficult to combine the proposed 
model with existing related work (i.e., the models can’t be 
tractably combined). 
We used a modified version of the Iowa Gambling Task to 
explore the effects of subliminal affective (visual) stimuli on 
decision-making behavior. We developed a model that runs 
within the ACT-R/Φ architecture that completes the same task 
completed by participants. In addition to the affective and 
cognitive memory components particularly important to the 
discussion, the model also uses perceptual and motor 
components within the architecture to complete the task. The 
architecture has representations of primitive affect that interact 
with cognitive memory components mainly through an 
affective-associations module (meant to capture behavior 
typically ascribed to several amygdalar substructures). The 
model and affective architectural mechanisms provide a 
process-oriented explanation for the ways affect may interact 
with higher-level cognition to mediate human behavior during 
daily-life. 
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Introduction 
How do affective processes interact with cognitive processes 
to modulate our behavior? Though this question is important, 
we’ve only seen a relatively recent surge in computational 
process models that have explored this question (e.g., 
Marinier III et al., 2009; Marsella et al., 2010). Indeed, even 
Newell did not have emotion (and motivation) as a topic that 
was most important to address when developing a unified 
theory of cognition. As more evidence of the importance of 
emotional/affective processes has accumulated through 
experimentation and simulation, it has become clear that 
affect and emotion play a fairly central role in mediating 

behavior (e.g., Bechara et al., 1997; LeDoux, 2012; Panksepp 
& Biven, 2012). 

We conceive of emotion as an interaction between affective 
and cognitive processes. When we make these distinctions we 
do so with the idea that the two categories describe both 
qualitative and quantitative differences in computational 
processes that, nonetheless, interact within a whole 
computational behavioral system (e.g., see Figure 1 that 
describes differences in levels, Panksepp et al., 2011). We see 
affective processes as those modulate subsymbolic 
representations within the cognitive system, which results in 
certain behavior that may be deemed as emotional.  

 
Figure 1. Levels of behavioral processes from Panksepp et 

al. (2011) 
While some affective processes may have less quantitative 

effect on symbolic and subsymbolic representations 



depending on context, the implication here is that no such 
human interaction is truly without some bias due to affective 
processes. Ultimately other portions of a conditional context 
may have more effect on resulting action (e.g., a current 
goal/intentional), however these affective processes still may 
have small effects on the representations/actions that occur in 
a computational cognitive system. Put in a more high-level 
example, just because one may ultimately elect to buy the 
more economically functional vehicle, doesn’t mean that the 
affective drive to select the new sports car did not factor into 
the decision. 

Below, we give a description of a decision-making study 
and some results from this study. The study used a modified 
version of the Iowa Gambling Task (IGT) that involved 
subliminally presented visual stimuli to explore the 
particularly non-conscious and subsymbolic effects of 
affective processes. We also detail and discuss an affective-
cognitive model of this task that uses components of the 
ACT-R/Φ architecture to represent interactions between 
affective and cognitive processes.  

Description of IGT Study and Results 
97 undergraduate students were recruited as participants for 
this study (52 males and 45 females). The average ages of 
males and females were similar at 20.7 and 19.8 
(respectively). Electrodermal Activity (EDA) data were 
collected for the final 66 (37 males and 29 females) 
participants (data not reported here). All participants were 
given college course extra credit for participation.  

A filter process that removed participants who completed 
less than 20% of their trials due to time restrictions (max 3.5s 
per trial) resulted in the removal of 4 participants’ data from 
further analysis; data from 93 total participants were 
analyzed. The negative, neutral, and positive (image) groups 
each had 31 participants. We ceased participant enrollment in 
the study after we crossed a 31 per-group threshold for task-
related behavioral analysis and all volunteers had the 
opportunity to participate. 

Participants used a version of the IGT that included a fixed 
reward and punishment schedule for each deck that was the 
same as the schedule used for the original IGT by Bechara et 
al. (2000). A modified computerized version of the IGT was 
used that runs in Matlab and uses the Psychtoolbox Matlab 
extensions (Brainard, 1997). Psychtoolbox extensions were 
used due to their high timing accuracy, community support, 
and cross-platform availability and the specific software used 
has had IGT-specific timing tests done to confirm timing 
accuracy (Dancy & Ritter, 2016). 

