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Abstract 

A modeling approach addressing visual search in an array of 
items of differing similarity is introduced. The model is able to 
capture the effects found in a study that varies target-distractor 
similarity (low vs. high), distractor-distractor similarity (low 
vs. high) of icons, target presence (present vs. absent) and the 
set size (8, 16 or 24 icons). To be able to simulate human visual 
search in such a task with original ACT-R mechanisms we 
implemented a hybrid search strategy that combines parallel 
and serial search. The presented model can provide useful 
insight for researchers interested in modeling tasks containing 
visual icon search. 

Keywords: visual search; similarity; ACT-R; cognitive 
modeling. 

Introduction 

Visual search is a general requirement for everyday tasks. 

Especially for user interfaces it is crucial to find the right 

icon/button/menu item quickly to proceed with the task and 

to reach the actual goal. The challenge is to find the target 

item amongst several, often similar distractor items. 

Performance in such tasks changes with the number of items 

on screen. Two search paradigms are known, determining 

whether the number of items influences search time or not. In 

the case that the target is similar to other items, search time 

typically increases roughly linearly with the set size (e.g. 

Wolfe, 1994). Here serial search takes place because the 

person has to actively attend one item after the other in a 

serial manner.  

In case the searched item is distinctive from the other items 

(a yellow item between blue items) the subjective feeling is 

that the item literally pops out from its surroundings. Here, 

reaction time will not differ too much between set sizes – a 

phenomenon called the “pop-out effect”. This parallel 

search relies on preattentive processes that take place before 

attention is actively drawn to specific items. Whenever a 

single visual basic feature (such as color or form) 

differentiates the target from other items this quick process 

can occur. 

The interesting case is the overlap between those two pure 

paradigms, whenever a heterogeneous field of items has to be 

searched. 

Our aim is on the one hand to understand how people cope 

with such search demands and what kind of strategies they 

use. On the other hand we want to model such search 

behavior to be able to predict the usability and search time of 

interfaces. 

The cognitive architecture ACT-R (Anderson et al., 2004, 

Anderson, 2007) offers a visual module that is able to address 

both search paradigms and also a module for motor output to 

enable realistic predictions about reaction times in visual 

search tasks. The visual module has two subsystems, the 

where system and what system. The where system simulates 

preattentive processes and relies on well accepted theoretical 

concepts (Wolfe, 1994; Treisman & Gelade, 1980). Each 

visual item has features such as type (text, or oval for a button 

or others), color or width. It is possible to search for items 

with a specific feature. As a response to such a search request 

a visual location of such an item is returned. In the next step 

the visual attention can be directed to this location. The first 

process needs no time, the second process does need time. A 

shift of visual attention takes 135ms - 50ms for the 

production to fire that elicits the request of the shift and 85ms 

for the shift itself.                                    

But how is visual search executed that is neither purely 

serial nor parallel in nature? Do people use strategies to find 

their target item quicker within larger distractor sets, and does 

an inhomogeneous distractor set regarding similar features 

(e.g. Duncan & Humphreys, 1989) further influence visual 

search apart from the above mentioned mechanisms? 

The main goal of the paper is to explore the possibilities of 

accurately modeling visual search in environments with 

objects of differing similarity in the cognitive architecture 

ACT-R. 

A number of ACT-R models exist that address visual 

search with different variations (Fleetwood & Byrne, 2006; 

Everett & Byrne, 2004). Fleetwood and Byrne manipulated 

set size and quality of icons in a computer-based target 

identification task. Icon quality was realized by the level of 

distinctiveness and complexity of icons. Good quality icons 

were easily distinguishable from others (on a preattentive 

level). Evidence in the eye tracking data showed that users 

were able to preattentively discriminate subsets of visual 

objects in conjunction search tasks, but here the number of 

similar items were held constant. Fleetwood and Byrne built 

two ACT-R models to simulate experimental results and 

managed to achieve a good fit.  

