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Abstract

A modeling approach addressing visual search in an array of
items of differing similarity is introduced. The model is able to
capture the effects found in a study that varies target-distractor
similarity (low vs. high), distractor-distractor similarity (low
vs. high) of icons, target presence (present vs. absent) and the
set size (8, 16 or 24 icons). To be able to simulate human visual
search in such a task with original ACT-R mechanisms we
implemented a hybrid search strategy that combines parallel
and serial search. The presented model can provide useful
insight for researchers interested in modeling tasks containing
visual icon search.
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Introduction

Visual search is a general requirement for everyday tasks.
Especially for user interfaces it is crucial to find the right
icon/button/menu item quickly to proceed with the task and
to reach the actual goal. The challenge is to find the target
item amongst several, often similar distractor items.
Performance in such tasks changes with the number of items
on screen. Two search paradigms are known, determining
whether the number of items influences search time or not. In
the case that the target is similar to other items, search time
typically increases roughly linearly with the set size (e.g.
Wolfe, 1994). Here serial search takes place because the
person has to actively attend one item after the other in a
serial manner.

In case the searched item is distinctive from the other items
(a yellow item between blue items) the subjective feeling is
that the item literally pops out from its surroundings. Here,
reaction time will not differ too much between set sizes — a
phenomenon called the “pop-out effect”. This parallel
search relies on preattentive processes that take place before
attention is actively drawn to specific items. Whenever a
single visual basic feature (such as color or form)
differentiates the target from other items this quick process
can occur.

The interesting case is the overlap between those two pure
paradigms, whenever a heterogeneous field of items has to be
searched.

Our aim is on the one hand to understand how people cope
with such search demands and what kind of strategies they
use. On the other hand we want to model such search
behavior to be able to predict the usability and search time of
interfaces.

The cognitive architecture ACT-R (Anderson et al., 2004,
Anderson, 2007) offers a visual module that is able to address
both search paradigms and also a module for motor output to

enable realistic predictions about reaction times in visual
search tasks. The visual module has two subsystems, the
where system and what system. The where system simulates
preattentive processes and relies on well accepted theoretical
concepts (Wolfe, 1994; Treisman & Gelade, 1980). Each
visual item has features such as type (text, or oval for a button
or others), color or width. It is possible to search for items
with a specific feature. As a response to such a search request
a visual location of such an item is returned. In the next step
the visual attention can be directed to this location. The first
process needs no time, the second process does need time. A
shift of visual attention takes 135ms - 50ms for the
production to fire that elicits the request of the shift and 85ms
for the shift itself.

But how is visual search executed that is neither purely
serial nor parallel in nature? Do people use strategies to find
their target item quicker within larger distractor sets, and does
an inhomogeneous distractor set regarding similar features
(e.g. Duncan & Humphreys, 1989) further influence visual
search apart from the above mentioned mechanisms?

The main goal of the paper is to explore the possibilities of
accurately modeling visual search in environments with
objects of differing similarity in the cognitive architecture
ACT-R.

A number of ACT-R models exist that address visual
search with different variations (Fleetwood & Byrne, 2006;
Everett & Byrne, 2004). Fleetwood and Byrne manipulated
set size and quality of icons in a computer-based target
identification task. Icon quality was realized by the level of
distinctiveness and complexity of icons. Good quality icons
were easily distinguishable from others (on a preattentive
level). Evidence in the eye tracking data showed that users
were able to preattentively discriminate subsets of visual
objects in conjunction search tasks, but here the number of
similar items were held constant. Fleetwood and Byrne built
two ACT-R models to simulate experimental results and
managed to achieve a good fit.

There are also a number of ACT-R modules that aim at a
more fine-grained modeling of certain aspects of visual
cognition. The EMMA-module (Eye Movements and
Movements of Attention; Salvucci, 2001) attempts to better
model the intricate relationship between eye movements and

The cognitive processes that closely interact with them,
while the PAAV module (Nyamsuren & Taatgen, 2012)
allows for the incorporation of bottom-up processes. Our
model, however, does not make use of any specific bottom
up-processes of visual search. Our rational for that is two-
fold. On the one hand, owing to the specific structure of the
experiment, top-down search of the target item is generally
encouraged and then reinforced through practice.
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On the other hand, more importantly even, we are
interested in the possibility to model visual search with the
core ACT-R mechanisms. While a very fine grained
modeling of visual processes has its place, for most task
models - especially if they are not primarily focused on the
visual aspect of the task — it may be much more realistic and
efficient to use a simple model that captures the general
behavior reasonably well.

To that end we took an experiment conducted by Trapp &
Wienrich  (2017) that looks at visual item search
independence of four factors: Target-Distractor similarity
(TDS), similarity between distractors (DDS), the presence of
a target (target presence) and the overall amount of icons
present (set size). The experiment is particularly well suited
for modeling attempts. It demands the active consideration of
both the absolute and relative properties of visual icons such
as location, color and form - and therefore tests ACT-R’s
modeling capabilities in all of these areas, as well. The
variation of set sizes also allows for the isolation of invariable
mechanisms and those that are dependent on the size of the
visual search area.