The visual stimuli presented during the IGT were obtained 
from the International Affective Picture System (IAPS; Lang 
et al., 1997). Table 1 lists the images used in image sets used 
by the different groups. Male and female pictures were 
matched so that, for each group, they had similar 
valence/arousal/dominance ratings and had a similar content 
subject; for example, some snake pictures had different 
ratings between sexes within the IAPS manual, so those 
images with lower valence/higher arousal ratings among the 
same category were chosen. Given that picture ratings in all 
categories differed between sexes, this method allowed more 
consistency in mean measured quantitative ratings among 
participant sexes. 

Table 1. The IAPS images (and the accompanying average 
valence, arousal, and dominance rating) used in the 

experiment. 
Picture-Set Picture Numbers 
NegativeMale 1050, 1202, 1220, 1304, 1525 
NegativeFemale 1050, 1120, 1201, 1202, 1525 
NeutralMale 1670, 7006, 7010, 7080, 7175 
NeutralFemale 1670, 7004, 7010, 7012, 7175 
PositiveMale 4180, 4210, 4232, 4664, 8501 
PositiveFemale 4505, 4525, 4660, 8001, 8501 

 
Before participating in the study, all participants read and 

signed a consent form approved by the Office of Research 
Protections (ORP) at Penn State. Participants were assigned 
to one of three possible groups (with different accompanying 
treatments): a negative group with a negative image 
treatment, a neutral group with a neutral image treatment, or 
a positive group with positive image treatment. Images 
(consistent with participant sex and group) were presented to 
participants for 17ms after deck selection if they selected 
from one of the bad decks (those that give a negative net 
amount of money) and plain gray images were presented for 
the same amount of time if a card selection was made from 
one of the other two decks. For a full explanation of the 
typical IGT procedure, see (Bechara et al., 2000). 

Results 
As with previous IGT-based studies we split deck selection 
analysis into five blocks, 20 deck selections per block. Score 
was calculated by subtracting the total number of card 
selections from decks A and B (the bad decks) from the total 
number of card selections from decks C and D. 

 



 
Figure 2. Cumulative score (±SEM) for all participants after 

the final block 

 
Participants in the positive image group showed the highest 

score (Figure 2) when averaged across blocks, but all groups 
had a positive score by the final block (Table 2). Scores 
increased for all groups from blocks 1-3 and blocks 4-5, but 
decreased from blocks 3-4. 

 
Table 2. Mean score of participants in all of the blocks by 
group. Standard errors are in presented in the parenthesis 

Group B1 B2 B3 B4 B5 
Negative -4.2 

(1.4) 
0.2  
(1.3) 

1.1 
(1.5) 

-0.2 
(1.3) 

2.7 
(1.4) 

Neutral -3.5 
(1.1) 

-0.3 
(0.9) 

2.4 
(0.8) 

1.5 
(1.0) 

1.8 
(1.1) 

Positive -3.3 
(1.3) 

-0.5 
(1.2) 

3.0 
(1.2) 

2.6 
(1.1) 

4.0 
(1.0) 

 
  
A 3𝑋5 (group by block) mixed factor ANOVA of 

participant score revealed a highly significant effect of block 
(𝐹(4, 	360)	 = 	13.22, 𝑝	 < 	. 0001) on score, however it did 
not reveal a significant group (𝐹(2, 	90)	 = 	0.81, 	𝑝	 = 	. 4) 
or a group:block interaction (𝐹(8, 	360)	 = 	0.40, 	𝑝	 = 	. 9) 
effect.  

When sex is also taken into account, males and females 
show an opposite score distribution across groups (Figure 3). 

 
Figure 3. Cumulative score for male (left) and female (right) 
participants after the final block. 

   
Among male participants, those in the positive group 

showed the highest cumulative score and those in the 
negative group showed the lowest score (the only negative 
among male participants). Conversely, among female 
participants, those in the positive group received the lowest 
score (the only negative among female participants), while 
those in the negative group received the highest scores. 