There are also a number of ACT-R modules that aim at a 

more fine-grained modeling of certain aspects of visual 

cognition. The EMMA-module (Eye Movements and 

Movements of Attention; Salvucci, 2001) attempts to better 

model the intricate relationship between eye movements and  

The cognitive processes that closely interact with them, 

while the PAAV module (Nyamsuren & Taatgen, 2012) 

allows for the incorporation of bottom-up processes. Our 

model, however, does not make use of any specific bottom 

up-processes of visual search. Our rational for that is two-

fold. On the one hand, owing to the specific structure of the 

experiment, top-down search of the target item is generally 

encouraged and then reinforced through practice. 

mailto:stefan.lindner@campus.tu-berlin.de
mailto:nele.russwinkel@tu-berlin.de


  

On the other hand, more importantly even, we are 

interested in the possibility to model visual search with the 

core ACT-R mechanisms. While a very fine grained 

modeling of visual processes has its place, for most task 

models - especially if they are not primarily focused on the 

visual aspect of the task – it may be much more realistic and 

efficient to use a simple model that captures the general 

behavior reasonably well.  

To that end we took an experiment conducted by Trapp & 

Wienrich (2017) that looks at visual item search 

independence of four factors: Target-Distractor similarity 

(TDS), similarity between distractors (DDS), the presence of 

a target (target presence) and the overall amount of icons 

present (set size). The experiment is particularly well suited 

for modeling attempts. It demands the active consideration of 

both the absolute and relative properties of visual icons such 

as location, color and form - and therefore tests ACT-R’s 

modeling capabilities in all of these areas, as well. The 

variation of set sizes also allows for the isolation of invariable 

mechanisms and those that are dependent on the size of the 

visual search area. 

After presenting the original experiment and its main 

findings the modeling approach will be introduced. We will 

first describe the basic model in ACT-R and then move into 

specific modifications that allowed the final model to capture 

the experimental results well. To be maximally instructive to 

future modelers of similar visual mechanisms, we will also 

shortly discuss several modeling dead ends. 

Experiment 

The two main independent factors in the experiment by 

Trapp & Wienrich were Target-Distractor similarity (TDS; 

low vs. high) and Distractor-Distractor similarity (low vs. 

high) (see Figure 1). Similarity was realized by the color of 

the icons. Two further independent factors, target presence 

(present vs. absent) and the set size (8, 16 or 24 icons) were 

completely crossed with the similarities, resulting in a 

2x2x2x3-factorial setup and a total of 24 experimental  

 

conditions. Each participant conducted 12 trials of each 

condition (for a total of 288 trials per participant), constantly 

switching between conditions in a fixed blocked fashion. The 

participants performed a visual search task on a 10” mobile 

touch device, in which they had to find a specific target icon 

within a set of distracting icons. 

Each trial was performed in the following manner: After 

the target icon was shown for two seconds, a fixation cross 

was presented in the center of the screen to ensure a 

standardized gaze point for all participants. After the fixation 

cross disappeared, a set of icons was shown. When the target 

icon was present in the set, the participants had to find and 

select the target icon as fast as possible. Whenever there was 

no target, they had to select a specific button at the bottom of 

the screen to indicate the absence of the target icon. 

Subsequently, they received feedback on whether their 

answer was true or false. The reaction time was recorded for 

each trial and served as a performance measurement. The 

experiment comprised 18 participants in total (11 male and 7 

female) aged between 18 to 30 years.  

Both main and interaction effects of TDS, DDS, set size 

and target presence were consistent with the experimenters’ 

predictions and previous findings. Their main findings were 

as follows (see also figure 3):  

1) The first two conditions (both low TDS) produced low 

reaction times that showed only a very slight increase with 

set size.  

2) The third condition (high TDS and low DDS) produced 

moderate reaction times and increased with set size.  

3) The fourth condition (high TDS and high DDS) 

produced high reaction times that increased strongly with set 

size. 

4) The absence of the target item increased reaction times 

only slightly and by a constant term in the first two 

conditions. In the third and fourth condition the difference 

strongly increased with set size. 