After presenting the original experiment and its main
findings the modeling approach will be introduced. We will
first describe the basic model in ACT-R and then move into
specific modifications that allowed the final model to capture
the experimental results well. To be maximally instructive to
future modelers of similar visual mechanisms, we will also
shortly discuss several modeling dead ends.

Experiment

The two main independent factors in the experiment by
Trapp & Wienrich were Target-Distractor similarity (TDS;
low vs. high) and Distractor-Distractor similarity (low vs.
high) (see Figure 1). Similarity was realized by the color of
the icons. Two further independent factors, target presence
(present vs. absent) and the set size (8, 16 or 24 icons) were
completely crossed with the similarities, resulting in a
2x2x2x3-factorial setup and a total of 24 experimental

conditions. Each participant conducted 12 trials of each
condition (for a total of 288 trials per participant), constantly
switching between conditions in a fixed blocked fashion. The
participants performed a visual search task on a 10” mobile
touch device, in which they had to find a specific target icon
within a set of distracting icons.

Each trial was performed in the following manner: After
the target icon was shown for two seconds, a fixation cross
was presented in the center of the screen to ensure a
standardized gaze point for all participants. After the fixation
cross disappeared, a set of icons was shown. When the target
icon was present in the set, the participants had to find and
select the target icon as fast as possible. Whenever there was
no target, they had to select a specific button at the bottom of
the screen to indicate the absence of the target icon.
Subsequently, they received feedback on whether their
answer was true or false. The reaction time was recorded for
each trial and served as a performance measurement. The
experiment comprised 18 participants in total (11 male and 7
female) aged between 18 to 30 years.

Both main and interaction effects of TDS, DDS, set size
and target presence were consistent with the experimenters’
predictions and previous findings. Their main findings were
as follows (see also figure 3):

1) The first two conditions (both low TDS) produced low
reaction times that showed only a very slight increase with
set size.

2) The third condition (high TDS and low DDS) produced
moderate reaction times and increased with set size.

3) The fourth condition (high TDS and high DDS)
produced high reaction times that increased strongly with set
size.

4) The absence of the target item increased reaction times
only slightly and by a constant term in the first two
conditions. In the third and fourth condition the difference
strongly increased with set size.



Model

In order to capture these effects first a basic model in ACT-
R was created in a way that required the fewest assumptions
while still being able to successfully solve the task in all
conditions. Instead of icons the model interacted with oval-
objects in the Lisp-GUI with corresponding colors. Instead of
the graphic on the icon, text codes were used simulating the
visual feature that requires attention shifts. Both this basic
and the later, modified model were originally created as part
of a student project.

Basic Model

At the beginning of each trial, the model starts by encoding
and memorizing the target icon in short term working
memory (imaginal buffer). When the fixation cross appears,
the visual focus is set on it. Starting with the appearance of
the icons the model uses a search routine to scan the graphic
user interface (GUI) for the target. Using preattentive
perception via the where system, it starts a visual-location
request for the target color. Its visual attention is then directed
to such an item location in order to encode it (text code or
icon graphic). The current icon and the target icon (stored in
working memory) are compared. Whenever the two items
match, the icon is selected. If they do not match, the next item
with the target color is picked out and the process repeats
until all items with the target color have been attended. If
there is no unattended item left, the “not present”-icon at the
bottom screen is selected.

While this search routine could plausibly simulate human
behavior, this first model had several shortcomings. Most
problematically, almost all model behavior was longer than
the participants’. This difference was most pronounced in
conditions 3 and 4 where many distractor items match the
target color and thus the “naive” model had to spend a large
amount of time on time-costly fixations of the what-system.
An additional problem was the fact that the model produced
shorter reaction times with no target present (compared to the
same condition with target present) in the first two
conditions. This was mainly due to the additional visual
fixation on the target when the target was present.

Model Changes

To increase the speed, while keeping the model psycho-
physiologically plausible, we realized three adjustments: The
first adjustment was to move the starting position of the
cursor to the center of the screen, assuming that most
participants would keep the finger in a click-ready position
over the display to be able to react faster. Secondly, as soon
as the where-system returns a new visual location, two
processes start in parallel. While the visual attention is drawn
to the location, the manual system prepares to start moving
the finger towards the new candidate item. This change was
implemented to reflect a routine task handling with subjects
constantly anticipating and preparing the next step of the task.
Thirdly, while the movement towards an icon takes place, the
model already starts to prepare the next motor movement (the

pressing of the icon). ACT-R allows for this kind of parallel
working of the motor module (here specifically via the
“preparation: free” command) as long as the different
processes are in different stages of the preparation-initiation-
execution sequence that makes up all motor processes.
Psychologically, this change can be justified by the
assumption that most participants are well-versed in the
action of pressing an icon on a touch screen. A procedural
acquisition of a combined movement by the participants that
does not require several separate preparation and initiation
phases is therefore plausible.