The decision-making model 
To simulate this task and potentially understand more about 
the processes that mediates behavior during this task (and 
others that show some effects of subliminal affective stimuli), 
we developed a cognitive-affective model that runs within the 
ACT-R/Φ architecture. This model uses simulated eyes and 
hands to perceive the task (e.g., see the decks, cards, rewards, 
and affective images) and provide feedback (e.g., press a key 
to select a card from a deck). To make decisions, the model 
uses both procedural and declarative memory (Figure 4). 
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Figure 4. A high-level diagram of the ACT-R/Φ model 

After the model has made a deck selection and a 
reward/loss is shown, it uses those values to reinforce the 
utility of those production rules recently fired: 

𝑈5 𝑛 = 𝑈5 𝑛 − 1 + 	𝛼 𝑅5 𝑛 − 𝑈5 𝑛 − 1       [1] 

𝑅5 𝑛 = 𝑟< −	 𝑡< − 𝑡5 + log 𝑉𝑎𝑙𝑢𝑒FGGHIJK − 	log	(𝑉𝑎𝑙𝑢𝑒LGMN)     [2] 

𝑣𝑎𝑙 𝑡 = 𝑊QRS ∗ 𝑟𝑒𝑤(𝑡)V - 𝑊WXRQY5Z[ ∗ 𝑙𝑜𝑠𝑠(𝑡)V  [3] 
 

Here, 𝑈5 𝑛 − 1  represents the current utility value, α is a 
learning rate, and 𝑅5 𝑛  is a reward that is determined by 
equation 2. In equation 2 𝑟< represents the reward received 
and 𝑡< − 𝑡5 is the temporal discount that is given to a reward 
so that the length of time between reward onset and a rule 
firing determines how much reward is applied to the utility 
value. 𝑉𝑎𝑙𝑢𝑒FGGHIJK  and 𝑉𝑎𝑙𝑢𝑒LGMN in equation 2  are 
reward offsets that take into account the current affective 
state of the model (see Dancy, 2013) for some description of 
the modules/systems in ACT-R/Φ that control these values. 
Though the SEEKING system can be affected by several 
things in a realistic environment (e.g., the model would see 
an increase in SEEKING activation/value if it were thirsty), 
the limited scope of this model means that the SEEKING and 
FEAR values are practically determined by the emotional 
images flashed after selecting a card from a bad deck; this is 
controlled by the affective-associations module in ACT-R/	Φ 
(which is shown in Figure 4. The affective value for the 
images flashed is derived from equations 4 and 5, which use 
the values for arousal, valence, and dominance from the 
images listed in Table 1 (specific values are available in the 
IAPS manual, Lang et al., 1997). 

𝐹𝐸𝐴𝑅XWabR =
WQZbYWac	d ∗(efg	 XWaR[hRc	d g(iZj5[W[hRc	d))

kf
              [4] 

 
𝑆𝐸𝐸𝐾𝐼𝑁𝐺XWabR =

WQZbYWac	d ∗( XWaR[hRc	d c iZj5[W[hRc	d g	ef)
kf

       [5] 

 
The actual reward (i.e., 𝑟< in equation 2) is determined by a 

function that transforms the gain and loss that results from 
selecting a card from a deck on a given trial, using the 
imaginal/imaginal-action buffers. This function implements 
equation 6 below, which is a slightly modified version of an 
equation discussed by Ahn et al. (2008) and proposed by 
Napoli and Fum (2010) to be used in ACT-R.  

 
𝑣𝑎𝑙 𝑡 = 𝑊QRS ∗ 𝑟𝑒𝑤(𝑡)V - 𝑊WXRQY5Z[ ∗ 𝑙𝑜𝑠𝑠(𝑡)V  [6] 

 
These equations all reinforce production rules, which can 

cause some production rules to be less likely to fire over time 
(those that consistently have a negative reward, and 
consequently a lower utility will decrease in likelihood of 
firing overtime). This selection rule is encapsulated in 
equation 7. 

𝑃 𝑖 = 	 R
st

uv

R
sw

uvw

          [7] 

 
𝑃 𝑖  is the probability of selecting rule i which is 

determined by comparative weight of the rule i as well as any 
procedural noise (represented as :egs in canonical ACT-R).  