Figure 1: Experimental similarity conditions according to color. Target is the white cross on red ground. (for demonstration; not 

original icons used) 
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Model 

In order to capture these effects first a basic model in ACT-

R was created in a way that required the fewest assumptions 

while still being able to successfully solve the task in all 

conditions. Instead of icons the model interacted with oval-

objects in the Lisp-GUI with corresponding colors. Instead of 

the graphic on the icon, text codes were used simulating the 

visual feature that requires attention shifts. Both this basic 

and the later, modified model were originally created as part 

of a student project. 

Basic Model 

At the beginning of each trial, the model starts by encoding 

and memorizing the target icon in short term working 

memory (imaginal buffer). When the fixation cross appears, 

the visual focus is set on it. Starting with the appearance of 

the icons the model uses a search routine to scan the graphic 

user interface (GUI) for the target. Using preattentive 

perception via the where system, it starts a visual-location 

request for the target color. Its visual attention is then directed 

to such an item location in order to encode it (text code or 

icon graphic). The current icon and the target icon (stored in 

working memory) are compared. Whenever the two items 

match, the icon is selected. If they do not match, the next item 

with the target color is picked out and the process repeats 

until all items with the target color have been attended. If 

there is no unattended item left, the “not present”-icon at the 

bottom screen is selected. 

While this search routine could plausibly simulate human 

behavior, this first model had several shortcomings. Most 

problematically, almost all model behavior was longer than 

the participants’. This difference was most pronounced in 

conditions 3 and 4 where many distractor items match the 

target color and thus the “naive” model had to spend a large 

amount of time on time-costly fixations of the what-system. 

An additional problem was the fact that the model produced 

shorter reaction times with no target present (compared to the 

same condition with target present) in the first two 

conditions. This was mainly due to the additional visual 

fixation on the target when the target was present. 

Model Changes 

To increase the speed, while keeping the model psycho-

physiologically plausible, we realized three adjustments: The 

first adjustment was to move the starting position of the 

cursor to the center of the screen, assuming that most 

participants would keep the finger in a click-ready position 

over the display to be able to react faster. Secondly, as soon 

as the where-system returns a new visual location, two 

processes start in parallel. While the visual attention is drawn 

to the location, the manual system prepares to start moving 

the finger towards the new candidate item. This change was 

implemented to reflect a routine task handling with subjects 

constantly anticipating and preparing the next step of the task. 

Thirdly, while the movement towards an icon takes place, the 

model already starts to prepare the next motor movement (the 

pressing of the icon). ACT-R allows for this kind of parallel 

working of the motor module (here specifically via the 

“preparation: free” command) as long as the different 

processes are in different stages of the preparation-initiation-

execution sequence that makes up all motor processes. 

Psychologically, this change can be justified by the 

assumption that most participants are well-versed in the 

action of pressing an icon on a touch screen. A procedural 

acquisition of a combined movement by the participants that 

does not require several separate preparation and initiation 

phases is therefore plausible.  

Hybrid search strategy 

The most important change, however, was the remodeling 

of the general search in a way that it required fewer 

attentional fixations, driving down reaction times especially 

in conditions 3 and 4. Since the fixation of every candidate 

item (i.e. items of the same color as the target item) was not 

reconcilable with observed reaction times, the next logical 

step was to use a strategy that searches an entire cluster of 

candidate items with one fixation. The new search algorithm 

(figure 2) thus consists of three main steps (3 productions in 

ACT-R).  

1) A preattentive request (where system) is issued for a 

previously unattended location with the target color and the 

lowest x and y values (light blue arrow).  

2) If the icon does not match the target icon, the model 

scans the entire row for the target comparing the “width” of 

the text (black arrow). Width is processed preattentively, and 

the target had a unique text width, allowing it to be a search 

criterion. Psychologically, this much faster search assumes 

that a visual scan within a short row (here 4 items) allows the 

shape of the target item to visually “pop out” as well (an 

assumption that we globally allowed only for colors). When 

the icon is located in the row, it can be found directly.  