Hybrid search strategy

The most important change, however, was the remodeling
of the general search in a way that it required fewer
attentional fixations, driving down reaction times especially
in conditions 3 and 4. Since the fixation of every candidate
item (i.e. items of the same color as the target item) was not
reconcilable with observed reaction times, the next logical
step was to use a strategy that searches an entire cluster of
candidate items with one fixation. The new search algorithm
(figure 2) thus consists of three main steps (3 productions in
ACT-R).

1) A preattentive request (where system) is issued for a
previously unattended location with the target color and the
lowest x and y values (light blue arrow).

2) If the icon does not match the target icon, the model
scans the entire row for the target comparing the “width” of
the text (black arrow). Width is processed preattentively, and
the target had a unique text width, allowing it to be a search
criterion. Psychologically, this much faster search assumes
that a visual scan within a short row (here 4 items) allows the
shape of the target item to visually “pop out” as well (an
assumption that we globally allowed only for colors). When
the icon is located in the row, it can be found directly.

3) In case of finding nothing, the model jumps to the
nearest oval with the correct color below the current row (red
arrow).

Figure 2: Core visual search algorithm of the final model.

The aggregate of these adjustments allows our model not only
to meet the general level of reaction time of the empirical
data.
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Figure 3: Empirical and Model reaction times for all four principal experimental conditions. Each condition is in turn divided
by target present/ not present.

The model now also produced reaction times that are
longer in conditions with no target present without any
further assumptions.

It should be noted that in this paper, our goal was to
recreate reaction times rather than the exact visual paths or
fixation patterns. In fact, all models that assume that

1) exactly one fixation per row is needed to scan all

candidate items and

2) search is conducted in a structured manner from top to

bottom
make the same temporal predictions.

Model Specifications

In the models, no ACT-R parameters were used. The
declarative memory consists of a goal chunk and a chunk that
stores color, text and width of the current target item. The
final model and the GUI are published online at
https://depositonce.tu-berlin.de/handle/11303/338. To obtain
the simulation results, the model was run 1000 times in each
condition.

Results and Model Fit

The following table shows statistical results of the fit. The
overall RMSSD (a measure for the absolute distance between
model and experimental data; Schunn & Wallach, 2005) of
the model is 1.74.

RMSE RMSSD Correlation
Setsize24 | 102.34 ms 1.34 0.99
Setsize16 | 172.12ms 1.20 0.98
Set size 8 179.62 ms 2.42 0.94

Table 1: Statistical model fit (RMSE: absolute fit; RMSSD:
absolute fit standardized by the experimental data’s standard
deviation).

Comparing the empirical data and the model for the set size
of 24 icons indicates a good fit over all conditions (figure 3).
It captures well the relative trend in all 3 set sizes, both
concerning the similarity conditions and the target presence.

The absolute reaction times match reasonably well,
although the fit is best for large set sizes. Almost all of the
difference between model and experiment results from
conditions 3 and 4 when the target is not present. Especially
in condition 4 the difference is not within the standard
deviation anymore and therefore has a great effect on the
RMSSD.

The reaction times reflect the fact that the model is using
both the serial and the parallel visual search. While in
condition 1 and 2 the target pops out immediately, the model
has to use a mixture between parallel and serial search for
finding the target fast enough in the other conditions. Despite
the fit getting a little less precise in the 3 and 4™ condition
the model’s searching algorithm seems to be a good
approximation to the human visual search behavior.

Discussion

We introduced two modeling approaches. The first one was
a simple, reasonable model to address visual search in a task
that includes different similarities between target and
distractors. This basic model did not capture well the effects
found in the experiment. With three adjustments and a new
way to describe a mixture of parallel and serial search the new
model could capture the empirical data well. The general
mechanism used in the model might be helpful to researchers
who model visual search in applied tasks, especially for tasks
where time is sparse and people try to be as efficient as
possible.

To better judge the quality of the current model, it would
be useful to compare it to a model that uses both EMMA.- and
PAAV-module and thus implements more sophisticated
mechanisms including those that deal with bottom-up visual
processing. Another factor that could also be included in
future models is the influence of expectations on visual
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search patterns, as described in Lindner & Russwinkel
(2016).

Furthermore this account is a theoretical concept that
should be tested in subsequent experiments. To test the
assumption of the pop out of items on one row, a variation of
the current experiment could test participants with the screen
presented vertically and horizontally. Another variation
could address the question of a possible strategy change when
the number of distractors similar to the target increases. This
can be done by presenting conditions in which only a small
number of distractors is clearly different from the target. All
future experiments should involve eye-tracking to better
track the attentional focus of participants. This in turn should
allow for better model construction and evaluation.
Furthermore, we would like to test this visual search concept
on our model of learning and unlearning of app usage
(Prezenski & Russwinkel, 2016).
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