The model also uses declarative memory to learn and make 
decisions. It encodes deck-value pairs and these pairs 
ultimately control which decks are selected. At the beginning 
of making a deck selection, the model queries declarative 
memory for deck-value pairs for each of the decks. The 
declarative memory elements with the highest activation 
(governed by equation 8) are selected.  

𝐴5 = 	𝐵5 + 	𝑆5 + 	𝑃5 + 𝜀5          [8] 

𝐵5 = ln 𝑡<gi[
<{e + 	𝛽5          [9] 

Thus, the model uses the majority of the major components 
of the original ACT-R architecture (including perceptual and 
motor systems). 

Model Comparison to Study Results  
The IGT model was run a total of 360 times, 120 for each of 
the negative, neutral, and positive image groups. Half of the 
model runs within each group were male, while the other half 
were female. Thus, this resulted in 60 unique runs of the 
model. Because the model was originally developed as a 
prediction of the processes occurring and those behavioral 
data that result from such processes, sex-based differences 
were not a focus. In the model, the distinction between male 



and female only comes into play with the affectively valued 
visual stimuli (which nonetheless have very similar values.) 

For all groups the, the model predicted a similar scoring 
trend (positive) from blocks 1 to 3 (Figure 5). Overall the 
negative model seemed to deviate the most from the actual 
observed score by participants across decks.  

 
Figure 5. Comparison of score performance between 
participants and the model for negative, neutral, and positive 
groups 
 
The neutral model predicted the scores for the five blocks 
best followed by the positive and negative models (Table 3). 
 

Table 3. Comparison between model predictions for the 
different groups. 

Model/Group 𝑟} 𝑅𝑀𝑆𝐷 
IGTNegative/Negative .56 3.48 
IGTNeutral/Neutral .94 2.49 
IGTpositive/Positive .81 2.05 
All 0.72 2.74 

 

Discussion and Conclusion 
The model fit best to those data from the participants in the 

neutral group best, though the model did also fit reasonably 
well to those data from the positive group. It would seem that 
there is a key point of change that the model does not exhibit 
(i.e., in block 4). The model continues on the positive trend, 
as exhibited in previous blocks, while participants show a dip 
in performance during this block. Because the model does not 
switch deck selection in the same way participants do (and 
thus, continues on a greedy path), the model tended to 
exhaust decks at a certain point, causing the dip in 
performance seen in the final block.  

The model appears to have underestimated the effects of 
the subliminally presented affective stimuli. While, the 
affective stimuli did have certain subtle (subsymbolic) effects 
through the affective-associations module, those participant 
data showed a much more overt effect on performance. 
What’s more, these behavioral effects seemed to have some 
dependency on participant sex, for which the model had very 
little account. 

Figure 6. Predicted brain areas and main functions by the model/architecture. 



Though the model did not predict several aspects of these 
presented data, it provides a useful framework for future 
work and related simulation. Indeed, using a system like 
ACT-R/Phi for the simulation also allows one to provide 
early predictions of brain areas involved in related affective 
decisions (Figure 1). This is due to the architectures use of 
ACT-R theory (which has various functional modules that 
have been associated with  certain neural structures, 
Anderson, 2007) and theory from affective neuroscience 
(e.g., Panksepp, 1998; Panksepp & Biven, 2012). The 
predictions from Figure 6 can be further explored in future 
studies. Future plans for this particular model include running 
a ranging parameter sweep on potentially varying parameters 
(e.g., 𝑊QRS and 𝑊WXRQY5Z[) to see if the model can more 
closely fit to these data presented here. 

Existing theory, data, and these data presented here make 
it clear that affective processes can have an overt effect on 
decision-making behavior, even when the affective stimuli 
causing the activation of such processes isn’t overt. It is 
important to understand these effects as they can be useful to 
positively, or negatively, influence our decisions in various 
ways that may fail to reach our awareness. The model and 
mechanisms presented provides a first step towards providing 
a more systematic and unified account of the modulating 
effects of affective stimuli on cognitive behavior. 
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