3) In case of finding nothing, the model jumps to the 

nearest oval with the correct color below the current row (red 

arrow). 

 
Figure 2: Core visual search algorithm of the final model. 

 

The aggregate of these adjustments allows our model not only 

to meet the general level of reaction time of the empirical 

data. 



 

The model now also produced reaction times that are 

longer in conditions with no target present without any 

further assumptions.  

It should be noted that in this paper, our goal was to 

recreate reaction times rather than the exact visual paths or 

fixation patterns. In fact, all models that assume that  

1) exactly one fixation per row is needed to scan all 

candidate items and 

2) search is conducted in a structured manner from top to 

bottom   

make the same temporal predictions. 

Model Specifications 

In the models, no ACT-R parameters were used. The 

declarative memory consists of a goal chunk and a chunk that 

stores color, text and width of the current target item. The 

final model and the GUI are published online at 

https://depositonce.tu-berlin.de/handle/11303/338. To obtain 

the simulation results, the model was run 1000 times in each 

condition. 

Results and Model Fit 

The following table shows statistical results of the fit. The 

overall RMSSD (a measure for the absolute distance between 

model and experimental data; Schunn & Wallach, 2005) of 

the model is 1.74.  

   

 RMSE RMSSD Correlation  

Set size 24 102.34 ms 1.34 0.99 

Set size 16 172.12 ms 1.20 0.98 

Set size 8 179.62 ms 2.42 0.94 

Table 1: Statistical model fit (RMSE: absolute fit; RMSSD:  

absolute fit standardized by the experimental data’s standard 

deviation). 

 

 

Comparing the empirical data and the model for the set size 

of 24 icons indicates a good fit over all conditions (figure 3). 

It captures well the relative trend in all 3 set sizes, both 

concerning the similarity conditions and the target presence.  

The absolute reaction times match reasonably well, 

although the fit is best for large set sizes. Almost all of the 

difference between model and experiment results from 

conditions 3 and 4 when the target is not present. Especially 

in condition 4 the difference is not within the standard 

deviation anymore and therefore has a great effect on the 

RMSSD.  

The reaction times reflect the fact that the model is using 

both the serial and the parallel visual search. While in 

condition 1 and 2 the target pops out immediately, the model 

has to use a mixture between parallel and serial search for 

finding the target fast enough in the other conditions. Despite 

the fit getting a little less precise in the 3rd and 4th condition 

the model’s searching algorithm seems to be a good 

approximation to the human visual search behavior. 

Discussion 

We introduced two modeling approaches. The first one was 

a simple, reasonable model to address visual search in a task 

that includes different similarities between target and 

distractors. This basic model did not capture well the effects 

found in the experiment. With three adjustments and a new 

way to describe a mixture of parallel and serial search the new 

model could capture the empirical data well. The general 

mechanism used in the model might be helpful to researchers 

who model visual search in applied tasks, especially for tasks 

where time is sparse and people try to be as efficient as 

possible. 

To better judge the quality of the current model, it would 

be useful to compare it to a model that uses both EMMA- and 

PAAV-module and thus implements more sophisticated 

mechanisms including those that deal with bottom-up visual 

processing. Another factor that could also be included in 

future models is the influence of expectations on visual 

Figure 3: Empirical and Model reaction times for all four principal experimental conditions. Each condition is in turn divided 

by target present/ not present. 
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search patterns, as described in Lindner & Russwinkel 

(2016).  

Furthermore this account is a theoretical concept that 

should be tested in subsequent experiments. To test the 

assumption of the pop out of items on one row, a variation of 

the current experiment could test participants with the screen 

presented vertically and horizontally. Another variation 

could address the question of a possible strategy change when 

the number of distractors similar to the target increases. This 

can be done by presenting conditions in which only a small 

number of distractors is clearly different from the target. All 

future experiments should involve eye-tracking to better 

track the attentional focus of participants. This in turn should 

allow for better model construction and evaluation. 

Furthermore, we would like to test this visual search concept 

on our model of learning and unlearning of app usage 

(Prezenski & Russwinkel, 2016).  
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